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Abstract. Plastics industry is the ninth largest electrical 
energy consuming sector in Germany. Currently, the pro-
duction including the melting of plastic is electricity based 
although decentralized energy supply concepts using CHP 
units and thermal energy for melting and cooling exist. This 
research analyses the influencing factors ‘production plan’ 
and ‘ambient temperature’. For both parameters, the influ-
ence on the decentralized energy concept and the status 
quo is compared. Therefore real data is used to parameter-
ize probabilistic density functions. The system’s behaviour 
by means of varying input profiles is evaluated using Monte-
Carlo simulation. The results show that the influence of the 
production plan is stronger than the influence of the ambi-
ent temperature. Moreover the influence increases for the 
decentralized energy supply scenario. 

Introduction
Considering the energy demand, plastics industry is the 
ninth largest electricity consuming sector in Germany 
[1]. The production process of injection moulded parts 
is very energy intensive.  

Plastics industry is characterized by energy costs 
amounting to 1,8 % of their turnover [2]. The specific 
energy consumption is 0,78 MWhel/t [3].  

The German Association of the Plastics Converters 
(GKV) lists 2.800 plastic processing companies which 
exclusivly process plastics [4]. About one third of them 
are injection moulding companies. Including in-house 
moulders the number of companies which have their 
own injection moulding line is 2.300 [5]. 

 
 

In general, plastics processing companies use almost 
100 % electricity to cope with their energy demand, 
excluding those companies which operate combined 
heat and power (CHP) systems.  

Almost 50 % of the electricity is used either for the 
drive of the injection moulding machines or to apply 
clamping forces. Additional 15 % of electricity is needed 
for heating the plasticizing cylinder for melting the plastic 
as well as the hot runner system. The total energy de-
mand for cooling is about 15 % while the system is usual-
ly separated in two cooling circuits. The first circle is 
used for cooling the molten plastic to 14 °C. In this case, 
compression chillers in combination with a dry cooler 
with winter relief are used. The other circle cools the 
machine drives and components. The temperature level is 
about 30 °C [6]. In Germany, dry coolers or cooling 
towers can be used all over the year. The remaining 
percentage of electricity is used for handling systems, 
lightning, the supply of compressed air and the drying 
of plastics. Depending on the material and produced 
product, the distribution of energy may change [7]. 

Current research activities focus on decentralized 
energy supply concepts for industries to reduce envi-
ronmental impacts like greenhouse gas emissions. 
Schlüter describes the implementation of a trigeneration 
system in addition with thermal oil instead of electricity 
for heating the cylinders and melting plastics [6]. Dun-
kelberg et al. showed a thermal oil concept for extruders 
and its technical application as well as established the 
technical feasibility [8]. Wagner et al. evaluated ener-
getically different scenarios of decentralized energy 
concepts in the plastic industry with focus on the link 
between production process and production hall [9]. 

The state-of-the-art design of new energy systems is 
based on standard load and temperature profiles.  
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Heat and cold generators as well as CHP plants are 

mostly designed in the same way by using load duration 
curves. Probabilistic variations of load or temperature 
around the years are seldom considered while extreme 
value scenarios like full production and highest temper-
ature are performed. This leads to oversizing or non-
optimal dimensioning. 

In this research, a decentralized energy supply sys-
tem for the plastic industry is investigated. To evaluate 
the feasibility of the concept, the production schedules 
as well as the ambient temperature are simulated as 
Probability Density Functions (PDF) to generate various 
probabilistic scenarios. This approach allows the deter-
mination of the resilience of decentralized energy con-
cepts and an evaluation of the concept’s sensitivity 
towards these two influencing parameters.  

1 Methodology 

1.1 Monte-Carlo Algorithm 
In general Monte-Carlo methods are algorithms which 
use random inputs. They can be used to simulate com-
plex stochastic models and generate data series with 
typical conditions and trends [10]. They are applied to 
different areas such as physics, economics, medicine 
and engineering. 

The stochastic influences of technical and economic 
systems are often modelled by Probability Density 
Functions or Markov Chains. Pereira et al. analysed the 
Net Present Value (NPV) and produced energy cost of a 
photovoltaic (PV) system in Brazil based on PDF of 
total initial costs, interest rate and price per kWh sold to 
utility [11]. Nijhuis et al. used a Markov Chain approach 
to simulate residential occupancy figures as well as PDF 
of user behaviour and weather data to develop electrici-
ty load profiles [12]. Arun et al. investigated the optimal 
battery size for PV systems based on probabilistic elec-
tricity load profiles and a normally distributed PDF of 
solar radiation [13]. Further, Roy et al. developed a 
sizing curve for standalone wind-battery systems. Taken 
into account are the electricity load profile and the un-
certainity of wind by Weibull PDF [14]. Sharafi and 
El Mekkawy used different PDF of weather data and 
load profiles to simulate a hybrid renewable energy 
supply of an apartment in Canada. Finally, they made a 
sensitivity analysis of various influence parameters [15]. 

 

1.2 Ambient temperature 
A common procedure to generate synthetic weather data 
is to use Markov chain [16-19]. They are suitable to 
describe stochastic processes if a lot of historic data is 
available. An introduction into Markov chains and their 
application can be found in [20]. 

In this paper we introduce an approach using first 
order Markov chains to generate hourly ambient tem-
perature time series. Based on historic weather data 
various transition probability matrices (TPM) are de-
fined. They are divided by three categories: month, 
hourly amount of solar radiation and trend of solar radi-
ation compared to the previous hour. The amount of 
solar radiation is combined in radiation classes of 100 
W/m² each. A radiation of 0 W/m² forms its own class. 
The trend can be positive, negative or neutral. For a 
maximum solar radiation of 1.000 W/m² this results into 
396 different TPM. 

The column index of each TPM represents the tem-
perature of the previous time step. Each element  in 
a column stands for the cumulative probability of the 
current ambient temperature ( , represented by the 
rows. The principle setting of the TPM of temperature is 
shown in Figure 1. 

 

 

Figure 1: Principle setting of TPM. 

To generate the time series, the ambient temperature of 
the first hour is randomly chosen in the range of possi-
ble temperatures. Then, depending on the month, solar 
radiation class and trend, the corresponding TPM is 
selected.  

With the temperature of the previous time step and 
randomly chosen probability, the TPM is used to gener-
ate the current ambient temperature. Finally, the time 
series gets corrected to reduce the variability. Therefore 
a simple moving average (SMA) is formed.  

The pseudocode for the function  is 
presented below: 
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for t = 1:simulation time 
% determine month of the year (moy) 

% determine the solar rad. class (SRC) 

% by using global radiation (  

  

% determine solar radiation trend (SRT) 

 if  

   

 Else if  

   
 else 

   
 end 
% find corresponding TPM 

  
% chose corr. column tpp of TPM 

 

% chose a random variable  

% determine  

  
end 
 
% perform SMA for reducing variability 
for i=1: simulation time 

  

end  

Listing 1: Generation of probabilistic temperature profile. 

To generate a synthetic time series of solar radiation an 
approach according to Duffie and Beckman [21] can be 
used. 

1.3 Energy needs 
For further simulations probabilistic parameter sets of 
the energy demand of injection moulding machines 
have been created. The energy demand of the machines 
depends on the temporal machine’s state. There are four 
different machine states, which depend on different 
inputs and parameters like type of machine and melt or 
production programme: 

• Automatic mode: The machine produces autono-
mously parts without interventions of the machine 
operators. 

• Manual mode: The machine operator controls the 
machine. Cycle time and machine performance are 
specified by the operator. Compared to the automatic 
mode the performance is lower. 

• Alarm mode: The machine has identified an error  
and is changed to the standby position. Important 
components are held at a certain temperature. 

• Offline mode: The machine is switched off and does 
not produce. 

The transition between the operating conditions of sin-
gle machines has been analysed and shown by transition 
probabilities. The probabilistic parameter sets of the 
energy demands for power, heating and cold base on 
real data sheets of a medium sized plastics factory. 
Individual sets of sequences of states are generated for 
each machine. A part of the TPM of machines is shown 
in Figure 2.  

 

 

Figure 2: Part of the TPM of machine states. 

Similar machines have been classified into four differ-
ent groups:   

• Long-runner: The production time is longer than 
80 % of the possible production time. The production 
is interrupted only by short alarm and offline times. 

• Short-runner: The production time of the machine is 
shorter than 40 % of the possible production time. 

• Normal-runner-offline: The production time is by 
nearly 60 %. Production is interrupted by few but 
long offline times. 

• Normal-runner-cycle: The production time is by 
nearly 60 %. Production is interrupted by many short 
offline times. 

Figure 3: Runtime of the machine groups. 
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An exemplary description of probabilistic operation 

lengths for different types of machines is shown in  
Figure 3.  

Furthermore, machines are classified into four dif-
ferent performance classes. The performance data results 
from measurements and describes the specific energy 
consumption and cooling needs of each machine. The 
process data are provided by a host-computer system. 

For the parameter sets, probabilistic machine opera-
tion states are generated in accordance to the following 
procedure shown in Figure 4. 

 

 
Figure 4: Procedure for creating parameter sets. 

The operation states have been combined with the per-
formances for the operation state and the machine type. 
As a result there are probabilistic load profiles. The 
pseudocode is presented below: 

% determine number of active machines M   

% of all installed machines    

  

% initialize first state   
for m = 1:M 

% while cumulated machine run time   

% shorter than simulation time     

    while     
% chose PDF of machine group and state 
% chose a random variable  

 

% determine duration of state  with 
% corresponding PDF and random number 

     = (  
% find corr. TPM of actual state tpp 

     
 

% chose a random variable  

         

% determine new state of the machine  

  

% calculate energy demand vector   
% depending on state 

 
      i = i+1 
end 

end 

Listing 2: Generation of probabilistic load profile. 

2 Simulation Model 

2.1 Description of the modules 
Besides climatic and energetic input data, the simulation 
model consists of different modules for cooling and 
heating which are modelled as follows. 
Dry cooler.  The dry cooler (DC) uses the ambient 
temperature to cool down the circuit via fans. It is as-
sumed that the installed capacity is sufficient for remov-
ing all the heat. Thus, the cooling output of the dry 
cooler only depends on the ambient temperature. If the 
ambient temperature is lower than the upper limit tem-
perature of the dry cooler, the cooling output is equal to 
the cooling demand; otherwise the cooling output  
is equal zero (equation 1): 

 (1)

The electric consumption of the dry cooler depends on 
the cooling output and the energy efficiency ratio 
(EER), which is set constant (equation 2): 

 (2)

Compression chiller.  The compression chiller cools 
down the circuit via vapour compression using electrici-
ty. Cooling output and power input are connected by the 
EER (equation 3): 

 (3)

According to Schlüter the EER can be calculated as a 
product of a basis EER, a factor depending on the ambi-
ent temperature and a factor depending on the cooling 
temperature [6]. In addition to this, a further factor is 
introduced to represent the dependence on the partial 
load performance (equation 4): 

Machines 
process data

Host-Computer-
System

Data processing

Transition 
probability

Classification of
machines

Types of
machines

Creation
parameter sets

Measurements
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Trigeneration plant.  The combined cooling, heat-
ing and power system (CCHP) uses a natural gas engine 
to generate electricity. The natural gas (NG) input de-
pends on the partial load of the engine; the function is 
shown in Table 1. 

 Part load 

 0 % 50 % 75 % 100 % 

Fuel con-
sumption 0 % 59 % 80 % 100 % 

Table 1: Fuel consumption in part load in percent of  
 full load value. 

Furthermore the CCHP unit provides heat; either by the 
exhaust gas or by the cooling cycle of the engine. 
Moreover, the plant produces cooling via absorption 
chilling. Hereby, a part of the heat is converted into 
cooling. The functional description of the EER of the 
absorption chiller is taken from Schlüter [6]. Following 
the determination of the EER of the compression chiller, 
the EER of the absorption chiller depends on the ambi-
ent temperature, on the cooling temperature and moreo-
ver on the re-cooling temperature. The re-cooling tem-
perature is calculated by the following equation with a 
constant efficiency  (equation 5): 

 (5)

where  is the fluid outlet temperature and 
the fluid inlet temperature in °C. 

 

Burner.  The burner uses natural gas to provide heat. 
The natural gas amount is calculated by a constant effi-
ciency (equation 6): 

 (6)

where  is the mass flow of natural gas in
kg/hr,  the thermal output in W and

 the burner’s efficiency. 
 

2.2 Analysed scenarios 
Two different stages of decentralized energy supply 
scenarios are modelled using Matlab / Simulink. For 
simulation reasons, the signal routing shown in the 
following figures is opposing the energy flow. The first 
system describes the state of the art of energy supply for 
plastic industries and is shown in Figure 5. 

 
Figure 5: Signal routing Matlab Simulink model state  

 of the art of energy supply in plastic industries. 

The system consists of the injection moulding machines, 
demanding different forms of energy: heat for the melt-
ing, electricity for the drive, cooling for the tool and 
cooling for the drive. The heat for the melting is gener-
ated electrically. Due to this the heat demand is convert-
ed into an electricity demand.  

The drive cooling is achieved using a dry cooler. In 
case of ambient temperatures higher than 11 °C the 
system is not able to cool down the circuit and a com-
pression chiller provides the cooling. The cooling for 
the drive is realized by a further dry cooler. Above an 
ambient temperature of 30 °C the cooling has to be 
realized by the compression chiller, too. 

 
Figure 6: Signal routing Matlab Simulink model full  

 decentralized energy supply in the plastic  
 industries. 

Instead of the electric heating of the melting process a 
thermal oil system is integrated in this second system 
(Figure 6). The thermal oil system is explained in detail 
in Schlüter [6]. Furthermore, a CCHP system is added 
which performs according to the cooling demand of the 
injection moulding machines.  
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The generated electricity is used for the drives 

whereas the heat of the exhaust gas is partly used for 
heating thermal oil to satisfy the heat demand. Together 
with the heat of the engine cooling circuit the other part 
of the exhaust gas heat drives an absorption chiller to 
satisfy the cooling demand of the melt in cases of ambi-
ent temperatures higher than 11°C. The compression 
chiller is still included as a back-up system. Furthermore, 
a natural gas burner is integrated in the thermal oil system 
in cases of less heat generation by the CCHP system. 
Finally the system is bidirectionally linked to the grid.  

2.3  System configuration 
The design of the energy supply is based on a compa-
nies’ thermal and electrical load profiles. A data set for 
40 injection moulding machines is generated according 
to the approach shown in Figure 4. Two exemplary sets 
of parameters are considerd and simulated. Set 1 in-
cludes only machines of type “Long-runner”. It repre-
sents a factory with high machine running times which 
is typical for a custom moulder which produces tech-
nical components for the automotive industry. Machines 
of different types are simulated in set 2. It represents the 
industry average and corresponds to the investigated 
company. The distribution is shown in Table 2 and 3. 

In accordance with the state-of-the-art, the CCHP 
system is designed using standard weather data and a 
standard load profile for the energy consumption. The 
performance of the CCHP is led by the cooling demand 
which has to be covered by the absorption chiller, i.e. 
the total cooling demand reduced by the cooling per-
formance of the dry coolers. 

 
Long 
runner 

Short 
runner 

Normal 
offline 

Normal 
cycle 

Type 1 10 0 0 0 

Type 2 5 0 0 0 

Type 3 10 0 0 0 

Type 4 15 0 0 0 

Table 2: Number of machines for the system  
 configuration dataset 1. 

The state-of-the-art design uses standard weather data to 
determine the resulting cooling load. With regards to 
economic feasibility, the minimal full load hours of the 
absorption chiller are set to 4000 hr/y. The CHP unit is 
designed to the resulting heat load.  

 

This leads to a CHP fuel input of 400 kW. The re-
sulting absorption chilling machine (ACM) performance 
is approx. 120 kWth. The thermal output for the thermal 
oil is set to 15 % of the fuel use. The gas burner is de-
signed to ensure the remaining heat power for the thermal 
oil. The dry cooler and the compression chilling machine 
(CCM) are able to satisfy the total cooling load. 
 

 
Long 
runner 

Short 
runner 

Normal 
offline 

Normal 
cycle 

Type 1 10 0 0 0 

Type 2 0 5 0 0 

Type 3 0 0 5 5 

Type 4 10 0 0 5 

 
Table 3: Number of machines for the system  

 configuration dataset 2. 

2.4 Implementation of the simulation 
To determine the influence of probabilistic distributed 
load and temperature profiles to the simulation results, 
the scenario analysis is divided into sub-scenarios. For 
this purpose the load as well as the temperature profiles 
have been fixed.  

For this reason the parameters’ influences are ana-
lysed and compared to each other. All possible combi-
nations have been simulated. The analysed combina-
tions are shown below:  

 
a. fixed load profile and fixed temperature profile 
b. variable load profile and fixed temperature profile 
c. fixed load profile and variable temperature profile 
d. variable load profile and variable temperature profile 

 
Because of the dependence of the ambient temperature, 
three representative months are chosen to evaluate the 
results in winter and summer as well as in a transition 
period. 

3 Results 
Comparing the mentioned sub-scenarios b. and c., the 
results show that the influence of a variable load profile 
is more sensitive than a variable temperature profile. 
For this reason, only the sub-scenarios c. and d. are 
presented in the following. 
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3.1 Status quo scenarios 
The results of the simulation runs of the status quo sys-
tem using dataset 1 (only long runners) are presented in 
the following figures. Each figure consists of four histo-
grams, each presenting one of the following indicators: 
 
1. Machines: Electricity consumption of machines 
2. Grid: Electricity consumption from public grid 
3. CCM: Electricity consumption of CCM 
4. Primary energy: Primary energy consumption of 

whole system 
 

For the same sub-scenario, the histogram of the electric-
ity consumption of the machines is not changing. Fig-
ure   shows exemplary the distributions of the indicators 
for the summer season with fixed load and variable 
temperature while Figure 8 shows those for summer 
season with variable load and variable temperature. 
 

 
Figure 7: Distribution of indicators for summer season with 

fixed load and variable temperature. 
 

It is apparent that the distribution range of each indica-
tor becomes wider in the scenarios with variable load 
profile. Regarding the primary energy consumption, the 
range increases from 4.700 kWh to 156.200 kWh while 
the mean value is nearly the same (1.200.000 kWh re-
spectively 1.208.000 kWh). This behaviour underlines 
the strong influence of the probabilistic distributed load 
profile to the simulation results. 

 

 
Figure 8: Distribution of indicators for summer season with 

variable load and variable temperature. 
 

3.2 Decentralized energy supply scenarios  
The following shows the results from the simulation 
runs of the decentralized energy supply with the da-
taset 1 (only long-runners). To evaluate the system’s 
behaviour and the parameters’ influence, six energetic 
indicators are used for benchmarking: 

 
1. Machines: Electricity consumption of machines 
2. CCHP: Electricity generation of CHP unit 
3. Grid: Electricity consumption from public grid 
4. ACM: Electricity consumption of ACM 
5. CCM: Electricity consumption of CCM  
6. Primary energy: Primary energy consumption of 

whole system 
 

 
Figure 9: Distribution of indicators for winter season with 

variable load and variable temperature. 
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The results of chosen sub-scenarios are shown in 

figures consisting of six histograms, each representing 
one indicator. For the same sub-scenario, the histogram 
of the electricity consumption of the machines is not 
changing. Figure 9 shows exemplary the distributions of 
the indicators for the winter season with variable load 
and variable temperature while Figure 10 shows those 
for summer season with variable load and variable tem-
perature. 

 
Figure 10: Distribution of indicators for summer season with 

variable load and variable temperature. 

 

 

Figure 11: Distribution of indicators for summer season with 
fixed load and variable temperature. 

In all simulated scenarios it is obvious that during the 
winter season the electricity consumption from public 
grid is at the highest level compared to the other peri-
ods, although the electricity consumption for the com-
pression chiller is at its lowest level close to zero.  

The comparison of the primary energy consumption 
of both seasons underlines that from a holistic and sys-
temic point of view, in such a system the utilisation of 
the CHP unit instead of the operation of dry coolers is 
preferred because of the reduced electricity consumption 
from the grid. Furthermore, the comparison between both 
scenarios shows that in any case the decentralized system 
has significant primary energy savings. The primary 
energy factor for electricity is 2.4 and for gas 1.1 [22]. 
Especially the factor for electricity might change with 
higher share of renewable energies in the grid. 

Comparing the distribution of indicators for summer 
season with variable load and variable temperature with 
those of summer season with fixed load (shown in Fig-
ure 11) allows the evaluation of the sensitivity of the 
influencing parameters. 

The mean value of the CHP unit’s electricity genera-
tion shifts slightly to the right. The same happens with 
the mean value of the absorption chiller’s electricity 
consumption. This behaviour underlines that the full 
load hours of both systems increase by using a fixed 
load profile. Regarding the design process of the CHP 
unit shows that the utilization of standard load profiles 
can lead to an oversizing of the system. That means that 
the ACM and the CHP as well may not work at the 
optimum operating point. 

Considering the three indicators electricity consump-
tion from the grid, electricity consumption of the com-
pression chiller and primary energy consumption of the 
whole system, the comparison of Figure 10 and Fig-
ure 11 illustrates that the range of these indicators be-
come smaller while the mean values are nearly the 
same. In detail, for the single indicators the width of the 
range changes from 130.700 kWh to 2.810 kWh (prima-
ry energy), 4.059 kWh to 490 kWh (compression 
chiller) and 47.930 kWh to 7.480 kWh (consumption 
from public grid). This behaviour shows that the influ-
ence of probabilistic load profile is higher than the in-
fluence of probabilistic temperature data.  

Comparing the simulation results of dataset 2 with 
dataset 1 it is obvious that there is an influence by the 
machines types to the results. The distribution is simi-
larly to the distribution of dataset 1. It can be seen that 
the mean of the distribution is shifted and the width of 
range is smaller. For example for summer seasons the 
mean changes from 984.700 kWh to 961.000 kWh 
(primary energy). The width of range changes from 
130.000 kWh to 94.300 kWh (primary energy). 
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4 Conclusion 
The influence of probabilistic data on decentralized 
energy supply systems for the plastic industry depends 
on the parameter and the season. The highest influence 
is in the summer season. Furthermore, a probabilistic 
distributed load profile affects the result stronger than 
varying temperature profiles. In comparison to the re-
sults of the status quo system the influence of the pa-
rameters in the simulation of the decentralized system is 
stronger. For example, the change of width of the pri-
mary energy consumption from sub-scenario fixed load 
and variable temperature to both variable profiles is 
33,23 % for the status quo but 46,51 % for the decentral-
ized system. 

The investigation shows also that the state-of-the-art 
design process of such energy systems allows good and 
fast results. Nevertheless, the Monte-Carlo simulation 
underlines that the designed configuration is oversized 
in some cases. Furthermore, in respect to extreme value 
scenarios, the Monte-Carlo simulation indicates the 
probability of such events and that these scenarios occur 
very rarely for short a time period. 

On going research focuses on the transferability to 
other sectors with different influencing factors is exam-
ined. It is also considered how the presented approach 
can be applied for large scale energy systems with more 
than one consumer. 

Furthermore, the data provided by measurements 
and the computer host system could be replaced by a 
previous simulation models. To get the PDF of the ener-
gy needs this model has to consider probabilistic inputs, 
too.  
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