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Abstract. Typically, public transit modeling requires the
availability of an extensive data basis to enable detailed
modeling, calibration, and validation. Sometimes such
data is not available, even though there is demand for a
simulation model to examine the impacts of planning
decisions and strategies. However, available data may
support a simulation model which, while not perfect, at
least yields plausible results allowing the examination of
broader impacts of planning decisions and strategies.

In this paper a bus transit simulation model custom-
tailored to manage on a scarce data basis is described.
After an introduction to aims and scope, some back-
ground on bus transit systems, data availability, and
related research is shared. Then a simulation model
utilizing the available scarce data is proposed and the
representation of the physical transit network, logical
components, vehicle behavior, and transit provider's
everyday operational management decisions are de-
scribed. Finally, the outcomes of initial experiments on a
small artificial transit network model are discussed,
demonstrating the model's ability to yield plausible re-
sults.

Introduction

Typically, public transit modeling requires the availabil-
ity of a broad data basis, to enable detailed modeling,
calibration, and validation.

In some cases, such data is not available, even
though there is demand for a simulation model to exam-
ine the impacts of planning decisions and strategies.
However, available data may support a simulation mod-
el which, while not perfect, at least yields plausible
results allowing for the examination of broader impacts
of planning decisions and strategies.

In this paper an event-based simulation model of bus
transit based on scarce data is presented. The model is
intended to be used as a tool to evaluate planning deci-
sions and operational management rules to mitigate
disturbances in transit networks, e.g. faulty vehicles,
blocked stops, or unusually high traffic on street seg-
ments. For this intended usage, it is not necessary to
include every single behavioral decision in a model, but
rather design it in such a way that specific key indica-
tors, e.g. delays, kept connections, or service regularity
can be measured. Therefore, the proposed model utilizes
a more abstract mesoscopic approach to model part of
the vehicle behavior.

Many transit models are developed as an extension
of already established models of individual traffic (see
e.g. [3], [8], [17]). If these models utilize a fine grained
modeling approach, they generally necessitate the avail-
ability of an extensive data basis, including detailed
information on origin-destination matrices, vehicular
dynamics, signaling strategies, and lane changing rules
(e.g. see [18]), and include many components which are
not immediately interesting for public transit systems.
Moreover, employing microscopic models of individual
traffic for the examination of large areas (e.g. public
transit networks of whole cities) often results in pro-
longed run times (see e.g. [6], [7]) and the parametriza-
tion of individual traffic (see e.g. [17]), reversing the
initial modeling decision.
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The model proposed in this paper is not based on
any pre-existing model of individual traffic, but is new-
ly developed based on the specifics of bus transit, and
specifically prepared with the intended use in mind.
That, in unison with using a mesoscopic modeling ap-
proach, allows for the construction of a simulation mod-
el which manages on a very scarce data basis, most of
which is publicly available for many transit systems.

The paper continues with some background on bus
transit systems, available data, and related research (see
section 1). Afterwards a mesoscopic, event-based simu-
lation model of bus transit utilizing scarce data is pro-
posed, describing in detail the representation of the
physical transit network, logical components, vehicle
behavior, and the transit provider's operational man-
agement strategies (see section 2). To evaluate the simu-
lation model's behavior some experiments are conduct-
ed based on a model of a small artificial transit network
(see section 3). The paper concludes with a summary
and an outlook of further research steps (see section 4).

1 Background

1.1 Bus transit networks and available data

A bus transit system consists of a street network and a
set of bus stops where passenger exchanges take place.
These bus stops are served by a set of transit vehicles
executing service trips, i.e. pairings of starting times and
sequences of bus stops, according to a timetable. Each
individual vehicle executes several service trips, inter-
spersed with deadhead trips, over the course of an oper-
ational day, which is called a rotation. Such a rotation
usually begins with a deadhead trip from the vehicle's
depot to the first stop of its first service trip and, after a
number of service trips, ends with a returning deadhead
trip to the depot. The vehicle schedule defines the as-
signment of specific vehicles to rotations.

Some stops are marked as control points, i.e. loca-
tions in the network where control strategies may be
employed, e.g. purposely delaying early vehicles until
the scheduled departure time is reached. At other stops,
vehicles depart as soon as the passenger exchange is
completed.

Directed paths through the network, connecting two
successive stops are called connections. They usually
consist of several street segments, junctions, and sig-
nals, which in turn can be shared by several connec-
tions.

Signals control access to street segments, usually at
junctions. Often, two or more signals constitute a signal
group with a common scheduling strategy.

Public transit vehicles generally follow pre-defined
line routes, consisting of sequences of stops to be ser-
viced.

In most public transit systems, daily operations are
managed by an operations center, with dispatcher per-
sonnel managing procedures for the mitigation of dis-
turbances originating e.g. from street segments blocked
by accidents, or failing transit vehicle doors. These
operators have a number of remedies at their disposal,
including the authority to short-turn or cancel trips, and
to deploy extra vehicles.

The proposed model manages on a minimum of data
which is publicly available for many transit systems: a
list of stops and their connections, including planned
traversal times; timetables for each of these stops; de-
scriptions of the lines and their variants, including the
order of stops to be serviced; as well as type and attrib-
utes of the vehicles used.

Additional data improves the simulation's accuracy:
the distribution of traversal times for each connection
and the passenger arrival rate for each stop, both de-
pending on the time of day. In addition, empirical data
on individual departure times help with calibration and
validation of the model.

1.2 Related research

A number of simulation models covering bus transit can
be found in the literature (see e.g. [1], [3], [8], and [15] -
[17)).

One of the first models was proposed in 1979 by
Andersson et al. in [1]. The authors develop a
mesoscopic event-based interactive simulation model
for bus transit systems allowing users online testing of
operational strategies, like short-turning trips or dead-
heading vehicles. Andersson et al. model the bus system
as a set of lines, i.e. collections of linked stops, where
each stop posseses a separate holding bay for every line
serving it. As a result, the model does not represent
direct vehicle interactions. Instead, interactions between
vehicles are modeled indirecly via the passenger ex-
change process. Because passengers can be served by
multiple lines, delays or earliness of a vehicle of one
line may affect the passenger exchange processes of
vehicles of other lines, resulting in vehicle bunching
effects.
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The traversal process of vehicles between successive
stops is modeled mesoscopically using lognormal dis-
tributed random values dependent on the time of day.

A newer mesoscopic approach to bus transit simula-
tion is proposed by Toledo et al. in [17]. The authors
extend a mesoscopic simulation model for individual
traffic based on queuing theory proposed by Burghout
in [4], which represents the street network as a graph of
interconnected queues and vehicles as individual entities
traversing these queues based on speed/density func-
tions. The nodes of the graph represent junctions, and
are modeled as collections of servers, one for each turn-
ing movement and each with different processing times
based on e.g. the green time ratio of the corresponding
signal.

Other recent simulation models including bus transit
use microscopic agent-based modeling approaches all of
which are based on generic multi-modal transit models
(see e.g. [3], [8], [15], and [16]). The open source simu-
lation framework SUMO (Simulation of Urban Mobili-
ty, for an overview see [2]) started as an agent-based
simulation model for individual traffic, representing
individual drivers as agents with individual attributes
and microscopic vehicle dynamics as well as lane
changing behavior. These agents traverse a graph repre-
senting the street network, with street segments as edges
and junctions as nodes. In [2] and [8] Behrisch et al. and
Kendziorra and Weber extend SUMO with the capabil-
ity to incorporate public transit and individual travellers,
respectively. For this purpose, public transit vehicles are
modeled as agents of individual traffic with fixed
routes, which stop at predefined locations to let passen-
gers board and alight.

A very comprehensive agent-based simulation mod-
el including bus transit is proposed by Suzumura et al.
in [15] and [16]. They employ the IBM Mega Traffic
Smulator (see [14]) to develop a parallel, agent-based
model for microscopic transit simulation called M3.
Every single participant and every potential transit
mode (e.g. bus, light rail, car, bicycle) is represented by
agents, which move through multiple interconnected
graphs representing the different transit networks. As in
SUMO, public transit agents are modeled similar to
agents of individual traffic, but with fixed routes on
which they have to serve predefined stops.

Apart from the model proposed by Andersson et al.,
all discussed modeling approaches require large
amounts of data about individual traffic and the underly-
ing street network (e.g. origin-destination matrices,

signaling strategies). However, when employed to real-
world test cases most users of these models choose to
parameterize some or all of these model aspects, due to
run-time or other concerns (see. e.g. [6], [7], and [17]).
Therefore, this paper continues with a new modeling
approach taking these considerations into account by
basing all modeling decisions on the specifics of public
transit systems and simplifying some transit modeling
aspects using a mesoscopic approach.

2 Modeling Bus Transit

A public transit system can be decomposed into a num-
ber of sub-systems: the physical network consisting of
stops, connections and signals, the logical network con-
sisting of lines, rotations, and planned trips, the vehicle
sub-system consisting of the buses and their behavior,
and the transit provider's operational management deci-
sions. Some of these components show a stochastic
behavior and are therefore subject to randomization.

In the following, these system components and their
behavior are represented by simulation entities, events
and activities, and thus translated to an object-oriented,
event-based simulation model (see [19]).

Given the scarcity of the available data, a main goal
of the modeling process is to avoid unjustified complex-
ity. While individual vehicles are considered explicitly,
their driving dynamics are not modeled in detail, but are
subsumed with a certain abstraction.

2.1 Physical network

The physical network is represented by a directed graph
G = (V,E), where stops and connections are modeled
as nodes v € V, and their neighborhood relations are
represented by edges e € E.

A stop s € S is attributed with an identifier, time of
day specific passenger arrival rates and a maximum
capacity for concurrently stopping vehicles. In addition,
some stops are marked as control points. As stops are
assigned to exactly one station, each entity contains a
reference to its station object.

Connections ¢ = (si,sj) €C S SXS are directed
paths through the transit network between two succes-
sive stops s; and s;. Connections are attributed with a
length, a planned traversal time t,(c) according to the
timetable, and might also contain a list of atomic street
segments and a set of signals.
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Figure 1: Event-activity-chain for the vehicle sub-model. Hexagons represent events, squares with rounded

edges represent activities.

2.2 Logical network

A line I €L is modeled as an ordered list [; =
(sil, Ciys Siys Ciys ""Cin—l’sin) of stops si; € S, which are
to be serviced successively by a vehicle of a specific
type, interspersed with the relevant connections ci; € c

between each two successive stops. This avoids elabo-
rate path finding over the course of a simulation run.

Planned service trips are tuples of a line to be served
and a planned departure time at the first stop of that line.
The set of all service trips defines the services available
to prospective passengers during an operational day, i.e.
the timetable.

Rotations are ordered sequences of all the trips to be
executed by one — not yet specified — vehicle during a
single operational day. A vehicle schedule assigns one
specific vehicle to each rotation.

2.3 Vehicles

Vehicles are represented by entities traversing the mod-
el graph over the course of a simulation run according to
timetable, vehicle schedule, and operational strategies,
encapsulating a significant part of the simulation logic.

Vehicles are classified according to their type and
attributes: the vehicle type defines vehicle length, ca-
pacity, maximum velocity, minimum passenger ex-
change time and exchange rate. These attributes can be
overridden by setting values for individual vehicles,
enabling both the representation of vehicles of the same
type but with different equipment and individual vehicle
defects (e.g. lower passenger exchange rates caused by a
faulty door).

Each vehicle entity keeps a reference to the node it
currently inhabits, i.e. its current position, as well as a
reference to the trip it is currently executing. The entity
therefore only has knowledge about the environment
immediately important to it, all other information, e.g.
regarding rotations, timetable or vehicle schedule, is
managed by the dispatcher module (see section 2.4).

The vehicle sub-models execute nine types of simu-
lation events (see figure 1): The event types ROTA-
TION_START and ROTATION_END concern the start
and end of a vehicle's assigned rotation and associated
activities, e.g. notifying the relevant operational man-
agement modules. The event type DEAD-
HEAD_START represents the beginning of a deadhead
trip.
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As the scarce data basis does not include infor-
mation on actual planned deadhead trips, the model
does not execute these trips, but approximates them by
following the strategy described in [10] and [12]: after
the conclusion of a service trip the vehicle entity is
taken out of the model, and right before the planned
start of the next planned service trip the entity tries to
access the initial stop of the scheduled trip's route. If
this node is already filled up to capacity, the respective
event is rescheduled until the next vehicle leaves the
stop. While this strategy circumvents the missing infor-
mation, it omits the representation of traffic load gener-
ated by deadhead trips. As real-world vehicle schedules
are aimed at minimizing costly deadhead trips, the loss
of accuracy resulting from this approach is justifiable.
The event types SERVICE TRIP START and SER-
VICE TRIP_END frame the execution of service trips.
While  the  activities  triggered by  SER-
VICE TRIP_START mainly concern preparations for
the first passenger exchange, SERVICE TRIP_END
events notify the operational management modules that
the vehicle is available to execute further trips. The
event types BOARDING START and BOARD-
ING_END concern the passenger exchange. The pas-
senger exchange time depends on the stop, the vehicle,
as well as the time of day and takes the inter-arrival
time of successive vehicles into account to model bus
bunching (see section 2.5). In addition to being executed
as part of the vehicle sub-model, a BOARDING END
event is also sent to relevant operational management
modules to allow for the execution of operational strate-
gies. Once the passenger exchange is completed and the
operational management module scheduled a departure
time, a TRAVERSAL START event is triggered. The
subsequent driving activity is modeled mesoscopically
by drawing the necessary traversal time from a random
distribution (see section 2.5). An event of type TRA-
VERSAL END completes the traversal of the connec-
tion. In case the next stop is filled up to capacity, the
TRAVERSAL END event is rescheduled for the pre-
dicted time of the blocking vehicle's departure, so the
current vehicle can approach the stop.

In case more detailed data is available, the traversal
behavior can be represented microscopically, e.g. by
dividing the traversal activity into smaller, interconnect-
ed activities. An example of this strategy was presented
by the authors in [12].

2.4 Operational management

The introduction of operational management modules
allows to separate the simulation logic for the execution
of a single trip from the simulation logic for the overall
organization of an operational day. Furthermore, it al-
lows for easy incorporation of operational strategies
used by transportation providers (see e.g. [13]). The
simulation model includes three operational manage-
ment modules: one for vehicle scheduling and fleet
management, one for line management, and one for
operational decision making and disturbance mitigation.
The latter — the dispatcher — constitutes the most im-
portant module, encapsulating the simulation logic for
the overall organization of the operational day as well as
the simulation logic for decisions regarding the opera-
tional behavior of vehicles (see figure 2). For this pur-
pose, the module holds data on nearly all model compo-
nents, including planned and actual timetable as well as
vehicle schedule.

The complete operational day is framed by events of
the types OPERATIONAL DAY START and OPER-
ATIONAL DAY END. While executing OPERA-
TIONAL DAY START the dispatcher assigns a first
trip to execute to each vehicle entity in the vehicle pool,
based on the vehicle schedule. Each vehicle's first trip is
started by enqueuing an event of the type ROTA-
TION_START. An event OPERATIONAL DAY END
signals the completion of all service trips, and the return
of all vehicles to their respecitive depots. At each occur-
rence of an event of type BOARDING END the mod-
ule determines statistical indicators for the correspond-
ing vehicle entity, decides on potential operational strat-
egies to carry out, and schedules a TRA-
VERSAL START event accordingly. The simplest
form of operational strategy only considers the current
simulation time tg;,, and the planned time of departure
taep(b,s) of vehicle b at stop s, and only in case the
stop is a control point, thus scheduling the departure at
t= max(tdep(b, $), tsim)- If s is not a control point, the
event is scheduled for the current simulation time tg;,.
The end of a service trip and its signalization to opera-
tional management is represented by an event of type
SERVICE TRIP_END. The dispatcher assigns the next
trip to be executed to the vehicle entity, and, if neces-
sary, prompts a deadhead trip. If the completed trip is
the last trip of the vehicle's rotation, the dispatcher or-
ders it to move to its depot and complete its rotation.
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If all trips of all rotations are completed, the dis-
patcher schedules an event of type OPERATION-
AL DAY END to effectively end the simulation run.
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Figure 2: Event-activity-chain for operational
management logic.

2.5 Randomization

The described model includes two elements which are
influenced by randomization: the vehicle's traversal
time for connections, and the passenger exchange times
at stops.

Ideally these values are randomized based on distri-
butions whose types and parameters are determined by
evaluating empirical data, dependent on location and
time of day. As data is scarce in the described scenario
though, other methods have to be applied to determine
distribution type and parameters.

Traversal times. A lognormal distribution is as-
sumed for the traversal times of a connection ¢ =
(siysj) (see [1]). Lacking detailed data, the parameters
of this distribution, i.e. expectancy value and standard
deviation, have to be approximated from the planned
traversal times t,(c). These traversal times usually
comprise the planned driving time t;(c) and the
planned passenger exchange time t,(c), which in turn
are comprised of average observed driving/passenger
exchange times, standard deviations, and unknown
terms (see equation 1).

to(c) = tg(0) + tp(c) = W+l + e+ W+l +€b) (1)

It can be assumed that the planned traversal time
ty(c) is greater than the average observed traversal time
ud to avoid systematic delays. The average traversal
time can then be roughly approximated as follows:

¢ =t,(c)*y,VceC,0<y<1 )

The ratio y has to be determined by the user. The
standard deviation g¢ can be approximated in the same
way. It can be assumed that the standard deviation is
only a small fraction of the planned traversal time. This
yields equation 3.

62 =t,(c)*nVcECO<N<Ln<Ky (3)

Passenger exchange times. The passenger ex-
change times are modeled following the method de-
scribed in [S]. This method is suitable for high frequen-
cy transit systems, where it can be assumed that passen-
gers arrive randomly during the inter-arrival time of two
successive vehicles, instead of arriving in bulk shortly
before the planned departure time. Furthermore, the
method facilitates the modeling of bus bunching, i.e. the
effect that two vehicles form an undesired platoon be-
cause the vehicle in front takes on more passengers than
planned and subsequently suffers longer passenger
exchange times, while the rear vehicle takes on fewer
passengers as planned and thus catches up to the vehicle
in front.

If the number N,, ; of passengers entering a vehicle b
at a stop s, and the average time I, a passenger takes to
enter vehicle b are known, the passenger exchange time
T, s can be determined as follows:

Tps = Tg"™ + Ip % Ny 4

Here T/™" describes a vehicle specific minimum
time, e.g. for opening and closing the vehicle's doors. If
the passenger arrival rate ag at stop s is known, N, ; can
be modeled dependent on the basic interval Tj ;) of line
L(b) currently served by vehicle b. With Np ¢ = Ty *
a, the passenger exchange time can then be approxi-
mated as shown in equation 5.

Tys = TP"™ + Iy * Ty * s (5

If instead of the basic interval between vehicles of
the same line, simulated headways between successive
vehicles servicing the same stop are used, the model
becomes dynamic and thus suitable for a simulation
model. If t4e, (b — 1, 5) describes the time a vehicle b's
predecessor has serviced the stop, the passenger ex-
change time T}, 5 (ts;,) can be determined as in shown in
equation 6.

T, b is first vehicle at s

T, o) = .
s (tsim) {Tg’”" + (tsim — taep(b — 1,5)) *x as * I, else ©)
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3 Experiments

Given the scarcity of the available data, an in-depth
comparison of the simulation output to real-world data
cannot be conducted, and has to be replaced by a theo-
ry-driven evaluation (see e.g. [9], p. 206 ff.). Therefore,
to evaluate whether the described simulation model
yields plausible results, experiments are conducted
based on a small artificial bus network. This network,
named Universal City Link (UCL, see figure 3), is sim-
ple enough for simulation results to be counter-checked
by hand, while also constructed to include many of the
complications usually found in real-world bus systems
(e.g. circular lines and differing basic intervals for dif-
ferent lines). It includes eight lines servicing 40 stops
connected by 50 connections.

E b Une LEOVEOL NN gy
“ E Une 2-801/802 -

Figure 3: Artificial transit network UCL. Stations colored
in darker gray represent starting stations of
lines.

Two twelve-hour timetables from 7am to 7pm are com-
pared. Both timetables employ basic intervals of ten
minutes for lines 1-B01, 1-B02, 3-B01, 3-B02, 4-B01,
and 4-B02 and twenty minute basic intervals for circular
lines 2-BO1 and 2-B02. For each timetable 100 simula-
tion runs are executed under the same conditions: The
first stop of every line is chosen as a control point where
vehicles are not allowed to depart before their planned
departure time, at all other stops vehicles can depart as
soon as the passenger exchange is finished.

The average time a passenger needs to enter a vehi-
cle I, is set to three seconds for all vehicles, based on
random samplings by the authors during their own
commutes.

The minimum passenger exchange time T/ is set
to twelve seconds, the time a public transit vehicle usu-
ally needs to open and close its doors (see [10]).

The passenger arrival rates ag are assumed to be
constant and chosen in such a way that the average
passenger exchange time T, equals 20 seconds at
every stop, i.e. Ty =T = 20. To this end, the values
for T, T/M™, I, and Ty are inserted into equation 5
and it is solved for as. Here, the values for the basic
intervals Tj ) are replaced by the theoretically best
achivable headways at the different stops of the net-
work, i.e. the equidistanly divided common basic inter-

val at every stop (see equation 7).
1.l jerg%g%li::l ; ged(Ty Tli )

IL(s)I

L(s) represents the set of all lines serving stop s and

Tywy = @)

Ty, the basic interval of line ; € L.

In order to determine values for the ratios y and n of
the traversal times (see equations 2 and 3), the average
planned traversal time ﬁ, and average passenger ex-
change time T are employed, resulting in y =1 —
(%) =1- (%) ~083 and n=1—y =0.17. To-
gether with the chosen arrival rates, these values should
result in rather moderate departure time deviations un-
der both timetables. However, while the first timetable,
called UCL+, fits the simulated conditions, i.e. the pas-
senger arrival rates, well, the second timetable, called
UCL-, does not fit the simulated conditions. Accord-
ingy, the simulation results should allow to identify a
better performance under timetable UCL+ than under
timetable UCL-, despite only moderate departure devia-
tions.

The examination of the average departure deviation
under both timetables confirms these assumptions: Un-
der timetable UCL- delayed departures on average devi-
ate 11.9s from their planned departure time, while they
on average only deviate 8.5s under timetable UCL+, a
reduction of 28.6%. Simultaneously, early departures
under timetable UCL- on average deviate 3.9s from
their planned departure times, while the deviation of
early departures under timetable UCL+ is on average
4.7s, an increase of 20.5%. Accordingly, timetable
UCL+ exhibits more early departures, while timetable
UCL- shows a higher number of delayed departures (see
figure 4): Under timetable UCL- 2,699 of 4,740 depar-
tures (56.9%) are late, of which 2,175 (45.9%) exhibit a
delay of 30s or less. The number of early departures
under timetable UCL- is 1,391 (29.4%), of which 1,258
(26.5%) do not exceed a deviation of 30s.
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In contrast, under timetable UCL+ 2,361 of 4,740
departures (49.8%) are late, with 2,034 (42.9%) exhibit-
ing a delay of 30s or less. 1,700 departures (35.9%)
under timetable UCL+ are early, of which 1,575
(33.2%) are at most 30s early.

B UCL+ ®UCL-
1200
1000
800
w
w
S
=
=
I
S 600
@
-
]
=
400
200 I
" = ..
R R e B R e e o =~
d:\t?.’?oun?‘.ﬂ:}?:,‘—li'd-—lf\lmvm&r‘-mgl
,,,,,,,, T e g S O e e
2 00000000 — -
‘?GJ@I’“—\._DL"\T"“’}BIJ_'_, Lol m, SEoniro i o o

Deviation [Sec.]

Figure 4: Departure deviation frequency distribution.

Analysing the observed vehicle bunching effects under
both timetables, their difference in suitability becomes
more distinct. Vehicle bunching effects are measured
during simulation runs via the cumulative relative
headway redaction ratio, which measures the cumula-
tive percentage of observed headways exhibiting a cer-
tain amount of reduction relative to their scheduled
value.

As can be seen in figure 5 both timetables exhibit
roughly the same amount of overall headway reduction,
with timetable UCL- having a 2.01% higher reduction
than timetable UCL+. However, under timetable UCL+
the bulk of the reduced headways (16,5%) stay under
ten percent, while under timetable UCL- the mayority of
reduced headways exhibit a reduction of ten percent or
more. And while there is virtually no headway reduction
of 50% or more under timetable UCL+, 7.60% of re-
duced headways under timetable UCL- exhibit such a
significant reduction. This suggests that timetable UCL-
more heavily suffers reliability issues than timetable
UCL+, verifying that the latter is better suited to the
simulated conditions and that the simulation model can
indeed be used to evaluate the suitability of a timetable
for certain simulation conditions.
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Figure 5: Cumulative relative headway reduction ratio.

To further ensure the plausibility of the simulation mod-
el, an examplary analysis of the departure deviation
development of line 1-BO1 under both timetables is
conducted. To this end, the average, median, maximum,
and minimum departure deviation as well as its 25%-
and 75%-quantile is measured at every stop along the
route of line 1-B01. As can be seen in figures 6 and 7
the departure deviation development of line 1-BO1
shows roughly the same pattern under both timetables,
reaching the highest delay at stop 1121, three stops after
line 1-BO1 joins lines 2-B02 and 3-BO1 at stop 1031.
Under timetable UCL+ the delay at stop 1121 is 14.2s
on average, while it is 9.6s under timetable UCL-. This
is due to a higher (planned) headway between vehicles
of line 1-B01 and their predecessors between stops 1031
and 1131 under timetable UCL+ than under timetable
UCL- (four minutes versus three minutes), subsequently
resulting in a slightly higher number of passengers
boarding vehicles of line 1-B0O1 under timetable UCL+,
provoking vehicle bunching effects and prolonging the
passenger exchange time.

Lastly, figures 6 and 7 reveal another interesting
phenomenon: The range between the 25%- and 75%-
quantile is significantly larger under timetable UCL-
than under timetable UCL+. This is due to the differ-
ence in basic intervals between lines 1-B01 and 2-B02
and the fact that vehicles of line 1-B01 are scheduled to
depart three minutes after vehicles of line 2-B02 at stop
1031 under timetable UCL-, while they are scheduled to
depart four minutes after vehicles of line 3-BO1 under
timetable UCL+. Consequently, every second vehicle of
line 1-BO1 is subject to systematically higher headways
under timetable UCL-, namely every time no vehicle of
line 2-B02 departs. On the other hand, this phenomenon
is not present for vehicles of line 1-B0O1 under timetable
UCLH, but instead for vehicles of line 3-BO1.
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Figure 6: Departure deviation development, line 1-B01,
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Figure 7: Departure deviation development, line 1-B01,
timetable UCL-.

In summary, the results show that the simulation model
is suitable to represent bus transit systems. The exam-
ined indicators suggest that the model shows plausible
behavior under both timetables, even under scarce data.

4 Conclusions

This paper presented a mesoscopic event-based simula-
tion model of bus transit systems. The model consists of
sub-models for the representation of the physical net-
work, the logical network, transit vehicles, and the
transit provider's operational management. The model is
designed to manage on scarce data, especially publicly
available time table and network data.

Even though a data-driven evaluation was not feasi-
ble without a more comprehensive data basis, the theo-
ry-based evaluation based on a model of a small artifi-
cial transit network demonstrated the model's plausible
behavior.

In further steps, the simulation model first will be
applied to models of real world transit systems, before
being extended to include light rail transit and further
rule-based methos to mitigate disturbances in multi-
modal transit networks.
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