
209

S N E S H O R T N O T E

How Modelling and Simulation Can Benefit
the Most from Machine Learning

Matthias Wastian*, Dominik Brunmeir

dwh Simulation Services, Neustiftgasse 57–59, 1070 Vienna, Austria; *matthias.wastian@dwh.at

SNE 27(4), 2017, 209-212, DOI: 10.11128/sne.27. n.10397

Received: December 2, 2017, Revised: December 18, 2017,

Accepted: December 22, 2017

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,

ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. This article is about possible intersections
between modelling and simulation and machine learn-
ing. It introduces some basic ideas of machine learning
and shows how the can be applied onto traditional mod-
elling and simulation processes in such a way that both
approaches benefit asmuch as possible from each other.
New developments and advancements in various areas
allow for new techniques which may help in understand-
ing complex dynamic systems.

Introduction

Before we talk about what we believe are the most in-

teresting applications of machine learning methods in

modelling and simulation nowadays, we shortly intro-

duce some basic definitions. Then we give an overview

about how machine learning methods can help to op-

timize or approximate models as well as how machine

learning can be used within a model to improve it, e.g.

by making agents in an agent-based model more intel-

ligent.

1 Fields of Interest

1.1 Machine Learning and Data Science

Tom M. Mitchell provided a widely quoted, formal def-

inition of the algorithms studied in the machine learn-

ing field: "A computer program is said to learn from
experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T,
as measured by P, improves with experience E." [1]

Machine learning and statistics are closely related

fields. According to Michael I. Jordan, the ideas of ma-

chine learning, from methodological principles to theo-

retical tools, have had a long prehistory in statistics. He

also suggested the term data science as a placeholder to

call the overall field.

Typical machine learning tasks include:

1. Mostly supervised learning tasks:

• Classification: building models to predict

class labels for new observations

• Regression: building predictive models for

continuous observations

2. Mostly unsupervised learning tasks:

• Clustering: segmenting data into natural sub-

groups

• Dimensionality reduction: mapping high-

dimensional data into a lower-dimensional

space, e.g. word embeddings.

Commonly used machine learning algorithms are

listed below:

• Nearest neighbors

• Decision trees

• Artificial neural networks

• Support vector machines

• Bayesian networks

• Hierarchical clustering

• Genetic algorithms
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Figure 1: Reinforcement Learning Loop

1.2 Reinforcement Learning

Reinforcement learning is a part of machine learning

that focuses on learning optimal control in a partially

observable markov decision process. This means teach-

ing a software agent an optimal decision policy using

rewards and penalties as signals. Richard S. Sutton [8]

classifies it as neither supervised nor unsupervised but

as an own branch of machine learning. The main dif-

ficulty is to balance the need for exploration and ex-

ploitation. Exploration focuses on finding new ways to

gain rewards, while exploitation is necessary to utilize

known ways to gain rewards. A reinforcement learning

problem generally consists of the following parts:

• policy

• reward signal

• value function

• model (optional)

The policy defines the action an agent takes in a given

state. This is what an agent learns in a classical rein-

forcement learning problem. The reward signal gives

feedback to the agent after each time step. It rewards

or punishes the action taken by the agent according to

its policy. The agent’s goal is to maximize the rewards.

The value function may be described as the long-term

goal of the agent. It is the expected reward an agent may

achieve in the future. This is in contrast to the reward

signal, which only gives the immediate motivation for

an action. As a fourth element we can add the model,

which is used for planning. It describes the environ-

ment and the change of state. This is entirely optional,

but allows the use a different set of algorithms.

1.3 Deep Learning

Deep learning is an established approach to learn data

representations with the help of deep neural networks.

In contrast to "shallow" neural networks deep ones con-

sist of many layers between the input and the output lay-

ers, called hidden layers. Deep learning is dealing with

learning multiple levels of representation and abstrac-

tion that can be discovered in structured data as well

as in unstructured data [10]. Advancements in hard-

ware and learning algorithms have made it feasible to

employ deep learning architectures in a multitude of

machine learning tasks, for example computer vision,

speech recognition, natural language processing, audio

recognition, social network filtering, machine transla-

tion or other classification tasks. Modern architectures

achieve a superhuman performance in many of those.

1.4 Deep Reinforcement Learning

The idea of using deep neural networks with reinforce-

ment learning is not new, but advancements in com-

puting power allow a more liberal use of these tech-

niques. We may employ deep neural networks to ap-

proximate each part of a reinforcement learning Prob-

lem (policy, reward function, value function) as needed.

With naive approaches this is highly unstable but recent

approaches (e.g. [9], [4]) have made many improve-

ments and achieved a more stable learning without ex-

ploding or vanishing gradients. Systems using deep re-

inforcement learning show promising ability to gener-

alize learned behavior and once trained can be used in

similar models and achieve good results.

2 Macroscopic Usage of
Machine Learning: Simulation
Optimization

The term simulation optimization refers to the search

for specific hyperparameter settings to a stochastic sim-

ulation such that a target objective, which is a func-
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tion of the simulation output, is minimized without loss

of generality [11]. As complex models that are build

nowadays might include an extremely large number

of possible hyperparameter settings, machine learning

methods can be very useful to find an adequately good

hyperparameter setting for the model of interest.

3 Usage of Machine Learning
within a Model

3.1 Agent-Based Models

Agents are defined as autonomous entities that interact

with themselves and the environment. This interaction

may be defined through simple rules and may lead to

interesting emergent behavior. The rules often have a

physical, biological or sociological background.

A well-known example model are the Lotka-

Volterra equations. They describe the population of

interacting species in a dynamic system. Let x be the

number of prey and y the number of predators, then we

may describe the change of population as follows:

dx
dt

= αx−βxy (1)

dy
dt

= δxy− γy (2)

α , δ are reproduction parameters of the prey and preda-

tors, while β is the contact rate (can be interpreted as

prey consumption rate) and γ is the loss of population

of the predator species.

If we want to describe this as an agent-based model,

we first define two different classes of agents with dif-

fering behavior. While both agents move around ran-

domly, the predator agent eats a prey if it comes within

a certain radius β̂ and the predator dies with a certain

probability γ̂ . Within fluctuations due to stochastic ef-

fects, this model behaves almost equally to the classical

model.

From this point of view it is easy to track and ana-

lyze the behavior of a single agent. It is also easy to add

certain constraints to the environment where the agents

live and so generate new insights.

3.2 Prediction

Many models include some predictive element and may

benefit from machine learning for doing so. If we con-

sider the model of an icehockey game, the agent im-

proves his performance if he skates where the puck is

going to be, because he is able to accurately predict the

trajectory of the puck, based on data from real pucks.

3.3 Reinforcement Learning

As reinforcement learning deals with agents learning

a certain behavior, it fits naturally in improving agent-

based models [7].

Behavioral Approximation. Many behavioral

rules are based on data, collected in real world envi-

ronments. These rules can be very complex and often

cannot be sufficiently simplified to be summarized in a

rule system. Deep reinforcement learning can be used

to approximate the behavior of the agents from data

without any prior knowledge [2] [3].

Behavioral Optimization. Another aspect of em-

ploying deep reinforcement learning to agent based

modeling is training the agents to utilize an optimal be-

havior. If we consider the predator-prey model, a single

prey agent may survive longer if it evades the predator.

If we let a prey learn, such a behavior this can lead to

swarm or herd building as emergent behavior [6] [5].

4 Model Approximation

Machine learning can also be very helpful to modelers

for approximating already existing models. The uni-

versal approximation theorem [12] states that a feed-

forward neural network with a single hidden layer con-

taining a finite number of neurons can approximate any

continuous function with arbitrary accuracy on compact

subsets of Rn under very mild assumptions on the acti-

vation functions used. One of the first versions of the

theorem was proven by George Cybenko for the case

of sigmoid activation function [13]. In an extension by

Kurt Hornik this was shown for a larger set of activation

functions [14].

Universal Approximation Theorem. Let φ be

a nonconstant, bounden and monotonically increasing

continuous function, Im the m-dimensional unit hyper-

cube and C(Im) the space of continuous functions on

Im. For any ε > 0 and any function f ∈C(Im) there are

an integer N, real constants vi,bi ∈ R and real vectors
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wi ∈ R
n with i = 1, . . . ,N such that:
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∣
∣
∣

(3)

This still holds when replacing Im with any compact

subset of Rm.

How this approach can be implemented to enlarge

an already existing model is shown by the following ex-

ample.

4.1 City Quarters with Optimised Solar
Hybrid Heating and Cooling Systems

In order to be able to share potential energy surpluses

between buildings, a good starting point for a city quar-

ter model like in this project (FFG number 845168) was

to build physical models for certain building types with

specified configurations (e.g. regarding size, the do-

mestic heat water demand, a potential photovoltaic unit,

a potential cooling system). Simulation runs for one

building are computationally feasible, but the compu-

tation times for combining a lot of buildings to a city

quarter model or maybe even a model of a whole large

city really skyrocket. Thus the approach was to approx-

imate the physical building models with computation-

ally cheaper data models based on machine learning al-

gorithms like extremely randomized trees [15], a spe-

cial kind of random forests.

Machine learning based model approximation al-

lowed to transfer the original model to larger scales.
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