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Abstract. Heart rate variability (HRV) is the temporal
variation of the interval between consecutive heartbeats.
It can be analyzed by numerousmethods, including spec-
tral analysis. However, HRV time series naturally con-
sist of unevenly spaced data. Several methods emerged
to counteract this problem, usually yielding different re-
sults. Therefore, in this work three spectral analysis
methods were investigated: the Welch, Lomb-Scargle,
and Burg method. Their properties were analyzed by
theoretical considerations and verified in simulations.
Using an oscillator network model with the integral pulse
frequency modulation model, artificial HRV time series
were generated. Their power spectral densities and their
dominant frequencies were evaluated and compared to
the nominal values of the simulated time series. The re-
sults of these experiments and the theoretical considera-
tions suggest that the Lomb-Scargle method is the most
exact in reproducing power spectral densities and domi-
nant frequencies of unevenly spaced HRV data.

Introduction

Heart rate variability (HRV) is the temporal variation of

the interval between consecutive heartbeats. It reflects

the ability of an organism to change the frequency of

the cardiac rhythm on a beat-to-beat basis.

The heart rhythm is controlled via the autonomic

nervous system, whereby its two branches, the sympa-

thetic and the parasympathetic, produce acceleration or

deceleration. The sympathetic nervous system has an

activating function and causes an increase in the heart

rate, the parasympathetic nervous system leads to an in-

hibition of the activity and therefore a decrease in the

heart rate [1].

The higher the heart rate variability, the faster

and more flexible the organism can adapt to internal

and external influences, by optimizing the interplay of

the sympathetic and parasympathetic nervous system.

Physical or psychological stress usually results in an in-

crease in the heart rate, which then recedes during re-

lief and relaxation. Under chronic stress, however, this

adaptability is restricted and consequently the HRV is

reduced due to the constantly high tension [2]. The

regulatory system of the heart rate has several highly

interconnected in- and outputs, which lead to complex

irregularity in the resulting heart rate. Therefore, it is

reasonable to hypothesize that a defect in the regulatory

system leads to a decreased irregularity of the heart rate.

Thus, the analysis of the HRV strives to quantify the

amount of variability and irregularity.

In diagnostic terms, HRV is not a clinical parameter

or biomarker, but an umbrella term. It can be quan-

tified from a series of RR intervals (i.e., the series of

beat-to-beat intervals) by numerous parameters in three

categories:

• By statistical parameters in the time-domain: the

beat-to-beat heart rate is interpreted as a time series

and is described using common methods of time

series analysis [1].

• By spectral analysis in the frequency-domain:

the beat-to-beat heart rate is regarded as a time-

dependent function and transformed into the

frequency-domain. The power spectral density of

certain, standardized frequency bands reflects var-

ious physiological processes [1].

• By non-linear analysis methods: This collective

term encompasses all methods that attempt to
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quantify the complex dynamics of the physiologi-

cal interactions of the cardiac, circulatory and ner-

vous system to control the heart rate. Methods

from the field of chaos theory may be applied to

determine short-term variability (Poincaré plot) or

the degree of irregularity (entropy analysis) [3, 4].

The analysis of the power spectral density (PSD)

provides information on how power distributes as a

function of frequency. The power of certain frequency

bands can be linked to sympathetic and parasympa-

thetic activity, respiratory sinus arrhythmia, circadian

rhythms, and further physiologic influences on the

HRV. The Guidelines on Heart Rate Variability dis-

tinguish between the total power of the whole spec-

trum and the spectral power of four separated frequency

bands, usually determined in ms2, as summarized in ta-

ble 1.

Name Description Frequency range

TP Total Power 0 - 0.4 Hz

ULF Ultra low frequency 0 - 0.003 Hz

VLF Very low frequency 0.003 - 0.04 Hz

LF Low frequency 0.04 - 0.15 Hz

HF High frequency 0.15 - 0.4 Hz

Table 1: Summary of frequency-domain measures of HRV.

The applicability of these measures depends on the

duration of the recording. Power in the ultra low fre-

quency (ULF) and very low frequency (VLF) ranges

can only be determined in long-term 24h recordings,

since their cycle times (1/ f ) exceed 5 minutes. On the

other hand, the power in the low (LF) and high (HF) fre-

quency ranges can be calculated in short- and long-term

recordings alike. However, since the heart rate modula-

tions during long-term recordings exhibit lower stabil-

ity, LF and HF become less easily interpretable. The

total power (TP) is applicable in short- and long-term

recordings without constraint [1]. Figure 1 shows an

example of a PSD analysis with frequency bands.

The estimation of the PSD itself is not a trivial pro-

cess, since methods for spectral analysis usually require

evenly sampled discrete time series. This is not the case

for a series of RR intervals, since the heartbeats form

a discrete event series following a stochastic process.

Several methods emerged to counteract this problem,

essentially based on two approaches. Non-parametric
methods do not assume a functional form of the PSD a
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Figure 1: Example of a power spectral density estimate of a
5 minute recording. The blue area marks the LF,
the red area the HF component of the spectrum.

priori, while for parametric methods, assumptions are

made for the signal which lead to a parametric, func-

tional form of the PSD. In the latter case, parameters

for the resulting model have to be determined.

Both approaches have advantages and disadvan-

tages. Therefore, in this work, popular models for the

PSD estimation of HRV time series are investigated by

theoretical considerations and application of the meth-

ods to simulated data.

1 Methods

In the first part of this section, the non-parametric and

parametric PSD estimation methods commonly used in

HRV analysis are described. In the second part, meth-

ods to simulate artificial HRV time series are presented.

The PSD estimation methods are then applied to the

simulated time series and their results compared to the

nominal values of the simulation.

1.1 Non-Parametric PSD Methods

Non-parametric methods are based on the fast Fourier

transform. Due to finite data length the definition of

the PSD is modified to an empirical version based on

the discrete-time Fourier transform (DTFT) and thus an

estimate. This estimate is referred to as a periodogram

and is calculated for a signal y(t) as follows:
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ŜXX (ω) =
1

N

∣∣∣∣∣
N

∑
t=1

y(t)e−iωt

∣∣∣∣∣
2

. (1)

However, this direct DTFT approach has high vari-

ance and is not consistent [5]. Furthermore, these esti-

mates exhibit distortions due to spectral leakage caused

by the windowing effect of finite data lengths, which

may cause a superposition of weak parts of the signal

[2]. Therefore, methods such as the Welch method were

developed to reduce variance and spectral leakage at the

expense of the resolution [5].

Welch Method In the Welch method, the data

points are divided into segments that can overlap. The

data points of each segment are weighted with a win-

dow function before calculating the periodogram. In

order to obtain the estimated value of the PSD, the peri-

odograms of the individual segments are averaged. This

averaging should lead to a reduction in variance [6].

In order to create an evenly sampled discrete time

series, the RR intervals in this work are first interpolated

at 7 Hz and subsequently evaluated using the Welch

method with adjacent segments overlapping at 50% and

a Hamming window function [7].

Lomb-Scargle Method An advancement of the

classical periodogram is the variant of Lomb and Scar-

gle [8, 9], whose great advantage is the applicability

to stochastic, irregularly sampled data. It was orig-

inally developed for application in astronomical re-

search, where observation periods are limited and irreg-

ular due to planetary constellations and weather influ-

ences. It is able to find weak periodic signals in other-

wise random, unevenly sampled data. Studies show that

the Lomb-Scargle periodogram reduces possible distor-

tions or erroneous results that can result from any form

of interpolation [10].

Consider xk being the RR intervals and tk derived

from the discrete event series of R peaks, where k =
1, ...,N. The Lomb-Scargle periodogram is defined by

[8] as

PLS (ω) =
1

2σ2

{[
∑N

k=1 (xk − x)cos(ω (tk − τ))
]2

∑N
k=1 cos2 (ω (tk − τ))

+

[
∑N

k=1 (xk − x)sin(ω (tk − τ))
]2

∑N
k=1 sin2 (ω (tk − τ))

}
, (2)

where x is the mean and σ2 the variance of x. For every

angular frequency ω = 2π f a time offset τ is chosen as

tan(2ωτ) = ∑N
k=1 sin(2ωtk)

∑N
k=1 cos(2ωtk)

. (3)

The time offset τ guarantees the time invariance of PLS,

since every shift of tk results in an equivalent shift in the

offset.

1.2 Parametric PSD Methods

Non-parametric methods do not assume any conditions

for the signal except for stationarity. In the case of a

parametric or model-based approach for spectral esti-

mation, the signal is given a certain functional form and

thus a model is created. The parameters of the model

must be determined.

Burg Method Despite the existence of a wide va-

riety of parametric methods, the most wide spread for

analysis of HRV models the RR intervals as an autore-

gressive process of the form

y(t) = c+
p

∑
i=1

φiy(t − i)+ εt , (4)

where c is a constant, εt a white-noise error term, and

φi represents the model parameters. The order p of

the model influences its properties: the lower the or-

der, the smoother the resulting PSD function. Previous

studies suggest that an order of p = 16 is best suited

for application in HRV analysis [11, 2]. Finally, the

Burg method, whose algorithm minimizes predefined

forward and backward prediction errors, is used to esti-

mate the model parameters φi [12].

The three methods for PSD estimation are compared

in figure 2. Due to the segmentation of the input series,

the Welch method shows fewer resulting data points

than the other two methods. The Lomb-Scargle method

exhibits more distinct peaks and valleys with maximum

values about twice the height of the other two meth-

ods. However, the integral of the power in the LF and

HF band is comparable especially to the Burg method.

The Burg method, due to the underlying autoregressive

model, shows the smoothest shape.
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Figure 2: Comparison of the three PSD estimation methods
of the same HRV time series: Welch (50% overlap,
Hamming window), Lomb-Scargle, and Burg (order
16).

1.3 Simulation of HRV Time Series

Different frequency bands in the HRV time series reflect

different physiological feedback mechanisms. In order

to generate artificial HRV time series it is possible to

reversely approximate this connection. In this work, the

following two models were coupled in order to simulate

unevenly spaced HRV data.

Oscillator Network Model Based on the work of

Brennan et al. [13], an interconnected network of sine

oscillators is created to simulate the cardiac control sys-

tem, as shown in figure 3. To create a more realistic

frequency distribution, each frequency band (VLF, LF,

and HF) is simulated by three sub-oscillators. Thereby,

each sub-oscillator is determined by its fundamental

frequency fi (randomly chosen in the respective fre-

quency range) and its amplitude ai, randomly chosen

in the range of [20,40]ms. Finally, the cardiac control

system m(t) is given by

sV LF(t) =
3

∑
i=1

aV LFi · sin(2π fV LFit) (5)

sLF(t) =
3

∑
i=1

aLFi · sin(2π fLFit) (6)

sHF(t) =
3

∑
i=1

aHFi · sin(2π fHFit) (7)

m(t) = HR+ sV LF + sLF + sHF , (8)

where HR is a constant offset representing the average

heart rate (HR).

Figure 3: Network of oscillators to simulate the cardiac
control system m(t).

Integral Pulse Frequency Modulation Model
Since equation 7 produces a continuous model of the

cardiac control system, another step is required to gen-

erate unevenly spaced HRV data. In this step, the in-

tegral pulse frequency modulation (IPFM) model is ap-

plied [14]. It generates the occurrence times of heart-

beats by integrating the input signal m(t) until it reaches

unity. This point in time is then considered as occur-

rence of one heartbeat, and the integrator is reset to

zero. It is represented as

1 =
∫ tk+1

tk
m(t)dt, (9)

where tk denotes the occurrence times of heartbeats.

In this work, equation 9 was solved numerically for

t ∈ [0,300] seconds. This duration corresponds to HRV

measurements of 5 minutes and follows the Guidelines

on Heart Rate Variability [1]. Finally, the HRV time se-

ries consists of the intervals between consecutive heart-

beats, the RR intervals, and is therefore derived from the

tk series as

RRk = tk+1 − tk. (10)
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1.4 Model Comparison

Since the HRV data in this work is generated artificially,

it is possible to determine their nominal values and

compare them to the results of the investigated meth-

ods. This comparison will focus on two features of the

HRV time series: (1) the power spectral density and (2)

the most dominant frequency. Both features will be in-

dependently evaluated for the LF and HF component.

Power Spectral Density The PSD of a given con-

tinuous signal x(t) in the time domain is given by

P = lim
T→∞

1

2T

∫ T

−T
|x(t)|2dt. (11)

For a signal of finite duration T , equation 11 reduces

to the variance of the signal. Since the frequency com-

ponents are generated separately in the oscillator model,

the nominal values for LF and HF power pLF and pHF
are calculated by

PLF = Var(sLF), and (12)

PHF = Var(sHF). (13)

As comparison, the band limited PSD of the Welch,

Lomb-Scargle, and Burg method will be calculated by

P̂ = 2

∫ f2

f1
ŜXX (2π f )d f (14)

from their respective PSD estimations ŜXX and in the

frequency ranges [ f1, f2] according to table 1.

Dominant Frequency Again, the fact that the fre-

quency components are generated separately is used to

obtain nominal values for the model comparison. For

the component sLF (and likewise for sHF ), the dominant

frequency fd is determined by the amplitude:

i = argmax
i

(aLFi), (15)

fd = fLFi. (16)

The comparative values from the PSD methods are

obtained from the PSD estimates ŜXX by

f̂d = argmax
f∈[ f1, f2]

(ŜXX (2π f )). (17)

2 Results
One thousand simulation runs of the HRV model were

performed to gather nominal values and approximations

by the Welch, the Lomb-Scargle, and the Burg PSD es-

timation methods. Their results are reported in this sec-

tion.

2.1 Power Spectral Density

Figure 4 summarizes the differences between the PSD

evaluated by the three methods under investigation and

the nominal values as boxplots. The same results are ag-

gregated in table 2 as mean (standard deviation). While

in the LF band, the Welch method shows the best re-

sult regarding the mean and median differences, it also

shows the worst in the HF band. In contrast, the Lomb-

Scargle method exhibits the worst result regarding the

mean and median differences in the LF range. How-

ever, its scattering is by far the lowest in all tested cases,

suggesting a higher consistency compared to the other

methods.
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Figure 4: Deviation of the power spectral density
approximations from the nominal values in the
low- and high frequency (LF and HF) range.

Figure 5 shows the individual differences of all sim-

ulation runs as a function of the nominal values. It al-

lows the interpretation of the results regarding system-

atic errors. Again, the lower dispersion of the Lomb-

Scargle method is clearly visible. Furthermore, all

methods display a dependency on the nominal values:

the higher the nominal values, the higher the dispersion

of the differences. Lastly, trends are visible in the evalu-

ation of the LF range by the Lomb-Scargle method and
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Figure 5: Deviation of the power spectral density approximations from the nominal values, shown as a function of the nominal
values and separated by method and frequency range.

Power Spectral Density LF (ms2) HF (ms2)

Welch 126 (232) -448 (214)

Lomb-Scargle 264 (88) -7 (93)

Burg 241 (281) -19 (156)

Table 2: Deviation of the power spectral density
approximations from the nominal values in the low-
and high frequency (LF and HF) range, stated as
mean (Standard deviation).

the HF range by the Welch method. In these cases, ap-

parently the differences of the results and nominal val-

ues depend on the actual power of the respective fre-

quency band.

2.2 Dominant Frequency

Figure 6 reports the deviation of the detected dominant

frequencies from the nominal values. Since the results

are not normally distributed, table 3 summarizes them

as median [1st quartile, 3rd quartile]. In contrast to the

results of the PSD, the Lomb-Scargle method outper-

forms the other methods regarding the dominant fre-

quency in all cases. Again, a low scattering suggests

a high consistency of this method.

Figure 7 reports the individual results as a function

of the nominal values. All results exhibit the interesting

pattern that differences are positive for low frequency
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Figure 6: Deviation of the detected dominant frequency
from the nominal values in the low- and high
frequency (LF and HF) range.

values, and negative for high frequency values. This

points out the systematic error that measurement results

are too high for low frequencies, and too low for high

frequencies. In other words, all three methods exhibit

a trend towards the center of the frequency range when

looking for the most dominant frequency. Apart from

this common systematic error, the figure mirrors the re-

sults of figure 6 and table 3 regarding the dispersion of

the differences. Finally, a reduction of frequency reso-

lution in the Welch method becomes obvious as recur-

ring pattern around the zero difference.
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Figure 7: Deviation of the detected dominant frequency peak from the nominal values, shown as a function of the nominal
values and separated by method and frequency range. A positive difference results from measurement values higher
than the nominal values.

Dominant Freq. LF (mHz) HF (mHz)

Welch 0.0 [-4.9, 3.4] -2.8 [-50.2, 2.1]

Lomb-Scargle 0.0 [-0.3, 0.2] -0.1 [-0.3, 0.2]

Burg 0.4 [-4.8, 8.3] -0.3 [-20.6 2.9]

Table 3: Deviation of the detected dominant frequency from
the nominal values in the low- and high frequency
(LF and HF) range. Since the data is not normally
distributed, they are stated as median [1st quartile,
3rd quartile].

3 Discussion
From a clinical point of view, the calculation of the

HRV can be used to assess the state of the autonomous

nervous system to evaluate e.g. stress, depression, or

brain damage [2]. Regarding cardiovascular diseases,

HRV analysis aids in the diagnosis and risk stratifica-

tion of numerous pathologies. Alterations in certain

HRV measures during or after myocardial infarction, in

congestive heart failure, or in diabetic neuropathy have

been linked to increased mortality [1].

While the relationship between the frequency com-

ponents HF, LF, and VLF and the activity of the ner-

vous system as well as other regulatory mechanisms is

undoubted [2], the selection of the proper method to

estimate the PSD and their parameters (for parametric

methods) remains controversial. Studies showed that

the power calculated in the respective frequency bands

varies significantly between methods [15].

The Welch method requires evenly sampled data

points, which necessitates resampling of the time series.

The choice of the resampling method and frequency

therefore will influence the PSD estimate. Besides, due

to windowing and averaging, the Welch method suffers

from a loss in frequency resolution. However, since

HRV is usually quantified using the standardized and

rather broad frequency bands, this might not be an is-

sue. Furthermore, the windowing and averaging leads

to a better statistical stability regarding outliers. There-

fore, a small amount of artifacts or ectopic beats in the

interval time series is tolerable. [1, 2, 15]

While the Burg methods differs from the Welch

method in being parametric instead of non-parametric,

they share several advantages and disadvantages. It

requires the choice of an order, which affects the re-

sult. However, several studies investigated this topic

and reached the conclusion, that an order of 16 is gen-

erally acceptable in HRV analysis [11, 2]. Similar to

the Welch method, the autoregressive model leads to a

smoothing effect, limiting the frequency resolution but

allowing for some outliers in the time series [15].

The Lomb-Scargle method can be considered the

most exact method, since there is no need for resam-

pling (and thus, an alteration of the input data itself)
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nor for the choice of parameters. However, it is rarely

used in medical studies, probably for the lack of be-

ing mentioned in guidelines [1] or thorough reviews [2].

Furthermore, due to the lack of any smoothing, outliers

may easily disrupt the PSD estimate, especially the HF

component. Therefore, the Lomb-Scargle method re-

quires the most thorough filtering of RR intervals.

Apart from the theoretic analysis, the PSD estima-

tion methods investigated in this work were applied to

artificially simulated HRV data with known properties.

The results of these model comparisons clearly point

towards the Lomb-Scargle method as the most exact

method. It showed the best capability to consistently

reproduce the power spectral density as well as the ac-

curate detection of the most dominant frequencies. The

findings of these simulations are in line with the theo-

retical considerations.

4 Conclusion

In this work, three methods for spectral analysis of HRV

time series were investigated theoretically and using

simulated HRV data. The experimental results as well

as the theoretical considerations suggest that the Lomb-

Scargle method is the most exact. However, it must be

assumed that it is also the most vulnerable to outliers

in the HRV time series. Therefore, the Lomb-Scargle

PSD is only recommended after thorough filtering of

the RR intervals, if an error-free time series can be as-

sumed. The effects of outliers on PSD estimation meth-

ods therefore will be investigated in future works.
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