SNE TECHNICAL NOTE

Conceptional Problems of Transaction-based
Modeling and its Implementation
In SimEvents 4.4

Lars Austermann’, Peter Junglas, Jan Schmidt, Christian Tiekmann

PHWT Vechta, Schlesier Str. 13, 49356 Diepholz, Germany; * peter@peter-junglas.de

SNE 27(3), 2017, 137 - 142, DOI: 10.11128/sne.27.tn.10383
Received: June 10, 2017 (Selected ASIM GMMS/STS 2017
Postconf. Publ.), Accepted: July 20, 2017

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. Transaction-based modeling is a widely used
graphical method for modeling discrete event systems, a
recent implementation being SimEvents from Math-
works. Though it is applicable to a wide range of prob-
lems, it has its specific drawbacks. Some of them are
connected to the basic abstractions of the method, oth-
ers are related to the specific program used. By imple-
menting a few different standard examples, we will show
some of these shortcomings together with possible
workarounds. This should be pointed out, when teaching
this method to new users, but additionally has to be
taken into account, when building a new transaction-
based library or corresponding blockset.

Introduction

The modeling of discrete systems is a broad and diffi-
cult subject that has created a wealth of very different
paradigms. Concentrating on graphical methods only,
widely used techniques range from highly abstract ones
such as Petri nets [1] and state graphs [2] to concrete
material flow applications, e. g. PlantSimulation [3].

At a medium level of abstraction one finds process-
based and transaction-based modeling [4], which both
describe entities that are handled by fixed components.
A widely used implementation of the former method is
Arena [5], of the latter SimEvents [6]. The basic differ-
ence between them is the way how entities are trans-
ported: In process-based methods the components are
the active parts and ‘seize’ the entities, in transaction-
based systems the entities play an active role and move
automatically, until they are blocked.

These two methods are used in many industrial ap-
plications, since they are sufficiently abstract to be uni-
versally applicable, but at the same time concrete
enough to be comprehensible by users from very differ-
ent disciplines.

But until now there is no well-established set of
basic features and components for both methods. As a
consequence users have to stick to a given simulation
environment or even to a fixed version, if they don’t
want to reimplement and partially redesign their models.
As the huge conceptional changes between the latest
releases of SimEvents indicate [7], especially the defini-
tion of the transaction-based modeling approach pres-
ently seems to be unclear. Therefore one should recon-
sider the basic design of the method and try to answer
questions such as the following: What are the shortcom-
ings of current implementations? Which concepts or
components are missing? How could a reasonable set of
components be defined?

The aim of this paper is to provide first steps to an-
swer these questions. To this end it examines a few
standard example problems and their implementations
in SimEvents 4.4. It shows the conceptual problems that
have been encountered during the implementation and
provides possible workarounds. It concludes with some
proposals related to applying and teaching the transac-
tion-based approach to modeling.

1 Example Models

To study the range of applicability of the transaction-
based approach, one can draw on a huge stock of practi-
cal examples. For the purpose of finding the weaknesses
of the method, four models will be presented in the
following, that clearly indicate the points that are of
interest here. The first three come from Law’s textbook
[8], the last one from the ARGESIM benchmark C14 [9]:

Austermann et al.

Problems of Transaction-based Modeling and its Implementation

o timeshared: Model of a time-shared computer,
where several terminals send jobs of varying compu-
ting time demands, which are processed in time slices
using a round-robin scheduler.

o multiteller: Model of a multiteller bank with several
queues and jockeying, i.e. customers are allowed to
change to a shorter queue.

e jobshop: Model of a factory with five workstations,
where variable kinds of jobs are processed, which re-
quire different paths through the stations.

¢ supplychain: Model of a supply chain consisting of
wholesalers, who order different products from dis-
tributors, which in turn order from several fac-tories.
The distributors use special strategies to comply with
the demand.

The models are described in full detail in their refer-
ences. The following section will concentrate on those
parts of the implementations that are relevant for the
discussion.

2 Problems Implementing the
Examples

In the following some of the conceptual problems that
have been encountered during implementation of the
examples will be presented in detail. In addition it will
be shown how to cope with them, mainly by introducing
components that help to implement new abstractions.

2.1 Handling of concurrent events

The central element of many discrete event systems is a
global event queue that contains all events in the proper
order. But in a transaction-based model the events are
defined locally by the individual blocks, so that the
proper order of events that originate from different
blocks at the same time instant is not always well-
defined.

An example is shown in Figure 1: A generator com-
ponent creates entities with increasing ids, which will be
routed afterwards to one of two outputs depending on
whether the id is even or odd. For this purpose the Get
Attribute block extracts the id of an entity, the Com-
pute Port component uses this value to compute the
corresponding output port number and the SetAttrib-
ute block sets the port number as an attribute of the
entity.

J<D In1 Qutl
id —I~. port QUTT p— N

Compute Port

1t 'S P
@_@ IN Ehyr in _}_.Z?UT L e

“ouT2 Output 1
Get Attribute Qutput Switch |
2 ING.

Output 2

Generalor Set Altribute

Figure 1: Example with concurrent events.

Simulating the model leads to an error message stating
that a race condition has been detected; it is not defined
which of the two inputs of SetAttribute arrives first:
the new entity or the new attribute value. If one ignores
this message by changing it into a warning, the entities
leave the Output Switch at the wrong port. But if one
follows the recommendation given in the error message
and inserts a null server, i.e. a Server component with
service time tg = 0, after the entity output of Get At-
tribute, the model works as planned.

o—IN ¥ outh— o poIn U] #n
=1} -

IN ouT
Store P, Comp NextServiceTime Queue

MextS. Time | it 1 util —] wutil
\;» N :{) e ouUTp—— : S
el N uT
251 QUT p—
ouT
Get NextServiceTime Server

Nullserver

Figure 2: CPU component of the ‘timeshared’ example.

This problem is inevitable when working with local
components and is of course well known for a long
time: already the textual modeling language GPSS had a
BUFFER command that reorders concurrent events [10].

The insertion of a null server to delay entities seems
to be a simple solution, but it has a serious drawback: If
its output is blocked, the server stores one entity. This
has to be taken into account properly and complicates
model design, as can be seen in the implementation of
the CPU in the ‘timeshared’ example (Figure 2).

When jobs leave the queue to enter the server block
that represents the CPU proper, their service time has to
be fetched from an attribute, which makes the in sertion
of a null server necessary. If one is interested in statisti-
cal data about the length of the queue, one has to add
the additional job that may be stored in the null server.
Therefore the average queue length that the queue com-
ponent provides, is of no use, it has to be computed
‘manually’ instead.

Austermann et al.

Problems of Transaction-based Modeling and its Implementation

The workaround of using a null server to implement
an ‘infinitesimal’ delay is conceptually wrong, because
the implicit storage that it adds, is not related to the
problem it solves. This can even lead to more serious
problems as will be seen in Section 2.4.

2.2 Separation of entities from a queue

The ‘multiteller’ example allows for the well known
phenomenon of jockeying in a queue, i.e. customers at
the end of a queue can switch to another shorter one.
Modeling this behaviour with SimEvents turned out to
be much more difficult than expected. The reason is that
although an entity can leave a queue, when its waiting
time exceeds a threshold (a behaviour known as reneg-
ing), there is no way to detach the last entity of a FIFO
queue on arrival of an input signal (e. g. when another
queue has become shorter).

To model such a jockey queue two very different
schemes have been devised: In the shuffle queue (Fig-
ure 3) the signal opens up a path from the exit to the
beginning of the queue. All entities walk around the
circle and get back into their old position, except for the
last one, which leaves the block through the extra jock-
eying output. From here it is routed to the shorter queue.

D)
o -

T e
Saxrvir

+Eo{our sl v edrzp

™ o

@E
8
T

oup 1= ue

Crsenr
. Ny o o™

Jockny [re— Ceurser
output port

Figure 3: Shuffle queue component of the
‘multiteller’ example.

The clone queue (Figure 4) creates duplicates of all
incoming entities and routes them into a FIFO and a
LIFO queue. When the queue exit is opened, an entity is
taken from the FIFO queue, but when the jockey signal
arrives, the LIFO queue is used. A bookkeeping device
destroys clones, whose partner has already left the
queue, when they appear at the end.

Both schemes are quite complicated and lead to a lot
of additional events. Though they worked at last, their
implementations had to cope with a lot of difficult tim-
ing problems and appear to be cumbersome and error
prone. What one needs instead, is a simple mechanism
to remove a given entity from a queue, maybe similar to
the concept of user chains in GPSS [10].

en

7 t
. A - Tourhes
L BT ot i S
- - Enatiod Gae
FIFOGatoe Type bervee
oyt
i

Figure 4: Clone queue component of the

‘multiteller’ example.

2.3 Storing entities

A basic ingredient of the ‘supplychain’ example is a
storage component that stores incoming entities denot-
ing products of several types. On arrival of an order it
emits the corresponding products at its output port.
Scanning through the SimEvents library to find blocks
that can store elements, one comes up with the queue,
the server and the resource blocks, but none of them
seems appropriate for the task at hand: a server is not
well suited to deliver a certain type of product on de-
mand, the resource pool provides a fixed amount of
resources. And the queue block doesn’t scale well with
the number of different product types, since one needs
one queue per type to emit a product entity of given
type on request.

Instead of trying to use some of these blocks togeth-
er with complicated gates and logic to coerce them into
a non-fitting scheme, one can use a simple 1/z block
from Simulink’s basic discrete library. It contains the
inventory (Figure 5), which is just a vector with the
amounts of the different product types in the stock.

The Storage component (Fig. 6) registers incoming
products in the inventory and destroys the correspond-
ing entities. When an order arrives the inventory is
reduced and the proper entities are recreated at the out-
put port.

Of course this is only a trick, because the entities
themselves are not stored at all. It worked for the exam-
ple program, since the structure of the product entities is
simple and always the same. What one really needs, is a
more general component that actually stores the incom-
ing entities and can release them on demand. The actual
design of such a block is open to discussion and could
be guided on example models and implementations in
other environments.

Austermann et al.

Problems of Transaction-based Modeling and its Implementation

A simple first idea would be to use a special queue,
where selected entities can move to the front of the line.
Again, the old idea of ‘user chains’ could come in
handy here.

f()
Trigger

prodType

Create base veclor stock

1

z

amount

Inventory

Figure 5: Change Stock component of the
‘'supply chain’ example.

Change Stock

i
Gor—————iN— amaunt wtockf—————— ("7)
Prod in ot PN R grocuet prodType slock
INZ I=1 Teiggarl)

OUT
Gat Attribute 1 —T
f 1
L
n |

Bl NG

Theoughpt
Trigger 1

Sink

Bues f amount
é,,,,:, ,H,. N lt;;:mn;.:: q r)-» N .'u” ‘-_J L, fon YT »-I F D‘mbc"?.?m (D>

Prod Out
negative ameunt

Throughgut Greata Entity
Trigges 2

Gt Altribute 2

| Sat Atirbules

Figure 6: Storage component of the
‘'supply chain’ example.

2.4 Time measurements across several
blocks

In the ‘jobshop’ example entities use different paths
through workstations with associated queues. One is
interested in statistics for the total waiting time of the
entities over all those queues. To measure this value,
one needs timers that can be paused after a queue and
resumed before the next one to add up the single waiting
times of passing entities.

Unfortunately SimEvents only provides simple tim-
ers that measure between two fixed points. Therefore
one has to add up the waiting times of the individual
queues inside the entity using an attribute (Figure 7).

5 | o
|
#n

— | l
ED = I [[?,Tmm,*ﬁ LEM??”T”'@

N —RUT i3] OUT out

Read T1 Get T1cum Nullserver Set T1cum

Figure 7: Accumulation of times in a PauseCTimer
component.

Based on this idea one can easily build components
to start, pause, continue and read such accumulating
timers and test them in simple models (Figure 8).

‘ >
5L PUT p— v ba—a IN - -QUT 2 > [— IN = QUT
“‘P i ' T

Generator Start CTimer Sarver t=1 Pause CTimer 1 Sarver 1=2

b L 9
_»»—»w : c:_u'r»—»®> ®_DI—J
> n ,,f| »—L delay
M N

Pause CTimer2 Read CTime:

Continue CTimer goruer =4

ING

Sink

Figure 8: Simple test model for accumulating timers.

But the problem is, they don’t work if the accumulating
block PauseCTimer sits between a queue and a server —
which is exactly the most interesting configuration in
general and especially in the ‘jobshop’ example. The
reason is of course the null server block that is neces-
sary inside PauseCTimer: When the server is busy, the
first entity in the preceding queue moves into the null
server and waits there instead in the queue. The addi-
tional waiting time is not accounted for in the timer.
This is a serious problem: One could measure the time
that an entity stays in the null server, but to accumulate
it, one needs another null server!

As always there is a workaround: Accumulation be-
tween a server and an (unlimited) queue is no problem,
as the queue never blocks and the preceding null server
doesn’t store an entity. Therefore one can measure the
time ty,s between entering the queue and leaving the
server and the time tg inside the server and accumulate
the time ty = to4s — ts after the server. But this is
akward and only shows again that the basic design of a
null server is seriously flawed.

2.5 Statistical analysis

An important aspect of discrete simulation is the gather-
ing of statistical data, often in the form of a final report.
In the ‘jobshop’ example for instance, one is interested
in the queue delay, queue length and server utilisation
for the different workstations, as well as the total wait-
ing time per job and per jobtype.

In a transaction-based environment there is no in-
stance to collect such data but the blocks themselves.
SimEvents provides mean values, utilisations and simi-
lar data for individual components, but no additional
statistical tools.

Austermann et al.

Problems of Transaction-based Modeling and its Implementation

This is unfortunate, because due to the abundance of
null servers one often has to combine individual values
and can not use the statistical block data itself. The
actual length of a queue for example has to be enlarged
by the occasional inhabitant of a subsequent null server,
as well as the corresponding waiting time. To compute
mean values per entity or per time one has therefore to
build own blocks, which admittedly can be done easily
with standard Simulink methods.

Another challenge is the collection of statistics con-
nected to entities, not blocks, such as the accumulated
waiting times through several queues. The basic idea
here is to store data in the entities themselves and col-
lect them at the end. Figure 9 shows how mean or max-
imal values can be computed with the help of simple
1/z blocks that are hiding in the Adder and Max blocks.

Combining all these auxiliary blocks in a final statis-
tics subsystem not only helps to unclutter the model, but
brings together all statistical data. They now can easily
be pipelined into a Matlab script that creates a proper
report file, if such is desired.

Adder

#{in1 Outd
Trigger()
mean
| XS

> 1)
| L Max | single
|
i
| i1 out |f——{ 4)

i Trigaer(] max
.G -: !
Teum = H
f}- |
@_ N l‘.‘l f TR e | '
N £3 OUT P IN .Ewﬂd . _@
Get Attribute ouTp——2 > #n

Entity Departure ouTt
Function-Call Generator

Figure 9: Component Ent ityMeanMax for
accumulating entity data.

3 Conclusions

The preceding analysis has unfold four different areas,
where transaction-based modeling and its implementa-
tion in SimEvents show conceptional difficulties:

e timing of concurrent events;
¢ implementation of alternative queueing policies;

e storing and retrieving of entities;

o gathering and processing of statistical data.

Of these the first one is by far the most serious, and
a generally working solution instead of the defective
null server workaround is not available in SimEvents.
This is especially annoying since already GPSS had a
better solution with its BUFFER command.

All other problems could be solved by introducing
appropriate subsystems using blocks available in Sim-
Events or the underlying Simulink. Adding such com-
ponents to a user library, one can simplify the modeling
of a wide range of applications. Though this may be
sufficient for the practitioner in the industry, it is a real
drawback of the transaction-based method: a corre-
sponding library should provide the basic abstractions
that are necessary to model all problems that the method
adresses.

Considering the queueing and storing problems the
GPSS construction of ‘user chains’ seems to be a prom-
ising idea: Instead of adding ever more specialized
components, it provides an underlying mechanism that
may be able to cope with some of the difficulties pre-
sented above. To gain further insight into possible solu-
tions, we propose to add a new benchmark to the AR-
GESIM suite [11] that requests the modeling of several
jockeying queues and the collection of statistical data
including the delay over several queues, similar to the
multiteller example. To complicate matters one could
ask for implementations with a large number of queues,
which would adress the problem of ‘vectorising’ com-
ponents.

Mathworks has realized that SimEvents 4.4 has still
basic problems and came up with a complete redesign
of its SimEvents library with version 5. A very interest-
ing feature is that the design is based on a unifying
theoretical description [7]. Unfortunately, Mathwork
has chosen a new design instead of relying on the
wellknown DEVS formalism [4]. Many basic aspects
have been changed with the new release, often by sub-
stituting graphical elements with Matlab code. As a
consequence there is no simple migration path from the
old to the new version. Whether this has lead to a satis-
factory implementation, needs further investigation.

In any case this only adds to the central point made
here: For the advancement of transaction-based model-
ing it is vital that it is based on a thorough theoretical
analysis to reveal the fundamental abstractions and
basic components that are necessary.

Austermann et al.

Problems of Transaction-based Modeling and its Implementation

The goal is to find stable designs, that don’t change
with every new tool or release, to get models that are
better understandable, because they don’t rely on tricky
workarounds, and to reach high quality solutions, since
they have a sound foundation. If we don’t care for the
basic concepts, we have to live with redesigning our
models and rewriting our lectures every other year.

Acknowledgements

The second author (P. J.) likes to thank Thorsten
Pawletta for introducing him to the rich history of dis-
crete modeling tools.

References

[1] Cassandras CG, Lafortune S. Introduction to Discrete
Event Systems. Springer, New York, 2. ed. 2008.

[2] Harel D. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming, 8, pp. 231-
274, 1987.

[3] Bangsow S. Tecnomatix Plant Simulation: Modeling and
Programming by Means of Examples. Springer, Cham,
2015.

[4] Zeigler BP, Prachofer H, Kim TG. Theory of Modeling
and Simulation. Academic Press, San Diego, 2nd ed.
2000.

[5] Kelton WD, Sadowski RP, Zupick NB. Simulation with
Arena. McGraw-Hill, New York, 6. ed. 2015.

[6] The MathWorks. SimEvents: Model and simulate dis-
crete-event systems. Online:
www.mathworks.com/products/simevents.html (called
2017-01-30).

[7]1 Li W, Mani R, Mosterman PJ. Extensible discrete-event
simulation framework in SimEvents. Proc. 2016 Winter
Simulation Con-ference, Arlington, pp. 943-954, 2016.

[8] Law AM. Simulation Modeling and Analysis. McGraw-
Hill, New York, 5. ed. 2014.

[9] Taubock SM. C14 Supply Chain Management Defini-
tion. Simulation News Europe, 32/33, pp. 42-43, 2001.

[10] Schriber TJ, On the application of user chains in GPSS.
Proc. 1973 Winter Simulation Conference, San Francis-
co, pp. 140-158, 1973.

[11] Breitenecker F, Wassertheurer S, Popper N, Zauner G.
Benchmarking of Simulation Systems-the ARGESIM
Comparisons. Proc. First Asia Int. Conference on Model-
ling & Simulation. pp. 568-573, 2007.

