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Abstract. This model comparison quantifies the differ-
ence between the results of a population model, using
ordinary differential equations, and an inhomogeneous
spatial approach, using a lattice gas cellular automaton.
Both approaches describe a classical SIR-epidemic. The
system definition of the epidemic, model specification
and parameter identification were already formulated by
Miksch et al [1]. For the sake of quantifiable comparisons
a norm was introduced. The tasks from the revised AR-
GESIM Comparison 17 [1] were completed and the re-
sults were analysed and visualised. Every result was in-
terpreted according to the knowledge of the modelling
approaches and the setup of the experiment at hand.

Introduction

This model comparison follows the outlined tasks of the

revised ARGESIM Comparison 17 [1] and is targeted

on quantifying the difference of SIR-type epidemic sim-

ulations, which were either modelled by classical ordi-

nary differential equations (ODEs) or a lattice gas cellu-

lar automaton (LGCA). Both modelling approaches use

the same system definition and therefore the same basis

for parameter calculation. From now on we will use the

term "population group" to describe any of the follow-

ing cohorts: susceptible, infected or recovered individ-

uals.

Although both models are strictly defined in the re-

vised Comparison 17[1] some changes or specifications

had to be made:

• Periodic boundary conditions were used in the

LGCA as follows: when an individual passes

through any boundary of the lattice, it reappears

on the opposite side of the lattice at the same po-

sition inside the cell and therefore with the same

movement direction as before.

• The presented formula for the calculation of the
dimension n of the LGCA’s lattice yields a num-

ber, which is too small for certain populations

where the contact rate C is chosen to be 5. This

should be the maximum in an LGCA with hexago-

nal cells. The solution to this problem is to simply

round up instead of down, as it is shown in the fol-

lowing.

n =

⌈√
5(N −1)+C

6C

⌉
(1)

• The specification of hard interventions with the
LGCA model was extended by the following step:

Since the LGCA approach operates on discrete val-

ues the fraction of the affected population group

had to be rounded down after the multiplication

with the factor fH .

• In the ODE model we were confronted with a lim-
itation on the variation spectrum of the probability

rates α and β . If we choose the value 1 for either

of them then we get an numerically undefined term

(log(0)) when we try to carry out the parameter

identification as instructed.
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1 Implementation

The simulations were performed using a MacBook Air

(11inch, End 2010) running Mac OSX 10.11.6 and the

Software MATLAB R2015b. It should be pointed out

that the results of the LGCA vary in every iteration, be-

cause of the usage of probability principles. The re-

alization of the ODE model always yields exactly the

same results (provided that the same ODE-solver is

used). To ensure exact reproducibility a large number

of iterations with the LGCA model would have been

necessary. Then the average values of the infected in-

dividuals at every time step would have been used in

the comparisons, but this would have gone beyond the

scope of this paper. Here we used one round of simula-

tions, after a lot of test runs, to generate the results.

1.1 Differential Equations Model

The system of differential equations was solved us-

ing the MATLAB ODE-solver ode45, which is used to

solve systems of nonstiff differential equations. Fur-

thermore we only calculated the solutions for inte-

ger time steps starting with 1, to ensure comparability

between the continuous ODE-model and the discrete

LGCA-model. The solution contained the number of

individuals for each population group at every integer

time step.

1.2 Cellular Automaton

The model was implemented as described in the revised

comparison [1] with one exception, which was previ-

ously explained resulting in equation 1 for the dimen-

sion of the lattice.

The initial conditions, represented by the individuals

of every population group at time t = 0, were uniformly

distributed in the cells of the lattice, which was imple-

mented as a matrix M ∈ N
n×n×6. This was realized by

randomly permuting a vector, with the length equal to

the number of free cells (6n2), filled with the integers

from 1 to 6n2. Then it was possible to take the first x
values of that vector as indexes for the individuals of

one population group, where x is its initial condition.

After initializing the LGCA the movement phase is

implemented according to the rules, which were de-

fined in the revised comparison [1] and extended by the

boundary condition presented in the Introduction.

Then the collision phase is realized by using the

FHP-I collision rules. Followed by that, the infection-

and recovery-phase is implemented. In this phase we

simulate the contacts between individuals in the same

hexagonal-cell. With every contact between an infected

individual and a susceptible one, there is a certain possi-

bility of an infection. Additionally for an infected indi-

vidual there is the possibility to recover in every single

time step. In order to assert synchronicity, the infection

and recovery takes place in a buffered copy of the whole

lattice.

Functions of probability are used twice in the im-

plementation: when we determine the distribution of

the initial conditions on the lattice (this happens only

once per simulation) and every time when there is the

possibility of an infection or recovery of an individual.

At the end of every iteration/time step, we sum up

all the population groups and save them in association

with the according point in time.

1.3 Results

The result of an experiment always consists of a

difference-determining value, which will be introduced

in the next section, and five plots: each modelling ap-

proach with the corresponding SIR-curves, one which

showed the infected curves of both simulations and the

1-Norm and 2-Norm of the difference in infected indi-

viduals per time step. For every experiment or variation

of parameters a MATLAB-file was generated and the

simulations took place with the help of a script which

loaded the parameter file and generated the result docu-

ment automatically for every experiment. As a result of

this procedure it was ensured that in every experiment

both approaches used the same base-parameters.

2 Comparison Norm

It is always useful to have one value which determines

the difference between two functions. We decided that

the curve of infected individuals best describes an epi-

demic over the course of time. For further analysis and

quantifiable comparability we introduced a value to de-

termine the exact difference between the two curves, be-

cause it often happens that the curves are very similar

but offset by a certain time.

We came to the conclusion that the best way to quan-

tify and ensure comparability between experiments is to

determine the area of the absolute difference between
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both curves of infected individuals divided by the total

population (N). This can formally be written as

T∫
0

|y(t)ode − y(t)ca|dt

N
(2)

Since the comparison takes place under discrete cir-

cumstances with equally spaced time steps we have to

simplify equation 2 with the help of the trapezoid rule

to

T
∑

t=0

(
|y(t)ode − y(t)ca|+ |y(t +1)ode − y(t +1)ca|

)
2N

(3)

In MATLAB this was implemented by calculating

the absolute difference at every discrete point in time

(1-Norm) and the use of the function trapz().

3 Parameters & Figures

The parameters of Table 1 were used to conduct differ-

ent experiments by varying only one at a time.

S0 I0 C α β Tend

9500 500 4 0.1 0.1 100

Table 1: Default configuration of the available parameters.

The population group Recovered was always initial-

ized with zero individuals (R0 = 0) and the total popu-

lation (N) was set constant with 10000 individuals.

With this data pool as setup, both model approaches

were simulated and compared. The results are different

plots and a value for the comparison of the difference

between the two approaches in different experiments,

as described before. In Figure 1, 2 and 3 we present the

different kinds of plots that were used for every exper-

iment with the parameters of Table 1. The calculation

for the comparison norm for these parameters results in

d (ODE,LGCA) = 1.4844 (4)

In further consequence we will not display these

three plots for every parameter configuration because of

lack of room, readability and comparability. Therefore

bar charts will be used with the help of the comparison

norm, which was introduced earlier in equation 3.

Figure 1: The epidemic over time with the ODE-model.

Figure 2: The epidemic over time with the LGCA-model.

Figure 3: The Infected individuals over time for each model.

In the following we will always present the used pa-

rameters, which deviate from the default values from

Table 1, as tables and the results as bar plots.

SNE 27(1) – 3/2017



56

S. Reichl et al. Benchmark C17R - Comparison

4 Task 1) Parameter Variation
In the first part of task 1 simulations with different vari-

ations of one parameter at a time were performed. The

values of the following parameters were varied: initial

number of infected individuals I0 (and therefore S0), the

average of contacts per time step C, the infection prob-

ability α and the recovery probability β . The different

variations of every parameter are displayed in Table 2,

3, 4 and 5 respectively. In the second part only the con-

tact rate C was varied while the product of Cα had to

remain constant as it can be seen in Table 6.

4.1 Task 1) a) - Variation of I0

1 2 3 4 5 6 7

I0 5 50 250 500 750 1000 5000

Table 2: Parameter variation of I0.

Figure 4: Results of the variation of I0.

4.2 Task 1) a) - Variation of C

C 1 2 3 4 5

Table 3: Parameter variation of C.

Figure 5: Results of the variation of C.

4.3 Task 1) a) - Variation of α

1 2 3 4 5 6 7

α ×102 1 5 7.5 10 20 50 99.99

Table 4: Parameter variation of α .

Figure 6: Results of the variation of α .
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4.4 Task 1) a) - Variation of β

1 2 3 4 5 6 7

β 0.001 0.01 0.05 0.1 0.2 0.25 0.5

Table 5: Parameter variation of β .

Figure 7: Results of the variation of β .

4.5 Task 1) a) - Interpretation

Looking at the results, the following hypotheses can be

formulated

• We observe in Figure 4 that more infected individ-

uals at the start result in smaller differences.

• Figure 5 indicates that the more contacts happen,

the greater the difference in the results get.

• We can see in Figure 6 that greater infection prob-

ability results in larger norm values.

• The opposite seems to be true for the recovery

probability as illustrated in Figure 7. Greater re-

covery probability results in smaller norm values.

The first and last point can probably be explained

by the fact that the configurations, which yield small

norm values, compensate for the spatial component in

the LGCA model. Furthermore the recovery phase does

not take into account where a individual is positioned

and therefore the spatial component of the LGCA has

no impact on it. The second and third hypothesis may

arise from the fact that the movement of individuals is

modelled differently in the two approaches.

4.6 Task 1) b) - Variation of C with Cα = const

1 2 3 4 5

C 1 2 3 4 5

α 0.4 0.2 0.133
·
3 0.1 0.08

Table 6: Parameter variation of C and α with Cα = const.

Figure 8: Results of the variation of C and α with Cα = const.

4.7 Task 1) b) - Interpretation

In Figure 8 it can be observed that for C ≥ 2 the norm

values drop below 2 but never 1. We want to point out

that if we compare Figure 5 and Figure 8 and the tables,

respectively we have to come to the conclusion that the

adapted infection probability α is not causing any im-

provement compared to the situation with constant α .

This should not be surprising as we have already seen

in Figure 6 that the norm increases if α is increased.

5 Task 2) Interventions
The interventions were implemented with 60 time steps,

because they cause an earlier end of an epidemic. In the

Soft Interventions we modelled the decrease (within

Δt = 10) of the intervened parameter (α) with a smooth

step, instead of a linear one, because it is more realis-

tic and the difference was smaller than 0.1. As Hard
Intervention strategy we chose to vaccinate suscepti-

ble individuals ( fHS). Both interventions start when a

certain threshold ( fT N = I) is reached. We used the
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default configuration from Table 1 and only varied the

intervention specific parameters as stated in Table 7 and

8.

5.1 Task 2) a) - Soft Intervention

1 2 3 4 5

fT 0.1 0.2 0.3 0.2 0.2

fS 0.5 0.5 0.5 0.1 0.25

Table 7: Soft Intervention parameter variation of fT and fS.

Figure 9: Soft Intervention parameter variation of fT and fS.

5.2 Task 2) b) - Hard Intervention

1 2 3 4 5

fT 0.1 0.2 0.3 0.2 0.2

fH 0.1 0.1 0.1 0.25 0.5

Table 8: Hard Intervention parameter variation of fT and fH .

Figure 10: Hard Intervention parameter variation of fT and
fH .

5.3 Task 2) Interpretation

Looking at Figure 9 and Figure 10 we can see that the

norm values of all the experiments with both kinds of

interventions always lie between 0.6 and 1.4. Therefore

it is safe to say that by varying the intervention param-

eters no parameter regions could be detected where the

models do not behave very similar. Often the difference

between the results was caused by the lacking behind

of the LGCA approach because after reaching the de-

fined threshold ( fT N = I), which triggers the interven-

tion, actions took place in the next time step and not at

that moment, as it is realised in the ODE model.

6 Task 3) Spatial Inhomogeneity

We replaced the implemented movement rules of the

LGCA with random movements to achieve a constant

homogeneous mixture of the population. After every

time step the individuals were randomly distributed on

the lattice. We chose four bad and four good results of

previous experiments and their parameters (as shown in

Table 9), to see if the new rule changes the outcome.

The bold values in table 9 indicate deviations from Ta-

ble 1.
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S0 I0 C α β Tend

1 9500 500 4 0.9999 0.1 100

2 9500 500 1 0.4 0.1 100

3 9950 50 4 0.1 0.1 100

4 9500 500 2 0.2 0.1 100

5 9500 500 1 0.1 0.1 100

6 9500 500 4 0.01 0.1 100

7 9500 500 4 0.1 0.5 100

8 5000 5000 4 0.1 0.1 100

Table 9: Parameters for Spatial Inhomogeneity Comparison.

Figure 11: Results with (blue) and without (yellow) Spatial
Inhomogeneity.

6.1 Task 3) - Interpretation

As we can see, in Figure 11, nearly every scenario pro-

duced better results with the random movement. Only

configuration 1 and 5 experienced a worsening in the re-

sult. These are probably outlier. In the results of config-

uration 6,7 and 8, where the results were already good,

no significant change was noticed.
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