SNE TECHNICAL NOTE

A New Approach for Integrating Discrete
Element Method into Component-oriented
System Simulations

Christian Richter

Technische Universitat Dresden, Chair of Construction Machinery; christian.richterl@tu-dresden.de

SNE 27(3), 2017, 125 - 130, DOI: 10.11128/sne.27.tn.10381
Received: June 1, 2017 (Selected ASIM GMMS/STS 2017
Postconf. Publ.), Accepted: July 20, 2017

SNE - Simulation Notes Europe, ARGESIM Publisher Vienna,
ISSN Print 2305-9974, Online 2306-0271, www.sne-journal.org

Abstract. The working process of construction and
conveying machines is characterized by the interaction
with granular and bulk materials. In order to allow pro-
spective analysis of machine behaviour under real oper-
ating conditions, coupled simulations are increasingly
used. While modelling the equipment happens within the
scope of component-oriented system modelling, repro-
ducing particle-mechanical behaviour is done with dis-
crete element method. The work presented here intro-
duces a new integrated approach which allows a closed
modelling and simulation of system models and discrete
element method. The creation and calculation of coupled
simulations is thus facilitated by a multiple.

Introduction

In recent years the usage and importance of simulations
has significantly increased in the field of construction
and conveying machines. Both sectors have in common
that some kind of machine is handling with some kind
of granular material (e.g. sand, gravel, pellets). Typical
processes are the digging of a hole with an excavator or
the transport of material with a conveyor belt. Knowing
the forces arising from these processes is very im-
portant. On the one side they cause strains on single
parts, on the other side the can affect the entire machine
behaviour. Let’s consider a excavator for example. The
forces coming from the digging process are acting on
the bucket and causing stress and wear, but they will
also lead to an increasing hydraulic pressure in the cyl-
inders.

This in turn will affect the pump and engine activity.
In order to make prospective statements about machine
behaviour under real operating conditions it’s necessary
to simulate the machine as well as the process in com-
mon.

For simulating the equipments behaviour, compo-
nent-oriented system models are often used. These kind
of models are describing the machine as a network of
components and subsystems which can be part of differ-
ent domains like hydraulics, electrical or control engi-
neering. One option for simulating bulk materials is
using the discrete element method (DEM). With help of
this method it’s possible to reproduce the motion of
granular materials as well as the strains they cause on
mechanical parts.

Bringing both simulation techniques together isn’t as
easy as it seems. In addition to various methods of cal-
culation, the modelling paradigms are also completely
different. Arranging coupled simulations is for that very
difficult and time consuming. This paper presents a new
integrative approach for closed modelling and simula-
tion control.

1 Basics

1.1 Discrete element method

The discrete element method (DEM) was presented first
in 1973 by Cundall and Strack [1]. It’s a numerical
method for simulating the behaviour and motion of
large numbers of discrete, interacting objects. In most
cases, as done here, these objects are referred as parti-
cles. Basis of the method is the calculation of forces
acting between the particles or between a particle and an
adjacent surface. The basic calculation cycle should be
explained briefly below.

Christian Richter |ntegrating Discrete Element Method into Component-Oriented System Simulation

After insertion every particle has an initial position
and velocity. The simulation loop starts with collision
detection. In this phase all particle-particle and particle-
wall contacts are determined. After that the forces and
torques acting on every particle must be calculated.
These forces result on the one hand from field forces
like gravity and on the other hand from the particle
deformation as a consequence of collision. For that
different force-deformation laws are used. By summing
up all single forces and torques, the translational and
angular acceleration of each particle can be obtained.
The last step is solving the equations of motion. For that
the new positions and velocities are resolved by inte-
grating translational and angular acceleration two times
(Equations 1 and 2). Figure 1 shows this loop. It is re-
peated until a predetermined number of iterations is
reached.

Fk’:mk-ﬁg—»ﬁ=ffﬁdt k=12..,N (1)

My = Ji 'ﬂ*&EIJE’dt k=12..,N (2

Collision Detection
between all particles .

new positions and w. ap“ s parﬁc!s-gamcle

and velocities and particle-wall

contacts

Solving the equations
of motion -
contact forces

Application of the
force-deformation law
for every contact

for every particle

Figure 1: DEM Calculation Loop.

Most software for modelling and simulating discrete
element models works command-oriented. The user
tells the software what to do by typing single instruc-
tions into a command line tool or by loading an input
script. Graphical user interfaces are very rare. After
typing the commands they are processed sequentially.
Typical representatives are open source solutions like
LIGGGHTS" and Yade® or commercial tools like
PFC3D"™. This kind of modelling and user-software-
interaction has historical reasons and is not very user
friendly. The biggest problem is that the user has to
have good knowledge about the commands and syntax.
Furthermore its very complicated to adapt existing
models onto new problems. Figure 2 shows an excerpt
of a typical input script for LIGGGHTS".

Most of these applications doesn’t have any inte-
grated post-processing tool. This is a disadvantage be-
cause visualization of results and particle data is very
important. For that it’s not seldom that users have to use
third-party applications like ParaView".

-2.200 2.200 -0.100 4.070 units box

Figure 2: Input Script for LIGGGHTS®.

1.2 Network-based system simulations

Simulating complex machines - as already mentioned -
is often done by using equation-based component-
oriented system models. For the description of such
models Modelica [2] has established as a kind of stand-
ard language in many areas. Meanwhile, there is a plu-
rality of applications using and supporting Modelica out
there (e.g. SimulationX® or Dymola®). Modelica allows
the model description on several levels. One of the most
common types of building up simulation models is the
network-based or component-oriented modelling tech-
nique. Therefore configurable components and subsys-
tems (network elements), which have clearly defined
interfaces, are connected together in a network struc-
ture.

Apart from classic advantages of object-oriented ap-
proaches, such as encapsulation and re-usability through
modularity and inheritance, this method also has other
benefits. One is that building up and modifying models
can be done very easily and rapidly. A further is the high
degree of clarity, as the real and virtual structure often
correspond with one another. Exemplary the top-level
structure of an engine model is shown in Figure 3.

ih—— o
LB |
#

Figure 3: Network model of an engine with 6 cylinders.

hristian Richter Integrating Discrete Element Method into Component-Oriented System Simulations

1.3 Coupled simulations

As coupled simulation generally the calculation of cou-
pled systems is meant. Coupled-systems consisting of
two or more models from different domains, which have
to exchange information with each other at simulation
runtime. Furthermore the number of integrators and/or
modelling tools must be greater than one. According to
[3] there are different kinds of coupled simulations with
different names as shown in Figure 4.

Number of

Modeling- ‘ Closed Distributed
Tools Simulation Simulation
Merging systems
>1| ofequations of Co-Simulation | Distributed
separately modeled Modeling
subsystems
=1 "Classic" Modelseparation Closed
Simulation for Simulation Modeling
-
=1 =1
Number of
Integrators

2 Integrating DEM into
Component-oriented System
Models

2.1 Component library

For transforming the command-oriented modelling
paradigm of classic DEM-tools into a componentorient-
ed modelling technique several things have to be done.
First of all, all relevant modelling functions must be
identified. After this new abstracted components and
parameters must be designed representing and imple-
menting these functions. This components have to be
very self-explaining and easy to understand for the user.
Table 1 shows a selection of components and their cor-
responding function.

Component

Functions

SimulationBox

get total count and mass of all
particles

ParticleSource

generate particles

ParticleSink

remove particles

ParticleFlowSensor

measure the number and mass of

Figure 4: Classification of coupled simulations.

Assuming to this most recent approaches of coupling
system simulations with discrete element method must
be classified as co-simulation. One example for this is
the approach presented in [4]. This approach starts with
building up a machine model and exporting it as a func-
tional mock-up unit (FMU). Afterwards a discrete ele-
ment model is build up and connected to the FMU. The
calculation is performed by two integrators with infor-
mation exchange between both models at discrete time
events. Building up and connecting the models causes a
lot of work. This amount of work can be reduced by
implementing a new functionality which allows closed
modelling.

Generally, there are two possibilities for implement-
ing such a functionality. Either it’s attempted to inte-
grate the DEM into component-oriented systems model-
ling or the other way around. From the points and facts
mentioned above the first variant seems to be the better
way for getting a high degree of usability.

particles passing a surface

measure the number and and mass
of particles in a volumetric region

ParticleRegionSensor

ParticleSet

RigidBody

loading existing data

interaction of a rigid body with the
particles

Table 1: Components and corresponding functions.

As last step a translator must be implemented, which is
capable to translate these components into commando
sequences.

2.2 System structure

A component library as described before can be used in
any Modelica-Tool. It allows the closed modelling of
machine and process models. In order to perform a
distributed simulation, models have to be subsequently
separated. For a better understanding how this is done
Figure 5 shows the basic structure of all simulation
components. This structure is divided into two main
areas - a front-end and a back-end.

Christian Richter |ntegrating Discrete Element Method into Component-Oriented System Simulation

Figure 5: System structure.

The front-end consists essentially of the component
library. Each of the components forms a client, which is
capable to connect and communicate via TCP/IP to a
server. Due to the fact that the presented solution was
developed as part of a research project, the component
library has some SimulationX"-specific features. One of
them is the material selection via a database interface.

The server the components can connect to forms the
root node of the back-end-structure. It receives the mes-
sages from the components and forwards them to a
specific compiler. It’s possible that components belong-
ing to different simulation models can connect to the
server. For that reason the server can handle more than
one compiler at the same time. The compiler uses the
information coming from the server to build up a copy
of the current component structure. With help of this
model commando-sequences are generated which can
be executed by a specific DEM-tool. The software used
here was LIGGGHTS®™ compiled as a shared library to
make information exchange easier. Holding back the
whole component structure at the back-end is necessary
for the translation process because some commands can
only be created with information coming from two ore
more components.

The division into front-end and back-end communi-
cating via TCP with each other seems at first sight a
little bit complicated but brings some advantages. One
of them is the fact that distributed computations are
made possible. That means solving the system model
can be done on a normal computer while discrete ele-
ment simulation runs on a workstation or computer
cluster. Especially for time consuming and expensive
DEM simulations that’s a plus.

2.3 Communication

At this point, communication between front-end and
back-end is briefly explained. At the beginning of every
simulation - that means during initialization phase of the
system model - all components respectively clients
connect to the server. Required connection settings,
such as server address and port, are coming from the so
called SimulationBox-component. The following code
snippet shows this.

[am

outer SimulationBox simbox “simBox”;

Boolean isConnected(start=false);

ExternalObject client=TcpClient();

equation

when initial() then
isConnected=connectToServer (

client,
simbox.address,
simbox.port) ;

W 0 J O Ul B W N

10 end when;

The SimulationBox is a kind of superordinate parent or
world object. Besides basic simulation settings it con-
tains information about the spatial domain for DEM and
gravity forces acting on all particles. All other compo-
nents can access this information.

After a successful connection, the communication
between front-end and back-end starts. It’s divided into
three phases:

1. During initial phase all front-end components send
their parametric information to the server. These are,
for example, initial positions and orientation, geo-
metrical data or material values. All this information
are collected at the back-end and used to generate ex-
ecutable commando sequences.

2. At simulation runtime information are exchanged in
regular intervals. Here mainly new calculated posi-
tions of rigid bodies are transmitted from front- to
back-end and forces as well as torques are returned.

3. At the end of simulation an information is sent to the
server, which tells this that calculation is over. This
will reset the back-end simulation.

Simplified code, containing the complete communica-
tion algorithm, is shown below.

hristian Richter Integrating Discrete Element Method into Component-Oriented System Simulations

1 parameter Real tc=0.0001;

2 Boolean commTrigger=sample (0, tc);
3 algorithm

4 if isConnected then

5 when initial() then

6 ...send initial data...

7 elsewhen commTrigger then

8 ...send and receive data...
9 elsewhen terminal() then

10 ...send final data...

11 end when;

12 end if;

3 Bucket Elevator

3.1 Analytical considerations

For functional testing and evaluating the new solution a
bucket elevator was modelled and simulated. A bucket
elevator is a mechanism for hauling flow able bulk
materials (e.g. grain or sand) vertically. For that it is
often used in hoppers.

Of decisive importance in analysing and construct-
ing bucket elevators is material deflation. Basically
there are two ways of emptying the bucket at the upper
turning point. Either the material is thrown out by cen-
trifugal forces or the material falls out in reaction to
gravity forces. The second variant should be avoided
because there’s a high risk that particles fall back into
the elevator housing.

To figure out which kind of material deflation is dom-
inating point P is constructed like shown in Figure 6.

.
w--r-dm A

Figure 6: Construction of point P and distance a.

Thus particles are thrown out over edge A there must be
a < r [5]. For achieving this the minimal rotational
velocity can be calculated like in Equation 3.

i=a;a<r—>w>\/g 2)
) r

2

What is completely ignored in this calculation is the
internal friction of the material and the friction between
material and bucket wall. So there’s no possibility to get
reliable prospective statements if the bucket is emptied
the right way. Furthermore it’s very difficult to investi-
gate the bucket filling process or dynamic forces acting
on the drive chain. That’s where the discrete element
method can help.

3.2 Modelling

First step to simulate the bucket elevator was to create a
simple machine model, including buckets, housing and
a simplified drive train. After this was done it was ex-
tended by adding DEM specific components. For con-
tinuous filling a particle source was inserted at the lower
housing aperture. This particle source has an output rate
of 35000 particles every second. At the upper outlet a
particle sensor was added for measuring the mass and
particle flow leaving the bucket elevator. Additionally
another particle sensor was added for measuring the
number of particles falling back into the housing. The
complete model is shown in Figure 7.

singleBuckeat? singleBucketd

singleBuckets @

singleBucketild housing

1
v

simulationBax singleBuckett

il

I
:

singleBuckets

!

eBucketd singleBucketll capl

o
=)
"

T
!

singleBucket3 singleBucket12

I
:

singleBucket singleBucketls

particleSourcel

a singleBucket1

bucketlf

I
!

singleBucketid

=
o
i
i)
o
(=]
¥

singleBuckeatls E ~

;s
v

Figure 7: Structure view of the bucket elevator model in
Simulation X®.

3.3 Results

For evaluation the bucket elevator was simulated for 4.0
seconds. After about 3.0 seconds, a steady state is
achieved, at which the number of particles inserted is
approximately equal to the number of particles leaving
the bucket elevator. At this point of time there are about
65000 particles in the system. Figure 8 shows the 3d-
simulation-view at this point of time.

Christian Richter |ntegrating Discrete Element Method into Component-Oriented System Simulation

Figure 8: 3d-simulation-view of steady state.

It has been found that at a peripheral speed of 4 m/s
nearly no particles fall back into the housing. Further-
more the forces acting on all buckets can be measured
and used for optimizing the bucket design and drive
chain. The temporal course of forces acting on a single
bucket is exemplary shown in Figure 9.

20
R
= 10 Ir
[:*
0 by
0 I 2 3 4
0 el
Z 5
=10
<15
0 I 2 3 4

time 7 [s]

Figure 9: Forces on single bucket.

4 Conclusion

In this work, a new concept was presented allowing the
closed modelling of machine models and discrete ele-
ment systems in one simulation tool. For that the com-
mand-oriented modelling technique many DEM-
applications work with was transferred into an object-
oriented approach. Especially for new users which are
not familiar with discrete element method but also for
old experienced users creating models and coupled
simulations is getting very easy.

References

[1] Cundall P, Strack ODL. A discrete numerical model for
granular assemblies.

[2] Otter M. Modelica-A Unified Object-Oriented Language
for Physical Systems Modeling-Language Specification,
2000.

[3] Geimer M, Kriiger T, Linsel P. Co-Simulation, gekop-
pelte Simulation oder Simulatorkopplung? Ein Versuch
der Begriffsvereinheitlichung, O+P Olhydraulik und
Pneumatik, pp. 572-576, 2006

[4] Kunze G, Katterfeld A, Richter C, Otto H, Schubert C.
Plattform- und softwareunabhingige Simulation der Erd-
stoff-Maschine Interaktion In: 5. Fachtagung Bauma-
schinentechnik, Dresden, 2012

[S] W. Noack. Der Entleerungsvorgang bei Becherwerken,
In: Agrartechnik, 1955

