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Abstract. Especially in the last years the idea of find-
ing a simpler meta-model for a developed simulation
model has become more and more popular as not only
the research questions, but also the resulting models
have become more and more complex. The meta-model
hereby helps understanding the behaviour of the orig-
inal model and supports its validation and verification
process. Moreover, it also gives a second perspective
on the modelled system. Mean-field theory is a very for-
mal link between microscopic and macroscopic models
and can be used to find meta-models for either of the
two types. Usually so-called mean-field analysis is used
to find a summarising simpler macroscopic model for a
given complexmicroscopic approach, but we will empha-
sise the inverse process in this work: Applying inverse
mean-field analysis on an ordinary differential equation
model we systematically derive a microscopic represen-
tation of themodel. On purpose we chose a very unusual
model to apply themethod to: the un-damped linearised
pendulum equation. Hereby we want to emphasise the
method’s flexibility and generality, investigate possible
benefits of the gained microscopic meta-model for this
strange field of application, and discuss about interpre-
tation of the elements of the resulting agent-based pen-
dulum model.

Introduction
According to German philosopher Herbert Stachowiak

[1] any model, in general, is defined as a (usually) sim-

plified image of a real or artificial object that has been

developed for a specific purpose and time of usage.

This definition clearly permits the idea of develop-

ing a model M2 for a different model M1, a so-called

meta-model, developed for a specific purpose related to

M1. For simulation models this strategy becomes more

and more popular nowadays due to steadily increasing

complexity of research questions and models. Hereby

the more simplified meta-model M2 can be used to ei-

ther get insights into M1 to simplify its verification and

validation process (Compare with Bernhard Zeigler’s

talk “Why Should We Develop Simulation Models in

Pairs” at WSC 2017 [2]) or to get new ideas about the

modelled system.

Mean-Field Approximation (MFA) is one concept

for finding such a meta-model for a given microscopic

model. Hereby chosen aggregated numbers of the mi-

croscopic model (M1) are approximated by solutions of

specific ordinary or partial differential equations – the

so-called mean-field model (M2). For detailed informa-

tion the reader is referred to [3]. One key advantage

of this method is that the meta-model is (in principle)

found by a formal recipe that guarantees the “correct-

ness” of the meta-model with respect to (asymptotic)

equivalence of the model results. The key to this equiv-

alence lies within a formal theorem, generally referred

to as Mean-Field Theorem (MFT), which states how

the elements of the microscopic model need to be used

to find in macroscopic equation-based meta-model, the

so-called mean-field model. The formality of this pro-

cedure makes the strategy extremely generic and com-

pletely independent of the investigated model’s field of

application. It can e.g. be applied to find mean-field

models for agent-based models in economics [4] or so-

ciology [5] as well as for cellular automata models in

epidemiology [6, 7] or population dynamics [8].

Another example that emphasises the generality of

the method is gained interpreting mean-field approx-

imation as an invertible mapping from a microscopic

to a mean-field model. Inverse MFA is presented in

[3], Chapter 5.2.3, on the example of the Levins Model
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[9], a macroscopic model for the growth of a popula-

tion. Using this inverse strategy, a microscopic repre-

sentation of this non-linear ordinary differential (ODE)

model is derived systematically. Hereby the role of the

meta-model M2 is switched from the macroscopic to the

microscopic one. Although a meta-model in form of a

microscopic approach, e.g. in form of an agent-based

model, can hardly be considered particularly easier than

the original macroscopic one, it is definitely more flex-

ible and avoids specific problems with the numerics of

e.g. ODE solvers. Moreover, it gives a very interesting

view on the original system as the microscopic elements

can be interpreted as single agents.

In this work we want to apply inverse MFA on

a much more abstract example: the linearised, un-
damped pendulum model given by

ϕ̈(t) =−kϕ(t), ϕ(0) = ϕ0, ϕ̇(0) = 0, (1)

with k > 0. Although, in the contrary to the Levins

model, there is no feasible justification for modelling

a pendulum in a microscopic way we will apply this

formal method to

a) emphasise its flexibility and generality by showing

that it actually works,

b) investigate possible benefits of the gained micro-

scopic meta-model for this particular application,

and

c) attempt to interpret the microscopic elements of

the resulting meta-model.

1 Inverse Mean-Field
Approximation

In order to perform the mentioned inverse MFA we will

stress the strategy proposed in [3] Chapter 4.6.4. Key

idea of this strategy is finding suitable transformations,

so that the equation of the ODE model has the form of

the system

d
⇀
Y 1
dt = ∑d

j=1

⇀
Y jω j,1(t,

⇀
Y )−⇀

Y 1ω1, j(t,
⇀
Y )

...
d

⇀
Y d
dt = ∑d

j=1

⇀
Y jω j,d(t,

⇀
Y )−⇀

Y dωd, j(t,
⇀
Y )

(2)

of ordinary differential-equations (ODEs) with param-

eter functions ωi, j ≥ 0, i, j ∈ {1, . . . ,d} and sufficiently

large positive solutions
⇀
Y (t). In case such a represen-

tation has been found, the parameter functions ω can

be used as transition rates of the microscopic elements

of a microscopic model. Hereby ωi, j denotes the rate

(transition-rate) that an individual with state i switches

to state j. Let ak(t) ∈ {1, . . . ,d} denote the time depen-

dent state of individual k in the newly defined micro-

scopic model with N individuals in total, then (a ver-

sion of) the Mean-Field Theorem (Corollary 5.1 in [3])

states that the aggregated numbers

⇀
Xi(t) :=

N

∑
k=1

�i(ak(t)), i ∈ {1, . . . ,d} (3)

fulfil
⇀
Xi(t) =

⇀
Y i(t)+O(

√
N), wherein

⇀
Y is the solution

of above system of ODEs. Note, that
⇀
X is precisely

the total number of microscopic elements that share the

same state at time t. In case ωi, j depends on
⇀
Y in the

ODE system, the individual transition rates depend on

the aggregated number vector
⇀
X accordingly. The lat-

ter can be interpreted as interaction of the microscopic

elements on the aggregated level.

In [3] Chapter 4.6.4 a step-by-step instruction gives

hints how mentioned transformation can be found. We

will mainly follow these proposed steps:

a) First of all, the pendulum equation, a second order

ODE, needs to be written as a system of first order

ODEs via

ϕ(t)′′ =−kϕ(t) ⇒
(

ϕ
ψ

)′
(t) =

(
ψ(t)

−kϕ(t)

)
. (4)

b) Moreover, the variable-functions appearing in (2)

need to be positive which is violated in (4) as angle

and angular velocity resulting from the pendulum

equation might also have negative values. There-

fore, we need to translate the equation via

(
ϕ̃
ψ̃

)
:=

(
ϕ
ψ

)
+T,

so that ϕ̃, ψ̃ is always positive. For physically

feasible systems this translation is always possi-

ble as model trajectories need to be stable. In

case of the pendulum it is easy to reason with

physical arguments (e.g. Newton’s axioms) that

ϕ(t) ∈ [−|ϕ0|, |ϕ0|] and ϕ̇(t) ∈ [−√
k|ϕ0|,

√
k|ϕ0|]

and therefore any

T > max{
√

k|ϕ0|, |ϕ0|} (5)
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is sufficiently large to guarantee that

(4) =⇒
(

ϕ̃
ψ̃

)′
(t) =

(
ψ̃(t)−T

−kϕ̃(t)+ kT

)
, (6)

has positive solutions ϕ̃ and ψ̃ .

c) As the variable-functions will end up approxi-

mating the aggregated numbers of a microscopic

model, we need to rescale the equation to get them

sufficiently large. We define

(
ϕ
ψ

)
:= S

(
ϕ̃
ψ̃

)
,

leading to

(6) =⇒
(

ϕ
ψ

)′
(t) =

(
ψ −ST

−kϕ + kST

)
. (7)

d) As (2) conserves the sum

d

∑
i=1

Y ′
i (t) = 0

we introduce a third state ξ and write

(7) ⇒
⎛
⎝ϕ

ψ
ξ

⎞
⎠

′

=

⎛
⎝ ψ −ST

−kϕ + kST
kϕ − kST −ψ +ST

⎞
⎠ . (8)

Hereby we need to care for a feasible initial con-

dition. As the sum of the right-hand-sides is

zero, the sum of the variable functions is constant

ϕ +ψ +ξ =C. As 0 < ϕ < 2ST and 0 < ψ < 2ST
positivity for ξ is ensured if (e.g.) ξ 0 := 4ST .

e) As the transition rates ω need to be positive func-

tions, we need to rewrite the above modified pen-

dulum equation one last time to finally match the

form of (2):

(8) =⇒
⎛
⎝ϕ

ψ
ξ

⎞
⎠

′

=

⎛
⎜⎜⎝

max(ψ−ST,0)
ξ

ξ
max(−kϕ+kST,0)

ξ
ξ

max(−ψ+ST,0)
ϕ ϕ + max(kϕ−kST,0)

ψ ψ

⎞
⎟⎟⎠

−

⎛
⎜⎜⎝

max(−ψ+ST,0)
ϕ ϕ

max(kϕ−kST,0)
ψ ψ

max(ψ−ST,0)+max(−kϕ+kST,0)
ξ

ξ

⎞
⎟⎟⎠ . (9)

The last transformation (9) finally makes it possible to

match (2). We identify and define (for ϕ → ⇀
X1, ψ →

⇀
X2, ξ → ⇀

X3)

⎛
⎜⎜⎝

ω1,3

ω2,3

ω3,1

ω3,2

⎞
⎟⎟⎠(t,

⇀
X) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

max(−⇀
X2+ST,0)
⇀
X1

k max(
⇀
X1−ST,0)
⇀
X2

max(
⇀
X2−ST,0)

⇀
X3

k max(−⇀
X1+ST,0)
⇀
X3

⎞
⎟⎟⎟⎟⎟⎟⎠
. (10)

Using these transition rates in a microscopic model, the

aggregated numbers of this model with asymptotically

equal the solutions of (9). As

1

S

⎛
⎝ϕ

ψ
ξ

⎞
⎠−T =

⎛
⎝ϕ

ψ
ξ

⎞
⎠ ,

an affine transformation (scale S and transition T ) of the

aggregated numbers of the first state of the microscopic

model approximates the solution of the pendulum equa-

tion, the angle of the pendulum. The aggregated num-

ber of the second state corresponds to the angular ve-

locity and will also be regarded in our analysis.

Following [3] we introduce a time-step size dt to

set up a time-discrete microscopic model. Therefore,

for all microscopic elements ak of the new model, we

deduce the transition probabilities

P(ak(t +dt) = i|ak(t) = j,
⇀
X) := dt ·ω j,i(t,

⇀
X). (11)

This can be interpreted as a first order Euler (or Euler-

Maruyama see [10]) approximation.

2 Agent-Based Pendulum Model
Given by the results of the last section, the basis for

a microscopic meta-model was developed for the un-

damped pendulum model. To simplify speech, we con-

sider the established model as an agent-based model

(ABM):

Model 1 (Agent-Based Pendulum Model). With ϕ0 and
ϕ̇0 denoting the initial conditions of the pendulum equa-
tion and k the frequency parameter, we define the fol-
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lowing microscopic model via its initialisation phase
and its time dynamics.
Initialisation:

• Define a translation parameter T >
max{√k|ϕ0|, |ϕ0|} and a sufficiently large
scale parameter S ∈ R

+ (usually S � 100 makes
sense).

• Define a time-step length dt small enough to guar-
antee that the probabilities used in the dynamics
below are feasible (i.e. smaller than 1).

• Moreover, calculate

X1 :=	ϕ0
= 	S(ϕ0 +T )
 (12)

X2 :=	ψ0
= 	ST
, and (13)

X3 :=	ξ0
= 	4ST
. (14)

• Setup a model with N := X1 + X2 + X3 agents of
which each is assigned one of three states, hence-
forth denoted as angle (state 1), velocity (state 2)
and idle (state 3). Assign X1 agents in state 1, X2

and X3 agents in state 2 and 3 accordingly. The
total number of agents in any of the three states
is tracked throughout the model using these three
variables X1,X2 and X3.

Dynamics:

• The model is updated in equidistant time-steps of
length dt.

• Each time-step, each agent is addressed once. Ac-
cording to its prior state, specific probabilities de-
cide if the agent’s state remains or changes.

• In case an agent is in the angle-state and
⇀
X2 ≤ ST ,

it may switch to the idle-state with probability

dt ·ω1,3 = dt
ST −X2

X1
. (15)

Otherwise, it remains in its state. In case of a
switch,

⇀
X3++ and

⇀
X1–.

• In case an agent is in the velocity-state and
⇀
X1 ≥

ST , it may switch to the idle-state with probability

dt ·ω2,3 = dt
X1 −ST

X2
. (16)

Otherwise, it remains in its state. In case of a
switch,

⇀
X3++ and

⇀
X2–.

• In case an agent is in the idle-state and
⇀
X2 > ST ,

it may switch to the angle-state with probability

dt ·ω3,1 = dt
X2 −ST

X3
, (17)

or, in case
⇀
X1 < ST , to the velocity-state with prob-

ability

dt ·ω3,2 = dt
ST −X1

X3
. (18)

Otherwise, it remains in its state. In case of a
switch, change the aggregated numbers X1,X2 and
X3 accordingly.

The flow-chart in Figure 1 shows how the agents

may change their states: They may switch from states

“angle” and “velocity” to state “idle” and vice versa.

They never switch between “angle” and “velocity” di-

rectly.

Moreover, the concept that the transition probabil-

ities of this model depend on the aggregated numbers

can be translated as a kind of global-level-interaction

between the agents. It is comparable with an econom-

ical model of the stock-market: the stock-price is a

globally known variable that influences the buying be-

haviour of all actors. Yet it changes in response to trans-

actions, i.e. to individual behaviour. In the Levins

Model presented in [3] in Chapter 5.2.3 the author

referred the resulting global-level-interactions in this

model to local-level-interactions – i.e. typical agent-

agent contacts – via stochastic equivalences compara-

ble to picking balls from urns. In this case, we did not

attempt to find such a representation as it would be too

complicated (but surely not impossible). Extensive use

of the Bayesian Theorem and sufficient creativity would

be required.

According to [3] the aggregated numbers of above

model asymptotically equal the solutions of the affine

transformed pendulum equation for

• S → ∞ (equivalent to N → ∞) and

• dt → 0.

Figure 2 shows a series of convergence-tests for differ-

ent scaling parameters S and time-step parameters dt.
Blue and red lines show the aggregated results X1 and

X2 of sample runs of the ABM. The black and green line

show the scaled and translated analytic solutions ϕ(t) =
S(T +cos(

√
2t)) and ψ(t) = S(T −√

2sin(
√

2t)) of the

pendulum equation. For large time-steps sizes dt the

ABM model results becomes unstable similar to explicit
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Runge-Kutta methods for the solution of ODEs. Yet,

the convergence properties can be verified.

State 1 
„angle“

State 2 
„velocity“

State 3 
„idle“

Figure 1: Flowchart of the agent-based model 1.

3 Discussion
The presented strategy leaves three interesting aspects

for discussion.

Discussion of the Agent-BasedModel. Clearly,

the most interesting question concerning the derived

model is, whether the model is not only a meta-model

for the pendulum equation, but also a model for the real

pendulum. According to Stachoviak [1] (compare with

Section Introduction) it would be necessary to identify

the agent-based model as a simplified image of a real

pendulum.

Though undoubtedly consisting of microscopic ele-

ments like molecules or atoms, a pendulum (say, a rope

pendulum with a sphere-shaped weight) is in principle

not a system that is modelled as the sum of its micro-

scopic elements. As the sphere is usually assumed to be

made of a solid material, interactions between the ele-

ments are very limited and hardly contribute to the total

movement of the object. Moreover, any molecule/atom

in the swinging ball has an angle and a velocity and is

not either “angle” or “velocity”. If any, probably only

a quantum-mechanic interpretation is somehow legiti-

mate: Say one particle represents a fictive sub-atomic

particle that is responsible for one quantum of angle

and one quantum of velocity. If excited to either of the

two states it results the object it is “attached” either to

move or to accelerate. The chances for excitation and

relaxation are directly linked to the laws of total energy-

conservation. Yet, as this interpretation is very vague,

we would not really consider Model 1 as a model of the

real pendulum, but solely as a meta-model.

Instead, we would suggest interpreting the derived

model as a “numerical solver” of the pendulum equa-

tion. Using a microscopic solver on a macroscopic,

equation based model is not unusual and is commonly

Figure 2: Tests for different values of S and dt for the
stochastic ABM (3 runs each) defined in Model 1
for ϕ0 =

π
2 , k = 2 and T = 4.
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done e.g. in fluid dynamics: The macroscopic Navier-

Stokes equations are “discretised” by particles on a grid

(see HPP, FHP and Lattice-Boltzmann method [11]).

Discussion of the Benefits of the Model. The

popularity of mentioned microscopic modelling ap-

proaches in fluid-dynamics simulation is mainly a result

of their flexibility: Not only does a particle approach

allow almost arbitrarily complex boundary-geometry

(posing difficulties for a PDE approach with classic

Navier-Stokes Equations), it can also be applied easily

to simulate heterogeneous liquids. In general, micro-

scopic models are clearly the most flexible of all model

types with respect to model extensions and modifica-

tions due to their object-oriented description.

We observe similar flexibility for the microscopic

pendulum model introducing a state-event: While state-

events are trivially detected in the microscopic approach

(it is quantised) ODE solvers often need to iterate to find

them adjusting their step-size.

Discussion of the Inverse Mean-Field Method.
Apart from the derived model itself, the example of the

pendulum model emphasises the generality of the in-

verse mean-field approximation for finding microscopic

meta-models to macroscopic systems. Although there

is no obvious reason for a microscopic representation of

the system in that particular case the method definitely

leads to a different point-of-view of the real system.

R.E. Shannon, one of the founding-fathers of systems

simulation, emphasised in 1975 that not only the mea-

surable evaluation of various designs of a given system

is target of a simulation model, but also the understand-
ing of its behaviour [12]. Hence analysis of effects of

different system components poses a vital contribution

to any given research problem. The availability of a

microscopic and a macroscopic model for one system

allows two different points of view on the system com-

ponents.
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