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Abstract. When analyzing data from functional mag-
netic resonance imaging, different mathematical models
are used. This article briefly describes the most impor-
tant ones – starting with the so-called balloon model de-
scribing the hemodynamic response during brain activ-
ity, the General Linear Model widely used for functional
localization of brain areas involved with certain stimuli,
and Dynamic Causal Modelling as a framework for inves-
tigating dynamic brain connectivity models.

Introduction

Functional magnetic resonance imaging (fMRI) is a

neuroimaging technique for investigating the inner

mechanisms of the human brain during neuronal activ-

ity. A sequence of 3D images is acquired concurrently

to stimuli to detect subtle changes in brain metabolism.

Applications range from brain mapping – i.e. functional

localization of brain regions associated with effects of

interest – via research on brain connectivity to multi-

modal integration with other imaging and stimulation

tools.

1 Balloon Model

The principle of fMRI is based on changes in cerebral

blood supply. Neuronal activity causes an increased

oxygen demand, therefore this demand must be met

with an increase in inflow of highly oxygenated blood,

overcompensating the energy demand.

Blood oxygenation increases, more specifically de-

oxygenated hemoglobin is reduced. Since deoxy-

genated hemoglobin (dHb) is more paramagnetic than

oxygenated hemoglobin (oHb), magnetic field varia-

tions around dHb show reduced MR signal amplitudes.

Thus, neuronal activity leads to a local decrease in dHb

– causing an increased MR signal [5], [8] with a certain

delay of several seconds.

This non-linear behaviour of the MR signal due to

changes in blood supply is called the Blood Oxygena-

tion Level Dependent (BOLD) effect. This is modelled

using the so-called Balloon Model, linking changes in

blood oxygenation caused by neuronal activity to the

stimulus-induced hemodynamic response.
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Figure 1: Hemodynamic response function (HRF)
corresponding to task blocks with duration of 20
seconds (above) or events (below). Data created
using the SPM software package.

The Balloon Model can be described by the follow-

ing four differential equations, describing the signal s,

the inflow of blood fin, blood volume v, and deoxyhe-

moglobin q. It is assumed that the flow inducing sig-

nal s and the change in regional cerebral blood flow fin

are linked linearly,

ḟin = s. (1)
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The flow inducing signal is generated by neuronal

response to the stimulus function u(t),

ṡ = εu(t)−κs− γ( fin −1), (2)

with the parameter ε describing the efficacy of the stim-

ulus to signal increase, κ and γ being rate constants de-

scribing signal decay and autoregulatory feedback from

blood flow. The venous blood volume is the difference

between inflow fin and outflow fout within a certain

time interval (transit time) τ ,

v̇ =
fin − fout

τ
. (3)

The blood vessels show higher outflow rate when dis-

tended, modelled using a single stiffness parameter α
as

fout = v
1
α .

This describes the dynamic flow-volume relationship

based on the so-called Windkessel model (see [6]). The

deoxyhemoglobin content q is modelled as an effect of

blood flow and volume change,

q̇ =

(
fin

E( fin,ρ)
ρ

− fout(v)
q
v

)
1

τ
, (4)

E( fin,ρ) = 1− (1−ρ)1/ fin ,

with E( fin,ρ) describing the oxygen extraction from

the inflowing arterial blood, and ρ being the constant

oxygen extraction fraction.

The six unknown biophysical parameters are thus:

the stimulus efficacy ε , the rate constant for signal de-

cay κ , the rate constant for blood flow autoregulation γ ,

the stiffness parameter α , the resting oxygen extraction

fraction ρ and the mean transit time τ . Commonly used

estimates for these parameters can be seen in [2].

Assuming these six parameters to be constant, this

allows to view the model described by these differential

equations as a single input single output model – the

input being the stimulus function u(t) and the output

being the measured BOLD signal x(t). It can be written

as

x(t) = H(u(t)) (5)

with H being the hemodynamic response function

(HRF), translating the stimulus u(t) into the measured

signal change x(t). In practice, the time courses of the

observed data and stimulus function are represented as

vectors, thus can be written as

x = H(u). (6)

2 General Linear Model (GLM)

The General Linear Model is one of the most versa-

tile models used in statistics. Many common statistical

approaches, such as analysis of variance (ANOVA), t-

tests, ordinary linear regression etc. are special cases of

this model [11].

For a series of measurements y and a matrix of ex-

planatory variables – the so-called design matrix, the

General Linear Model is described as

y = Xβ + ε. (7)

Here, β describes the parameters for modelling the lin-

ear coherence between the influencing factors and the

output signal; ε is the residual vector containing errors

or noise, which are assumed independent and identi-

cally distributed.

2.1 Embedding the Balloon Model in GLM

Since for fMRI data the signal is not measured directly

but rather through the hemodynamic response, this be-

haviour must be taken into account. The Balloon Model

is incorporated into the design matrix as follows:

X = H(U) (8)

y = Xβ + ε. (9)

For simplicity and because hemodynamic parame-

ters can be assumed to be constant [2], the hemody-

namic response function is usually not mentioned ex-

plicitly. The transformation of the stimulus functions in

the design matrix is obtained by convoluting the stimu-

lus function with the HRF.

2.2 Application

In functional MRI data 3D images are taken at every

time point, resulting in a time course for each voxel.

The coefficients β are estimated minimizing the error

squares. This Least Squares estimation can be easily

performed using the so-called pseudoinverse of the de-

sign matrix:

β ≈ (X�X)−1X�y (10)
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To test for significance of the estimated β , the residual

term r needs to be examined. It is defined as the differ-

ence between the measured values and the estimation,

r = y−Xβ . (11)

The standard deviation σ̂ of the error term is estimated

as

σ̂ =
r� · r

ν
(12)

where ν is the number of degrees of freedom associated

with r. For independently distributed residuals in fMRI,

this would be the number of scans minus the number

of effects estimated (column rank of X). The standard

error e can be described as

e2 = c · σ̂(X�X)−1 · c�. (13)

Now the t-score is obtained as

t =
c ·β

e
. (14)

The General Linear Model is estimated separately

for each voxel, resulting in a 3D map of parameter esti-

mates and corresponding t-scores which can be used to

functionally localize brain activity associated with cer-

tain stimuli or tasks.

The described methods for functional neuroimaging

data are implemented in the SPM package for MATLAB,

which was developed by the Wellcome Trust Centre for

Neuroimaging at the University College London. The

software, as well as documentation and course files,

is freely available at http://www.fil.ion.ucl.
ac.uk/spm/software/.

2.3 Criticism

The GLM gives a robust and easy-to-use method for

fMRI analyses, as no prior knowledge of function or ac-

tivation maps are required to do a standard GLM anal-

ysis. However, it is limited to regarding just snapshots

of brain states, neglecting brain dynamics and interplay

of different cortical regions. Therefore, other methods

must be used for more complex questions concerning

interconnections and co-dependencies of brain regions.

3 Dynamic Causal Modelling
(DCM)

Dynamic Causal Modelling is a framework which can

be used for investigating hypotheses on effective brain

connectivity, modelling the network behaviour of cer-

tain well-defined brain regions. This is done using fol-

lowing differential equation,

ż = F(z,u,θc) = (A+∑
j

u jB j)z+Cu, (15)

where z is the state vector describing the activity in

a number of neuronal populations, u is the (time-

dependent) input, the parameter θc describes the (time-

independent) coupling parameters, consisting of fol-

lowing adjacency matrices.

Here A describes the static influence of activity in

each neuronal population on others independent of con-

ditions (task/input-independent effective connectivity),

B j describes the condition-dependent intermodulations

for each condition j, and C describes the direct influ-

ence of the conditions on activity in each brain region.

The indices of the matrix entries specify the direction

of the modulations – the column index indicating the

source and the row index indicating the target of the

connection.

Thus, the modeller needs to decide which regions

of interest should be included in the model, as well as

which connections are hypothesized to be present or

not. The connection strength (i.e. the values of the en-

tries in the connectivity matrices) is subsequently esti-

mated from the data.

An example of such structural hypotheses in a DCM

with 3 neuronal populations is depicted in figure 2.

Here, the assumed static connectivity is shown in blue,

non-existing connections are indicated in red, influence

of the conditions are shown in green. This DCM is

translated into following A, B and C matrices:

⎡
⎣ ż1

ż2

ż3

⎤
⎦=

⎛
⎝
⎡
⎣a1,1 a1,2 0

a2,1 a2,2 a2,3

0 a3,2 a3,3

⎤
⎦+u1

⎡
⎣0 b1,2 0

0 0 0

0 0 0

⎤
⎦
⎞
⎠
⎡
⎣ z1

z2

z3

⎤
⎦

+

⎡
⎣c1,1 0

0 0

0 c3,2

⎤
⎦[

u1

u2

]
(16)
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Figure 2: Schematic image of DCM structural assumptions
with 3 neuronal populations.

3.1 Embedding the Balloon Model in DCM

As before, neuronal activity is not measured directly

but via the BOLD effect – thus the hemodynamic state

equations in section 1 need to be incorporated into the

model as well. This leads to following full model from

stimulus u(t) to measured signal y(t):

stimulus functions

u(t)

↓
neural state equation

dx
dt

=

(
A+

m

∑
j=1

u jB j

)
x+Cu

↓
hemodynamic state equations

ṡ = x−κs− γ( f −1)

ḟ = s

τ v̇ = fin − v
1
α

τ q̇ = fin
E( fin,ρ)

ρ
− v

1
α

q
v

↓
BOLD signal change equation

y = λ (v,q)

The BOLD signal change is modelled as a function

of blood volume v and deoxyhemoglobin content q,

λ (v,q) =V0(k1(1−q)+k2(1−q/v)+k3(1−v)) (17)

taking into account the blood volume fraction V0 and

constants k1, k2 and k3. These constants have been

estimated by Buxton et al. [1] for a field strength of

1.5 Tesla. The variables of interest lying within the

neural state equation, they can be estimated using a

model inversion framework.

3.2 Application

Current implementations of DCM [4] within the SPM
package use a Bayesian framework for model estima-

tion, iteratively updating the parameters based on prior

estimates to maximize the model evidence p(y|m),

p(y|m) =
∫

p(y|θ ,m)p(θ |m)dθ (18)

where y is the measured data and m is the model.

Maximizing the model evidence. As the model

evidence (likelihood) can not be evaluated analytically,

it needs to be approximated. Usually the maximization

task is performed based on the log-likelihood due to nu-

merical advantages when reaching very low values (for

p(y|m)� 1).

To reduce the risk of overfitting, state-of-the-art

methods for model evidence estimations, such as the

Bayesian Information Criterion (BIC) or the Akaike In-

formation Criterion (AIC), generally use an accuracy

and a complexity term to find the best balance between

model fit and complexity.

log p(y|m)≈ accuracy(m)− complexity(m). (19)

These criteria are defined as

−AIC = log p(y|θ ,m)−n (20)

−BIC = log p(y|θ ,m)− n
2

log(N) (21)

where y stands for the data, m is the model with pa-

rameters θ , N is the number of data points and n is the

number of parameters. Here, the complexity term pe-

nalizes a high number of parameters, however not their

information content. Therefore, the so-called negative

free energy was introduced,

F = 〈log p(y|θ ,m)〉q −KL[q(θ), p(θ |m)] (22)
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where q is the assumed conditional distribution, thus

the left term is the expected log-likelihood under this

posterior. KL denotes the Kullberg-Leibler divergence,

which takes into account not only the number of pa-

rameters, but also their co-dependencies and therefore

information gain,

KL[q(θ), p(θ |m)] =
1

2
(log |Cθ |− log |Cθ |y|

+(μθ |y −μθ )
TC−1

θ (μθ |y −μθ )). (23)

Here, Cθ is the empirical prior covariance, Cθ |y is the

posterior covariance, μθ and μθ |y are the prior and pos-

terior expectation. The negative free energy is a lower

bound for the log-likelihood and can thus be used as

its approximation for parameter estimation and making

single subject and group inferences on model structure.

Note that these measures – AIC, BIC as well as neg-

ative free energy – are relative measures only. Thus,

they can be used to compare relative fit of different

models, however not for testing overall model quality

in the sense of hypothesis testing.

Parameter estimation. In the Dynamic

Causal Modelling framework, both biophysical

(θh = (ε,κ,γ,α,ρ,τ), see section 1) and connectivity

parameters (θc = (A,B,C)) need to be estimated. As

a non-linear optimization problem, current imple-

mentations of DCM use a Gauss-Newton algorithm

in an Expectation Maximization Scheme (see [4]) to

calculate the maximum a-posteriori (MAP) estimates.

Here, a fully Bayesian approach is used, based on the

conditional probability of the parameters given the

data, p(θ |y).
According to Bayes’ theorem, following proportion-

ality is given:

p(θ |y) ∝ p(y|θ)p(θ) (24)

Under Gaussian assumptions for the posterior den-

sity p(θ |y), its estimation is reduced to finding its first

two moments – the conditional mean ηθ |y and covari-

ance Cθ |y of θ |y. Analogously, the priors are estimated

in terms of their expectation ηθ and Cθ .

From equation (24) we receive

p(θ |y) ∝ exp

[
−1

2
(θ −η(i+1)

θ |y )�C−1
θ |y(θ −η(i+1)

θ |y )

]
(25)

with

Cθ |y = (J̄�C̄−1
e J̄)−1 , (26)

η(i+1)
θ |y = η(i)

θ |y +Cθ |y(J̄�C̄−1
e J̄) (27)

where

ȳ =

[
y−h(η(i)

θ |y)

ηθ −η(i)
θ |y

]
, J̄ =

[
J
1

]
,C̄e =

[
Ce 0

0 Cθ

]
. (28)

Iterating equation (25) when no priors are given can

be seen as the Gauss-Newton method for parameter es-

timation (see [3] for further details).

Although we have so far assumed the error covari-

ance Ce to be known, usually it is not, e.g. for temporal

correlations in fMRI. However, it can be estimated us-

ing some hyperparameters λ j, so that

Ce = ∑
j

λ jQ j and (29)

Q j =
∂Ce

∂λ j
. (30)

Q j represents a covariance basis set that embody vari-

ance components, which can model different variances

for different data blocks, or even temporal correlations

within blocks. To model the error covariance using this

basis set, we must now estimate its coefficients λ j.

The posterior mean ηθ |y and covariance Cθ |y as well

as error covariance Ce are now estimated iteratively in

an expectation maximization (EM) scheme, such that

the model evidence – i.e. the negative free energy F –

is maximized. See [3] and [7] for more details.

Inference strategies. After specification and esti-

mation of a DCM, for each connectivity parameter in θc
there exists an estimate of the mean and covariance, as

well as an estimate of the model evidence through the

negative free energy F .

On the parameter level, the significance of each con-

nection can be tested using one-sided t-tests on the

mean and covariance – analogously to section 2.2.

However, as the negative free energy is only a rela-

tive measure of model quality, we can not infer on the

model itself, but only compare different models (model

structures) on the same data, giving following options

for inferences on the model structure level:

• Select the model maximizing the model evidence

for each subject.
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• Average over models showing high posterior prob-

ability.

The first option is also referred to as Bayesian Model

Selection (BMS). As there are often several models

showing non-neglectable posterior probability, the sec-

ond option has become an often preferred choice – re-

ferred to as Bayesian Model Averaging (BMA) – per-

forming a weighted average over models within an

Occam’s window, i.e. showing a posterior probability

above a certain threshold, see [9] and [10].

3.3 Criticism

Compared to classic GLM approaches, DCM inherently

takes into account the dynamic nature of the brain by

implementing interconnections between brain regions.

However, the so-called “effective connectivity" investi-

gated in the DCM does not imply direct physical con-

nection of certain brain regions.

Also, while in the GLM analysis no prior assump-

tions have to be made on spatial extent and locations of

activation changes, DCM depends strongly on a-priori

hypotheses regarding neuronal populations and mecha-

nisms.

Exploratory, i.e. non-hypothesis-driven analysis,

could theoretically be conducted by setting each mea-

surement point, i.e. voxel time course, in relation to

each other and variating the existing connections re-

spectively. However, this is not only numerically im-

possible, but also the winning model might not be opti-

mal.

Within the current DCM framework it is only pos-

sible to estimate the most plausible parameters for pre-

defined modulatory connections, but it is not possible

to validate the prior assumptions (i.e. presumed con-

nections) per se, and thus the resulting model. Thus,

the DCM framework can only be regarded as a model

selection framework. Other, possibly invasive, methods

must be used for finding further evidence on the validity

of the models.
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