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Abstract. In the design of manufacturing systems the 
consideration of resource usage, especially energy con-
sumption, is getting more attention. However, the inclusion 
of all relevant physical processes in a unified modeling 
approach is a non-trivial task, if detailed analyses are re-
quired. The commonly used modeling approach for manu-
facturing systems is the discrete event modeling technique. 
However, models of physical processes are often continuous 
in nature and are modeled using ordinary differential equa-
tions or differential algebraic equations. Indeed, the investi-
gation of such physical processes in manufacturing systems 
often demands a more specific consideration of process 
control operations, which are favorably modeled using state 
machines. To combine those different paradigms a multi-
modeling approach for manufacturing systems is proposed. 
The approach is illustrated by the example of a production 
line with an industrial furnace facility. 

Introduction
The modeling and simulation of manufacturing systems 
has been a subject of study for several decades. Accord-
ing to [1], the typical modeling approach is discrete 
event modeling in this domain. This fact is reflected in 
the popular simulation tools applied in this field today. 
However, the situation has recently been changing, 
because of new aspects that have been taken into ac-
count and increasing requirements for accuracy.  

One of these aspects is the time-dependent energy 
consumption of single-process operations, process 
chains or an overall production system, which becomes 
important in context with the increasing influence by 
renewable energy sources and the associated volatile 
energy availability and energy prices. Approaches for 
single-process operations, such as in [2], are focused on 
the energy consumption of single machine operations. 
They are often based on differential algebraic equations. 
However, approaches for investigating several machines 
coupled to a process chain use more abstract models 
mostly based on discrete event methods, such as in [3, 4]. 
Today most approaches related to energy processes in 
manufacturing are only focused on the simulation of 
energy consumption. In [5] it is emphasized that the 
energy consumption of a production line (PL) has to be 
considered in context with production planning and 
scheduling operations. In fact, the energy consumption 
then has to be examined together with all the other pro-
duction performance indicators, such as through-put 
time, load factors, utilization etc. Hence, considerations 
regarding the model design and permissible model sim-
plifications are important to master model complexity. 
For instance, it is necessary to determine how finely 
grained approximations for continuous energy con-
sumption processes should be. In [6] a discrete-event 
approximation of those continuous behaviors is dis-
cussed, but depending on the research a more accurate 
approximation can be required. 

In [7] a simulator coupling is proposed to execute 
manufacturing models with mixed discrete event and 
continuous process behaviour, what we call hybrid 
system dynamic. This approach is a customized solution 
and it shows well-known problems of simulator cou-
plings.  
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A hybrid modeling approach based on the Discrete 

Event and Differential Equation System Specification 
(DEV&DESS) in [8] is discussed in [9]. It uses an in-
line integration method that schedules the integration 
time as discrete events. Thus, continuous processes can 
be modeled using ordinary differential equations and are 
solved within a discrete event-oriented simulation envi-
ronment. Both approaches are limited according to the 
modularity and clear separation between model specifi-
cation and simulation execution. 

This paper is a refined version of [10] and introduces 
a multimodeling approach for manufacturing systems to 
overcome those inadequacies. According to the theories 
in [11, 12], multimodeling means breaking a system into 
a network or hierarchy structure of individual models. 
The models may be specified by different dynamical 
behavior or are described using different methods [13, 
14]. Hence, the overall multimodel is from the dynam-
ical point of view often a hybrid model.  

The approach is illustrated by the example of a com-
ponent based PL with an industrial furnace facility that 
is refined using multimodeling in different layers. Be-
side the classical production performance indicators, it 
predicts the time-dependent energy consumption of its 
main consumer, the furnace facility. The prototypical 
example is implemented in the MATLAB/Simulink [10] 
environment using different modelling methods, such as 
entities, events, statecharts, ODEs and DAEs. Some 
parts of the implementation, pitfalls and simulation 
results will be presented to strengthen important parts of 
the approach. 

1 Multimodeling Approach for 
Manufacturing Systems 

In the past, methods of modeling and simulation were 
mainly used for the planning and optimization of the 
operation of manufacturing systems to determine pro-
duction performance indicators, such as through-put 
time, facility utilizations, etc. The usage of discrete 
event modeling approaches is typical for those investi-
gations. Figure 1 shows such a model of a simple PL 
implemented using SimEvents within MATLAB/ Sim-
ulink. The PL is reduced for simplicity to a minimal 
structure composed of: (i) a source component for gen-
erating the parts, called entities; (ii) a queue component 
with FIFO policy; (iii) a server component named fur-
nace; (iv) a sink component for handled parts.  

Statistical ports and signal scopes are omitted in the 
figure. Such a discrete event-based simulation model 
allows the prediction of the above mentioned perfor-
mance indicators. 

 
Figure 1: Simple discrete event-based production line 

model with a furnace component in SimEvents.  

However, a precise determination of time-dependent 
energy consumptions of specific components or of an 
overall system requires a more detailed modeling of 
relevant components. In the case of the PL, the abstrac-
tion of the furnace facility as server in the sense of 
queuing theory is insufficient. Its abstraction has to be 
refined. According to [11, 14], states and events at this 
level of abstraction have to be refined to more accurate 
events and states at a next lower level. Such refinement 
leads to a model or network of models at a next lower 
level, which may be subject to refinement in subsequent 
steps. The resulting model of such a refined component 
is called a multimodel, consisting of interacting sub-
models. The multimodel of a component itself or the 
overall model often combines several modeling para-
digms, and operates with different scales, or is a hybrid 
system, according to [13], if it includes both continuous-
time and discrete-event behavior. 

For a refinement of system components in discrete 
event-based manufacturing models we suggest a layer 
structure, as illustrated in Figure 2. Each layer repre-
sents a specific aspect of the component with well-
defined interaction relations between the layers. This 
approach corresponds to the multilayered architecture, a 
common design pattern, used in software development 
[16]. Figure 2 suggests three general layers to refine a 
manufacturing system component, in which the models 
of different layers should specify the following charac-
teristics. 

• The material flow layer describes as highest  
abstraction the event-based flow of entities (i.e. parts) 
into and out of the component. It is the basic layer for 
connecting components to a production line or process 
chain model, such as illustrated in Figure 1.  
This layer may be refined in further steps using the 
entity-based modeling method to map internal  
material flows in more detail or to provide an  
interface to the other layers. 
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• The process control layer maps the local process 

control operations of the component. This is  
especially important for components with several  
internal manufacturing operations, where the parts 
are handled in several phases, which may be iterated 
according to an internal control program or other  
internal conditions. 

• The process physics layer implements details of  
internal process operations that are relevant in the 
different manufacturing phases, such as energy flows, 
chemical reactions etc. 

 
Figure 2: General layer structure to refine a manufacturing 

 system component. 

Depending on the specific characteristics of a compo-
nent, the suggested layers can be arranged hierarchically 
or as a network of models to form a multimodel. Of 
course, each layer itself can be refined using models at a 
next lower level or a layer may be omitted. It is im-
portant to adapt the level of abstraction to the questions 
at hand and only include the processes that are needed 
to answer them. 

Generally, each layer should provide its specific 
kind of information, which influences the interaction 
relations between the layers. The material flow layer is 
mainly concerned with logistic quantities such as wait-
ing times and utilizations; the process control layer 
gives the order and timing of the different manufactur-
ing phases, which can be useful in the context of other 
information. The kind of information provided by the 
physics layer can vary widely depending on the specific 
component characteristics and implemented details. 

The various layers typically demand diverse model-
ing approaches and, depending on the level of abstrac-
tion, their scales are often different. For instance, in the 
considered example of the furnace component energy 
flows are accurately modeled based on physical laws, 
which are described by ODEs or DAEs.  

2 Hybrid System Modeling and 
Simulation 

The suggested multimodeling approach for manufactur-
ing system modeling combines several modeling meth-
ods to describe different dynamical behaviour, called a 
hybrid system. Subsequently, we want to highlight some 
modelling methods and related simulation software. 

2.1 Modeling methods 
We will consider the modeling methods regarding the 
suggested layer structure in Figure 2. The material flow 
layer is often specified using a discrete-event modeling 
method, which defines abstract entities moving between 
stationary components and acting on them [8]. The 
entities are identified in manufacturing systems with 
workpieces or tools; temporary components move be-
tween production facilities. 

A convenient method to describe the different manu-
facturing phases in a production facility, which is the 
concern of the process control layer, is that of state 
graphs [17]. The phases directly correspond to the states 
and the transitions describe the internal process logic. 
Alternatively, one could again use a process-based ap-
proach, wherein the entities denote abstract control 
tokens. 

The actual manufacturing operations, here summa-
rized under the term process physics, are often modeled 
based on natural or technical laws, e.g. from mechanics, 
thermodynamics or chemistry. This results in continu-
ous models based on differential equations (ODEs). If 
the description contains algebraic constraints or the 
equations are constructed automatically using a physical 
modeling approach [18], then the mathematical model is 
enlarged to a system of differential algebraic equations 
(DAEs). 

2.2 Related simulation tools  
For the simulation of the logistic and process-oriented 
aspects of a production system several discrete event-
based simulation environments exist and are in wide 
industrial use, such as Arena [19] and Plant Simulation 
[20]. Usually these programs lack algorithms such as 
ODE or DAE solvers to cope with continuous system 
specifications. This is why different simulators are cou-
pled to solve such problems, such as in [7]. The intro-
duced multimodel structure supports such simulator 
couplings, but it cannot rectify its general problems. 
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Instead, one should use a software environment that 

is capable of hybrid modeling and simulation. Such an 
environment, increasingly used for manufacturing sys-
tem simulation, is AnyLogic [21]. It offers system dy-
namics, discrete event and agent-based methods. How-
ever, the mapping of complex ODEs to system dynam-
ics diagrams is quickly confusing and physical model-
ing techniques, according to [18], are not supported. As 
a consequence, it may be only a useful choice for mul-
timodeling problems with relatively simple continuous 
process physics. 

Another widely used software supporting multimod-
eling, although less popular in the manufacturing simu-
lation domain, is the Matlab/Simulink environment. 
Originally designed for the simulation of continuous 
systems using the signal flow paradigm, it can be ex-
tended using additional toolboxes and blocksets to in-
clude discrete, discrete event or physical modeling fea-
tures: (i) The SimEvents blockset enables discrete event 
modeling based on the entity approach; (ii) Stateflow 
provides state chart modeling techniques; and (iii) Sim-
scape expands the continuous tool chest with physical 
modeling features. This software environment provides 
the widest range of features for multimodeling today 
and it is already used and accepted in other engineering 
domains. Hence, it will be used in the following to illus-
trate and validate the suggested multimodeling approach 
by implementing some concrete examples. 

An alternative choice could be to use a Modelica 
based solution [18] with the additional packages de-
scribed in [22, 23] or Ptolemy [24] with the OpenModel-
ica extension according to [25]. However, both Modeli-
ca and Ptolemy are even more unknown than 
MATLAB/Simulink in the manufacturing system com-
munity.  

3 Basic Application to a 
Manufacturing System 
Component 

To illustrate the introduced approach the furnace com-
ponent of the PL model in Figure 1 will be analyzed for 
multimodeling and a set of models with different levels 
of abstraction will be designed.  

3.1 Multimodeling of furnace component 
Our objective of multimodeling is the refinement of the 
furnace component to investigate its time-related energy 
consumption. Industrial furnaces are widely used in 
metalworking processes and are one of the most exten-
sive energy consumers in manufacturing systems. In 
addition, their internal operation is generally rather 
complex, making this an ideal example for refinement 
using different modeling approaches. The operation of 
such a furnace is patterned in the following after the 
descriptions in [9, 26]. 

When parts arrive at the furnace, they are collected 
until a given batch size is reached. A complete batch 
then enters the furnace, is processed and leaves the 
furnace. Then, the batch will probably be resolved for 
processing the parts by other facilities. The refinement 
of such internal processes of a component is part of the 
material flow layer, as demonstrated in Figure 2. 

Moreover, the heat treatment itself consists of sever-
al phases that are implemented by a local control; these 
are mapped and refined at the process control layer. 
Figure 3 shows an example of such a control with six 
operation phases. 

 

Figure 3: State graph describing a local control of  
 furnace operations. 

The idle phase spans the times before parts have entered 
and after all parts have left the furnace. During the load 
phase parts enter the furnace. In the heat-up phase the 
furnace is heated until a given temperature is reached; 
this is then held constant during the hold phase. Accord-
ing to the requirements, the heat-up and hold phases can 
be iterated several times with different temperatures. 
Finally, the parts leave the oven in the unload phase. An 
additional cool-down phase may be included either to 
make sure that the parts leave the furnace with a moder-
ate temperature or to describe a shutdown of the fur-
nace. 
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Since the focus of our example study lies on the en-

ergy consumption, the heat flows in the furnace have to 
be considered in more detail, and must be refined at the 
process physics layer (Fig. 2). The energy source is the 
power supply of the actual heater. From here the heat 
flows mainly through convection and radiation process-
es to the parts and to the internal structures and the 
casing of the furnace. During the heat-up and hold phas-
es losses are mainly due to conduction through the cas-
ing into the environment, while in the load or unload 
phases additional losses are caused by the open doors. 
Because of the complicated geometry, the physical 
details, especially of the convection processes, are also 
rather complicated. However, for the estimation of the 
total heat flows common approximative methods usual-
ly give quite accurate results. Concrete mathematical 
models for specifying the process physics will be con-
sidered afterwards in context with their prototypical 
implementation. 

Based on the previous considerations, Figure 4 
shows the multimodel structure with defined interfaces 
for the refinement of our furnace component based on 
the layers introduced in Figure 2. In this abstraction it 
consists of three interacting models: (i) MF for the ma-
terial flow; (ii) PC for the process control; and (iii) PP 
for the process physics. The labels (B) and (C) are not 
of interest at this point. 
The models have to communicate in several ways: 
• MF receives parts from the external input port <1> 

and sends to the PC the number of parts that have  
entered the MF.  

• When the batch size is reached, the PC starts the PP, 
which models the different manufacturing phases 
during the operation of the furnace. 

• During the operation of the furnace the PC signals 
the current manufacturing phase to the PP, which 
adapts the internal heat flows accordingly. This can 
mean changing the supplied heat between the heating 
and holding phases or increasing the losses due to the 
doors being open while loading or unloading. 

• In return the PP sends the current temperature values 
of the furnace and the parts to the PC, which uses 
them to determine whether the heat-up phase or the 
optional final cool-down phase of the furnace is 
complete (Fig. 3). 

• When the manufacturing phase unload (Fig. 3) is 
finished, the PC sends a leaving signal to the MF, 
which accordingly forwards the processed parts to its 
external output port <2>. 

 
Figure 4: Basic multimodel structure with defined  

interfaces for the refinement of the furnace 
component. 

Each model has its specific set of parameters and output 
quantities: The MF defines the batch size and logistic 
properties such as average waiting time and machine 
utilization; the PC gets the heating program and outputs 
the time in the different manufacturing phases. The PP 
needs a lot of physical parameters for the calculation of 
the heat flows and provides the power requirements 
during the process phases as well as the total energy 
consumption. 

3.2 Design of a model library for the furnace 
component 

Based on the basic multimodel structure in Figure 4, a 
set of models for each layer has been implemented and 
organized in a library (Fig. 5). The several models use 
different modeling methods or have varying levels of 
detail. They are labeled with two letters denoting the 
layer and a third letter in brackets giving the level of 
detail in ascending order, with (A) being the simplest 
model: 
• The basic material flow model MF(A) uses only a 

simple server, while MF(B) explicitly contains an 
input tray, where the batch is compiled. 

• The process control subsystem PC(A) uses a simple 
entity-based model, implemented in SimEvents, to  
describe one pass through the four basic process  
phases and ignoring idle and cool-down phases. PC(B) 
enables a repetition of heat-up and hold phases  
according to its heat program parameter, implemented 
as an entity-based model in SimEvents. Additionally, 
PC(C) adds a cool-down phase, but because of the 
more complex control logic it is implemented using 
the state machine approach with Stateflow. 
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• The process physics model PP(A) uses only the  

internal oven temperature and a simple formula for the 
global losses, while PP(B) adds the temperature of the 
parts, the heat transfer between oven and parts and  
additional losses during the load and unload phases. 
Both use standard Simulink blocks to implement the 
corresponding differential equations. Finally, PP(C) 
employs physical modeling, which is modeled using 
Simscape for the same physical processes as PP(B). 
This makes the physical model structure more trans-
parent and easier for engineers to expand. 

 
Figure 5: Library with models for composing several  

multimodels with different levels of detail for the 
furnace component. 

4 Some Modeling & 
Implementation Details 

In the following, three multimodel variants for the fur-
nace will be described in more detail: (i) a very basic 
multimodel named ovenBAA – the capital letters stand 
for the composition of MF(B), PC(A) and PP(A) mod-
els; (ii) a medium complex multimodel ovenBCA; and 
(iii) the most complex multimodel variant ovenBCC. 
While this section is devoted to some implementation 
details of the single models used in the three multimod-
els, the next one will discuss some simulation results. 
The implementation was carried out using the 
MATLAB/Simulink environment and related tools. 

4.1 Material flow model 
All of the examples considered here use the extend-

ed model MF(B) for mapping the internal material flow.  

The entity-based model structure of MF(B) (Fig. 6) 
consists of two simple servers: the first for the input 
tray; and the second (N-Server) for the furnace proper. 
Both hold incoming entities (i.e. parts) up to the given 
batch size, until their succeeding gates open to transfer 
the entities to the next stage. The intermediate Gate 
guarantees that a full batch is always delivered to the 
furnace; the final Release Gate is triggered – by the 
model at the process control layer (Figs. 7, 8) – at the 
end of the unload phase. 

 
Figure 6: Discrete event-based model of MF(B) using  

SimEvents. 

4.2 Process control models 
The process control model starts when the number of 
parts that have entered at the material flow layer is equal 
to the batch size. In the process control model PC(A) 
(Fig. 7), implemented using SimEvents, this leads to the 
creation of a control entity that passes through a line of 
servers denoting the different phases. Except for one, all 
servers simply have a fixed processing time; only the 
heat-up phase is different. Here the entity is held in a 
server until the current oven temperature, which is com-
puted in the model at the physics layer (Figs. 9, 10), has 
reached the given temperature Tset. After the unload 
phase, the control entity is destroyed and the wake-up 
signal (trigger) is generated, which opens the Release 
Gate in the model at the material flow layer (Fig. 6). 

 
Figure 7: Discrete event-based model of PC(A) using  

SimEvents.  
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The much more elaborate process control model 

PC(C) (Fig. 8) incorporates all six phases, pictured in 
Figure 2, as well as possible repetition of the heat-up 
and hold phases. According to the theory in [8], it is a 
hybrid DEV&DESS model. It is modeled based on the 
state machine approach, but it includes continuous state 
event handling and has been mainly implemented using 
Stateflow. The two auxiliary subsystems (schedTEvent, 
checkTemperature) create events when the waiting time 
has changed or the heat-up or cool-down temperature 
has been reached. The model PC(C) is essentially an 
adapted version of a model described in [9]. 

 
Figure 8: Discrete event-based model with continuous 

state event handling of PC(C) mainly using  
Stateflow. 

4.3 Process physics models 
The basic process physics model PP(A) (Fig. 9) uses a 
simple power balance to compute the change of the 
oven temperature : 

 (1)

where  is the total heat capacity of the oven. The 
power loss is computed with Newton’s simple law of 
cooling: 

 (2)

where  is the temperature of the surroundings and  
a constant that subsumes all convective and conductive 
processes. The heating power is assumed to be constant 
during the heat-up phase and to match the losses during 
the hold phase: 

 (3)

For the computation of the total power demand of 
the furnace, a constant power  is added, which sub-
sumes all non-heating processes, such as a base load or 
the power electronics.  

 
Figure 9: ODE-based model of PP(A) using Simulink.  

The model PP(C) (Fig. 10) uses physical modeling 
based on Simscape to incorporate much more physical 
details, such as convection and radiation from the fur-
nace – during load and unload phases – to the environ-
ment. The governing differential algebraic equations are 
not built up explicitly here; instead, the physical com-
ponents such as heat capacities and various kinds of 
heat flow are represented directly, which makes the 
physical structure of the model much clearer. 

 
Figure 10: Physical model (DAE) of PP(C) using Simscape. 

4.4 Implementation pitfalls 
The extension of MATLAB/Simulink by several packag-
es (blocksets) is necessary to make a multi-paradigm 
model possible, but it also leads to small inconsisten-
cies, which have to be overcome. A minor nuisance here 
is the large number of different ways used to express 
values and signals in the packages used: Simple scalar 
values can be time-based in Simulink, event-based in 
SimEvents or physical-valued in Simscape. An event can 
be defined by a sample time hit, a rapid value change 
(edge), a special trigger signal or a function call. 
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To clearly define a common interface for the inter-

acting models, their external values are fixed in the 
following way: The temperature and phase values are 
time-based; the number of parts is event-based; and the 
leaving signal is a function call. If the internal imple-
mentation of a block generates differing types, then one 
has to use one of the many converter blocks to get the 
proper kind of signal, e.g. the round Event to Timed 
Signal blocks that can be seen in Figures 7 and 8. 

This problem is especially annoying in the physical 
modeling environment. The large number of necessary 
converters and reference points clutters the model and 
destroys the clear physical structure. Hiding them in 
subsystems is an obvious way to regain an ordered visi-
ble representation of the underlying physics model. 

5 Exemplary Simulation Results 
Using the introduced approach, a large number of simu-
lation studies is possible to calculate multifaceted per-
formance indicators. We will restrict our exemplary 
consideration to the energy consumption of the furnace 
that is the main consumer in our simple production line. 
Moreover, we will investigate the costs of refinement 
relating to the simulation run time by comparing differ-
ent multimodels, which use different modeling para-
digms or are based on a different level of detail. 

5.1 Results relating to the energy aspect 
In the exemplary experiment 24 parts were processed 
using a batch size of six. After the heat-up phase their 
temperatures were held first to 400  for 40 minutes, 
then to 800  for 30 minutes. Figure 11 shows some 
simulation results related to the energy consumption, 
calculated using our most complex multimodel variant 
ovenBCC: the temperatures of the furnace and parts, the 
power consumption of the furnace, the accumulated 
used energy and the current internal manufacturing 
phase, each as functions over time. 

The results are similar to those presented in [9], but 
ovenBCC incorporates more details, especially of the 
physical model layer. The other two example models 
ovenBAA and ovenBCA basically reproduce the results 
from [9], since they are based on the same physical 
model assumptions. For comparison, Table 1 shows the 
total energy use E1 at the exit of the last part and E2 at 
the end of the simulation; Figure 12 displays the power 
consumption for the three models. 

Model E1 [kWh]  E2 [kWh] 

ovenBAA 71.3 108.8 

ovenBCA 69.0 106.6 

ovenBCC 82.6 117.6 

Table 1: Comparison of the total energy consumption. 

 
Figure 11: Simulation results of model variant ovenBCC.  

The higher energy needs in variant ovenBCC are due to 
the heating of the parts, which enter the oven with the 
low temperature of the environment – an effect that has 
not been taken into account in the other models. The 
small difference between the two simpler multimodel 
variants results from the different timing of the phases, 
as can be seen from Figure 12. 

It is interesting to note that the total energy results 
only differ by 10 % - 15 %. If this level of accuracy is 
sufficient for the question at hand, e.g. for a global as-
sessment of a complex production line, then one can use 
one of the simple physics models. However, Figure 12 
shows that for a detailed examination of the power 
needs during the individual phases one has to stick to 
the complexities of multimodel variant ovenBCC. 
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Figure 12: Comparison of the power results.  

5.2 Comparison of run times 
How much do we pay for the additional level of detail 
in the complex multimodel? For a comparison of run 
times, the number of parts was raised to 600 and three 
runs were performed for each multimodel. To get rid of 
loading and compile times, the means of only the last 
two results were taken, leading to the values in Table 2. 

Model Run Time [s] 

ovenBAA 25.1 

ovenBBA 27.7 

ovenBCA 20.7 

ovenBCB 39.3 

ovenBCC 49.8 

Table 2: Comparison of run times. 

The results show that the complex physical model using 
Simscape in multimodel ovenBCC (line 5) costs a factor 
of two in execution time, which can be reduced in this 
case to a factor of 1.6 by replacing DAE-based physical 
modeling with standard ODE methods using Simulink 
(ovenBCB, line 4). However, we see essential differ-
ences in execution time for multimodels with the same 
simple process physics model PP(A) (line 1-3), which 
are surprising.  

The multimodels ovenBBA (line 2) and ovenBCA 
(line 3) use process control models of nearly the same 
complexity, but in ovenBBA implemented with Si-
mEvents and in ovenBCA with Stateflow. Moreover, the 
multimodel ovenBCA (line 3) uses the more complex 
process control model PC(C), than ovenBAA (line 1) 
with the PC(A) model that was implemented with Si-
mEvents. Apparently, the implementation of SimEvents 
has some potential for optimization. 

6 Conclusion 
The introduced multimodel approach supports the com-
ponent-oriented refinement of manufacturing system 
models, using various modeling methods and models 
with different levels of abstraction. Generally, it sug-
gests a refinement of components based on the three 
logical layers material flow, process control and process 
physics. 

The first layer maps the internal material flow. It de-
livers an external input and output interface for connect-
ing with other components in a manufacturing system 
model and an internal interface for communication with 
the second layer. The dynamic behavior at this layer is 
generally discrete event-based. In the second layer local 
process control operations are modeled. This layer pro-
vides event-based control inputs for the other two lay-
ers, but it could be necessary to handle state events of 
continuous values as well. In the third layer specific 
process operations should be mapped. The dynamic 
behavior at this layer can vary significantly and particu-
larly depends on the level of abstraction. Of course, 
depending on the characteristics of a system component 
and the intended level of abstraction, layers may them-
selves be omitted or refined using several interacting 
models.  

The paper illustrated the approach using the example 
of a production line with an industrial furnace as the 
main component. According to the layers, models with 
different levels of abstraction have been implemented 
for the furnace, which could be aggregated to a multi-
model. Then, the energy consumption of the furnace 
was investigated with three different multimodels and 
the simulation run times were measured. Hence, accura-
cy effects and computing costs could be compared.  

The approach opens many new ways for investigating 
manufacturing systems, but the complexity is increasing. 
Hence, in the next step it should be combined with met-
amodeling techniques such as those considered in [27]. 
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