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Abstract. The analysis of 24 hour (24h) ambulatory
blood pressure monitoring (ABPM) profiles and their
variability has been of interest in literature for consider-
able time. The development of sophisticated algorithms,
which are integrated into mobile sphygmomanometers,
allows the performance of 24h ABPM including pulse
wave analysis (PWA). The recording involves the mea-
surement of standard ABPM parameters as well as the
estimation of central aortic pressures and other sys-
temic cardiovascular parameters at regular time inter-
vals throughout the day. The resulting time series often
show a diurnal profile. Therefore, the analysis of these
profiles and their variability is of interest. In this context,
the analysis of diurnal blood pressure (BP) profiles serves
as a model. The methods are adapted to be applicable
to the time series independent of the parameter. In this
article a selection of mathematical models and indices
to quantify this profile and the variability of the time se-
ries are presented. The considered fitting models are a
square wave fit, a fourier fit and a double logistic fit. The
modelling process as well as advantages and disadvan-
tages of each method are given. The results show that
the algorithms performing the fits are feasible for the 24h
profiles and provide several indices quantifying certain
characteristics of the profiles.

Introduction

Cardiovascular diseases are one of the leading causes

for morbidity and mortality [1]. It is therefore of cru-

cial importance to identify indicators for these diseases

at an early stage to find proper treatment and prevent

fatal outcome. There are many parameters describing

the health condition of the cardiovascular system, the

most popular being systolic and diastolic BP. However,

hypertension is only able to predict 40% of coronary

heart diseases [2]. Therefore, further indicators have

to be found. The availability of oscillometric brachial-

cuff based blood pressure monitors, which include algo-

rithms estimating central aortic pressures and other sys-

temic cardiovascular parameters, enables the recording

of ABPM and PWA parameters at regular time intervals

throughout the day. The Mobil-O-Graph (I.E.M., Stol-

berg, Germany) is an example for such a monitoring de-

vice, which includes validated algorithms providing the

PWA parameter values [3]. The resulting time series

often show a diurnal profile. Therefore, the analysis of

these profiles and their variability is of interest. In this

context, the analysis of diurnal BP profiles serves as a

model. These methods, which have been used in clin-

ical studies for 24h BP profiles for considerable time

[4, 5, 6], are adopted for other parameters of the PWA

in order to mathematically quantify the variability of a

time series regardless of the parameter. The aim of this

article is to describe the calculation details of three such

methods. All of them are curve fitting models which

aim to assess the diurnal profile of the parameter time

series. In general, this is achieved by an ansatz function

of a specific form, which is fitted to the data set by a

least squared error criterion. The advantages and dis-

advantages of each model are presented as well. The

provided variability and profile indices might help to

find further indicators for cardiovascular diseases.

1 Methods

This section deals with the motivation and calculation

details of three fitting models: the square wave fit, the

fourier fit and the double logistic fit.
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Least squared error criterion. Let x1, . . . ,xn and

t1, . . . , tn denote the measured values throughout the 24h

period and the corresponding time points, respectively.

In general, the purpose of the curve fitting method is to

determine the parameters λ1, . . . ,λm of an ansatz func-

tion Xλ1,...,λm : [0,24) −→ R m < n, which takes cer-

tain different forms as the parameters are varied, such

that the residual sum of squares

n

∑
i=1

(xi −Xλ1,...,λm(ti))
2 (1)

reaches its minimum.

1.1 Square Wave Fit

Motivation. BP tends to vary around a higher level

during wakefulness than during night while being

asleep in healthy patients [5, 7, 8, 9]. The purpose of

the square wave model is to capture this characteristic

of the diurnal parameter profile. The period times of the

higher and lower plateau are determined by the model.

Calculation. The ansatz function for the square

wave model [4] is given by

SW (t) :=

{
a, t ∈ {ti, ti+1, . . . , ti+k},1 ≤ k < n
b, t ∈ {t1, . . . , tn}\{ti, . . . , ti+k},

(2)

where a and b are the mean values of the data points

{xi,xi+1, . . . ,xi+k} and of {x1, . . . ,xn}\{xi, . . . ,xi+k},

respectively. The parameters i and k remain to be de-

termined by the least squared error criterion. For a data

set of n measurements there exist n · (n−1) such square

waves. In order to obtain the best fit curve with respect

to the squared error, all possible square waves as well

as the data points themselves are normalized. The data

are transformed

x1, . . . ,xn �−→ x̃1, . . . , x̃n

with

x̃i :=
xi −X
cSD

.

The curve is transformed

SW (t) �−→ SWst(t)

with

SWst(t) :=

{
a−SW
σSW

, t ∈ {ti, ti+1 . . . , ti+k},1 ≤ k < n
b−SW
σSW

, t ∈ {t1, . . . , tn}\{ti, . . . , ti+k}

and with

SW =
k ·a+(n− k) ·b

n

σ2
SW =

1

n−1

(
k · (a−SW )2 +(n− k) · (b−SW )2

)
.

For each of the standardized square waves the cross-

correlation coefficient is calculated as the average prod-

uct of corresponding values of the curve and the original

data, i.e.

cc j =
1

n

n

∑
i=1

SWst j(ti) · x̃i.

These n · (n− 1) values range from −1.0 to 1.0, where

a low value stands for a poor fit and 1.0 means that the

curve is a perfect fit. Therefore, the curve with the high-

est cross-correlation value is chosen to be the best fit

curve (Figure 2).

1.2 Fourier Fit - Truncated Fourier Analysis

Motivation. In this approach, a linear combina-

tion of cosine waves with different amplitudes and

acrophases but known periods are fitted to the data. The

motivation for this ansatz is Fouriers perception, that

,... any time series, regardless of its shape or regularity,
can be described by a series of sine and cosine waves
of various frequencies (Fourier 1822).’[10]

Calculation. The general ansatz in a fourier analysis

is given by a fourier series

F(t) = a0 +
∞

∑
k=1

(ak · cos(kt)+bk · sin(kt)) (3)

The model curve which is desired to describe the 24h

data profile is given by [10, 11]

f (t) := M+C1 cos

(
2πt
24

+φ1

)
+ · · ·

· · ·+Ck cos

(
2πkt
24

+φk

)
,

(4)

where M is called the mesor and C1, . . . ,Ck are

constants representing the amplitudes of the cosine

components. The acrophases (phase shifts, given in
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rad) are indicated by φ1, . . . ,φk. As a first observation

one sees that a finite number of ansatz functions instead

of the infinite series is used (,truncated’). Further, it is

sufficient to solely use cosine functions, since a sine

function can always be replaced by a cosine function

due to the relation sin(x) = cos(x− π
2 ). Furthermore,

all constants C1, . . . ,Ck can be assumed to be greater

or equal to zero, since the sign of the cosine can be

changes by a phase shift: −cos(x) = cos(x− π). The

period of the i−th harmonic is equal to 24
i hours.

Using the addition theorem cos(A + B) =
cos(A)cos(B)− sin(A)sin(B) yields

f (t) = M+C1 cos

(
2πt
24

)
cos(φ1)+ · · ·

· · ·−C1 sin

(
2πt
24

)
sin(φ1)+ · · ·

+ · · · −

· · ·+Ck cos

(
2πkt
24

)
cos(φk)+ · · ·

· · ·−Ck sin

(
2πkt
24

)
sin(φk).

The substitutions

Xi(t) = cos

(
2πit
24

)
, ai =Ci cos(φi)

Zi(t) = sin

(
2πit
24

)
, bi =−Ci sin(φi)

for i = 1, . . . ,k then lead to the linear regression model

f (t) = M+a1X1(t)+b1Z1(t)+

+ · · · +

+akXk(t)+bkZk(t)

(5)

The independent variables are here Xi and Zi, i =
1, . . . ,k. The variables M, ai and bi, i = 1, . . . ,k have

to be determined employing a (weighted) least squared

error analysis. The (optional) weights are the lengths of

the intervals between two consecutive measurements.

The distance is seldom constant [12]. The values for ai,

bi und M have to be determined in a way, that the resid-

ual sum of squares is minimal. In the following, the

case is studied, where the sum of squared errors is ex-

tended by a weight wi for each data point xi. Therefore,

the following expression has to be minimized

RSS =
n

∑
i=1

wi(xi − f (ti))2

=
n

∑
i=1

wi

(
xi −

(
M+

k

∑
j=1

(a jXj(ti)+b jZ j(ti))
))2

.

If calculations should be done without any weighting,
all wi can be set to one in the whole scheme. The above
error estimate is minimal, if all the derivatives with re-
spect to each parameter are equal to zero. Consider
therefore

∂
∂M

RSS=
n

∑
i=1

2 ·wi

(
xi−

(
M+

k

∑
j=1

(a jXj(ti)+b jZ j(ti))
))

·(−1).

Setting this expression equal to zero and making the
variables of interest, namely a j, b j and M, ,explicit’
leads to the first equation

n

∑
i=1

wixi =M ·
n

∑
i=1

wi+
k

∑
j=1

a j

( n

∑
i=1

wiXj(ti)
)
+

k

∑
j=1

b j

( n

∑
i=1

wiZ j(ti)
)

The derivatives with respect to the as,1 ≤ s ≤ k and

bs,1 ≤ s ≤ k yield to further 2k equations. The total

of 2k+ 1 equations can be written as a linear equation

system in matrix form

S ·�l =�b,

where S is the matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wi wiX1 wiX2 · · · wiXk wiZ1 · · · wiZk

wiX1 wiX2
1 wiX2X1 · · · wiXkX1 wiZ1X1 · · · wiZkX1

wiX2 wiX1X2 wiX2
2 · · · wiXkX2 wiZ1X2 · · · wiZkX2

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

wiXk wiX1Xk wiX2Xk · · · wiX2
k wiZ1Xk · · · wiZkXk

wiZ1 wiX1Z1 wiX2Z1 · · · wiXkZ1 wiZ2
1 · · · wiZkZ1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

wiZk wiX1Zk wiX2Zk · · · wiXkZk wiZ1Zk · · · wiZ2
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and in front of each entry of the matrix stands a sum

∑n
i=1, and each X and each Z has ti as argument. Fur-

ther,

�b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑n
i=1 wixi

∑n
i=1 wixiX1(ti)

...

∑n
i=1 wixiXk(ti)

∑n
i=1 wixiZ1(ti)

...

∑n
i=1 wixiZk(ti)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and �l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M
a1

...

ak
b1

...

bk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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This linear equation system can be written as

(XT ·W ·X)�l = (XT ·W )�x,

where W = diag(w1, . . . ,wn) is a diagonal matrix con-

taining the weights, �x = (x1, . . . ,xn) is the vector con-

taining the given data and X is the matrix

X =

⎛
⎜⎜⎜⎝

1 X1(t1) · · · Xk(t1) Z1(t1) · · · Zk(t1)
1 X1(t2) · · · Xk(t2) Z1(t2) · · · Zk(t2)
...

...
...

...
...

...
...

1 X1(tn) · · · Xk(tn) Z1(tn) · · · Zk(tn)

⎞
⎟⎟⎟⎠ .

This representation is simpler to implement. The solu-

tion is now given by

�l = (XT ·W ·X)−1 · (XT ·W )�x.

Finally, the desired parameters of the model curve are

calculated as

Ci =
√

a2
i +b2

i

φi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− tan−1 | bi
ai
| bi > 0∧ai ≥ 0

−π + tan−1 | bi
ai
| bi ≥ 0∧ai < 0

−π − tan−1 | bi
ai
| bi < 0∧ai ≤ 0

−2π + tan−1 | bi
ai
| bi ≤ 0∧ai > 0

.

1.3 Double Logistic Fit

Motivation. Previously mentioned curve fitting

methods partly work under at least one of two non le-

gitimate assumptions.

• The parameter profile is perfectly symmetric. The

assumption is that the decline of the parameter

shows exactly the same characteristics as its surge

(fourier fit, if only one harmonic is used and square

wave fit).

• The periods, in which the considered parame-

ter is higher respectively lower have the same

length (fourier fit, if only one harmonic is used).

Both assumptions do not reflect reality - at least not for

BP, for which the models were developed. The method

of the double logistic analysis does not include any of

these hypotheses. Head et al. developed this method for

heart rate and BP data of rats [13]. In [14] they applied

the method to heart data of humans.

Calculation. The model curve which is desired to

describe the 24h profile is given by [13, 14]

y(t) = P1 +
P2

1+ eP3(P4−t)
+

P2

1+ eP5(P6−t)
, (6)

where P1 to P6 have to be determined. Such curves

can be shaped as shown in Figure 1, depending on the

choice for P1 to P6 . The curve is then fitted to the data

with a least squared error criterion.

Figure 1: Example of a double logistic curve.

Implementation by Head et al. The model de-

scribed in [13, 14] proceeds more complex as the au-

thors add four terms to the model curve in equation 6 to

obtain a quasi periodic function. These additional terms

are related to the preceding and the following day. An-

other term P2 ·q is added as a compensation parameter.

The parameter q is equal to −2, if the data begin with

the transition from high to low. Otherwise q is chosen

as 2. The actual fitting curve therefore takes the form

y(t) = P1 +
P2

1+ eP3(P4−t)
+

P2

1+ eP5(P6−t)

+
P2

1+ eP3(P4−t−24)
+

P2

1+ eP5(P6−t−24)

+
P2

1+ eP3(P4−t+24)
+

P2

1+ eP5(P6−t+24)

+P2 ·q.

(7)

This double logistic ansatz function is then fitted by a

specially developed computer program written in Lab-

view. It makes use of the Marquardt algorithm, which

optimizes the parameters by the least squared error cri-

terion. This requires adequate start values for the vari-

ables P1 to P6. By iteration the parameters are optimized

by minimizing the squared error. To obtain first ap-

proximations for these values, another fitting method,
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namely the Cosinor model (= fourier fit with one har-

monic), is used. For instance, a first approximation for

P2 is taken as two times the amplitude of the cosinor fit.

Furthermore, for the parameters several constraints are

made. The limits for P1 and P2 are determined from the

square wave fit. Mean values and standard deviations of

the higher level period as well as of the lower level pe-

riod, according to the square wave, are calculated. De-

fine ymax as the mean of the higher level values plus two

times the according standard deviation and ymin as the

mean of the lower level values minus two times the ac-

cording standard deviation. The constraints for P1 and

P2 can then be chosen as

ymin ≤ P1 +P2 < ymax

P2 > 0

ymin ≤ P1 +2P2 < ymax.

(8)

Constraints for the curvature parameters were chosen in

a way that transition phases lasted for at least 30 min-

utes. Plateaus should be at least five hours long. Details

to the algorithm can be found in [13, 14].

Implementation inMATLAB The approach to ob-

tain a double logistic curve fit presented in this section

is a simplified version of the one described above. It is

done by the use of two different MATLAB built-in func-

tions, namely nlinfit and lsqcurvefit, which

fit the function given in formula 6 to the data set by the

least squared error criterion. These two functions re-

quire start values for the parameters P1 to P6. They are

obtained from the cosinor fit. The slopes at the two in-

flection points and their according time points are the

initial values for P3 to P6. The level difference P2 is

chosen as the difference between the high level and the

low level period as determined according to the cosinor

method. P1 is approximated by the difference of the low

level mean and the approximation of P2.

2 Results
Each of the described methods provides several indices

quantifying the data profile. They are described in this

section and exemplary plots of fitted curves are given.

2.1 Square Wave Fit

As can be seen in Figure 2, the square wave provides

several indices quantifying the characteristics of the di-

urnal profile of the data including the period durations

of the higher and the lower plateau as well as the tran-

sition time points and the level difference.

Figure 2: Square wave fitted to a data set of 24h heart
frequency (Hf) data. The determined parameters
ti = tup and ti+k = tdown indicate the time points of
the transition from the lower plateau to the higher
plateau and vice versa. Further, the mean values in
the periods PMhigh and PMlow, the period durations
T Dhigh and T Dlow as well as the level difference LD

are shown.

2.2 Fourier Fit

Basically the model provides two indices [12], which

are graphically shown in Figure 3. As can be seen, the

model predicts the occurrence of the maximum value

at about 4 p.m., which is very close to the actual maxi-

mum. The overall amplitude serves as a measure for the

range of the data.

2.3 Double Logistic Fit

The approach presented in the paragraph Implemen-

tation in MATLAB often yields favourable results for

both of the functions nlinfit and lsqcurvefit
as can be seen in Figure 4 at peripheral systolic BP as

well as Hf data. However, for some data sets the curve

is shaped unfamiliarly (Figure 8).

The indices obtained from the model are precisely the

parameters P1 to P6 of the ansatz function. The param-

eters P1 to P6 represent the following qualities.

• P1 +P2 . . . ,baseline’, ,night - time - plateau’; This

value is approximately the mean of the data mea-

sured during the lower level period.
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Figure 3: Fourier fit for Hf data using three harmonics. The
parameters of the model are the overall acrophase
(AP), which is defined as the time point of the
maximal value of the model curve, and the
amplitude (AMP), which is defined as half the
extent of the range of the data.

Figure 4: The double logistic functions take reasonable
forms for different data sets (Hf and pSBP). For the
data in the top right corner, nlinfit and
lsqcurvefit provide different curves.
Nevertheless, both seem comprehensible.

• P2 . . . ,amplitude’; This represents the range of the

data, the difference between the lower level and the

higher level period, respectively.

• Accordingly, P1 is the lower level value minus the

difference of the two plateaus. Therefore, to ob-

tain the approximation of the mean value of the

high level period, one has to add the difference of

the plateaus P2 to the lower level plateau P1 +P2,

which equals P1 +2P2.

• P3 and P5 serve the modelling of the transitions

between the plateaus. They indicate the extent of

steepness of the change between the levels. While

P3 is the slope from the higher to the lower plateau,

P5 gives the slope of the reverse transition.

• The values P4 and P6 are the time points at which

50% of the transition is reached. Therefore, they

are the middle time points within the transition pe-

riods.

Features of the MATLAB algorithm. One of the

observations when applying the algorithm described in

the section Implementation in MATLAB to different

data sets is, that the curve does rise to the higher level

but fails to fully return to the lower level plateau as can

be seen in Figure 5. To avoid this unfavourable effect,

two approaches can be made.

Figure 5: The plots show the unfavourable effect, that the
double logistic curve does not return to the lower
level plateau.

Since the start of the sleep time lies approximately

within the interval (22h,2h), (BP) values begin to fall

rather close to the end of the 24h monitoring period.

This might hinder the curve to perceive another low

level period. To obtain enough lower values, the data set

may be extended by a certain number of measurements

of the following day. In the absence of these measure-

ments, simply the first couple of hours of the same day

with the according measurements are added. Apply-

ing the implemented MATLAB function on the data set

with an extension of six hours to the same data sets as

in Figure 5 leads to the desired return to the lower level

plateau. This can be seen in Figure 6.

The second option is to shift the time point of the be-

ginning of the measurements such that transition peri-

ods are most likely not close to the beginning or the end

of the observation period.
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Figure 6: Double logistic curve fit with an extension of six
hours to the data set.

Applying the MATLAB algorithm again to the same

data sets as in Figure 5 and 6, respectively, with the start

time set to 4 p.m. yields to the double logistic curves

depicted in Figure 7. However, the shape of the curve

is rather sensitive to the starting time, since the fitted

functions in 6 and 7 show - at least for the data set on

the left - notably different characteristics.

Figure 7: Double logistic curve fit with a shift of the starting
time of the observations to 4 p.m.

3 Discussion
The advantages and disadvantages of each method are

discussed in this section.

3.1 Square Wave Fit

This method of capturing the profile of the dataset is

a refinement to the so called nocturnal BP fall [12].

There, the averaging of the data points in the alleged

higher and lower periods is done over defined day time

and night time periods which includes a subjective com-

ponent. The square wave is advanced in the sense of

correctness, since it is a method based on a mathemati-

cal model and the periods are implicitly determined [4].

In [15] it is further stated that the square wave approach

performs better in fitting BP data as well as the heart

rate changes than the Cosinor method.

Although the square wave captures several features

of the parameter profile, while the degrees of free-

dom are limited to the two time points, when the level

changes [4], one drawback of this approach is that the

ansatz assumes abrupt and symmetrical transition peri-

ods. This does not reflect the fact that these transitions

vary strongly from subject to subject - at least for BP

data - [15].

3.2 Fourier Fit

There is no distinct statement which number of harmon-

ics is the best choice. It is conjectured that various num-

bers of harmonics are possible ’best choices’, depend-

ing on the (temporal) distance between two measure-

ments [4]. Other authors hold that the model is better

the more harmonics are used [11]. However, their rec-

ommended number is four harmonics, since the method

performed best for different data sets and the influence

of added harmonics on the indices of the model were

negligible. As well as the square wave also the fourier

analysis can be used to segment the 24h interval in a

lower level and a higher level period. However, Idema

et al. [4] claim that the square wave method performs

better considering segmentation.

The Fourier method captures the complexity of the

signal better than the previously mentioned square wave

approach. However, the smoothing effect might lead to

an ’over-modelling’ of the measurements [15]. Another

advantage of this method is that it is applicable to non-

equidistant data sets. Additionally, this method does not

assume symmetrical period transitions or equal period

durations [11].

3.3 Double Logistic Fit

The method is said to improve the modelling of the

surge of (BP) data in the morning, which is known to

be a risk factor for stroke [13, 16]. The crucial inno-

vation of this method is the possibility to consider the

decline of the values and the rise separately [14]. Ad-

ditionally, the model refrains from symmetry assump-

tions on the data profile. However, despite the presented

favourable results, some further observations have to

be mentioned. The implementation of this method by

Head et al. [13, 14] is rather complex and the design of

the curve in general seems to be only applicable to data

sets with a specific shape. This can be seen in Figure 8.
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The data sets do not show a typical diurnal BP tenor,

which leads to a rather unfamiliar double logistic fit.

Head at al. include a lot of restrictions on the param-

eters of the model. This inclusion might improve the

simplified approach presented above. Another observa-

tion made when applying the MATLAB algorithms on

the data sets is, that the resulting curve is rather sensi-

tive to the initial values. The improvement of the cal-

culation of adequate initial values presents another field

of investigation to obtain a solid method.

As the two MATLAB function often provide differ-

ent results for the data sets, they require further analysis

to find distinct quality criteria for the decision in favour

of one of them.

Figure 8: For some data sets the MATLAB algorithms yields
to unfamiliar double logistic curves.

4 Conclusion

The results show that the algorithms performing the fits

are feasible for the 24h profiles and provide several in-

dices quantifying certain characteristics of the profiles.

Although the double logistic model requires further re-

finement, the results are encouraging.
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