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Abstract. This paper presents different kinds of ap-
proaches towards using physical simulation based exer-
cises for early teaching of STEM topics at school®. The
approaches presented in this paper are based on the
Physolator physics simulation framework. This paper
analyzes to which degree these approaches can be used
to meet given teaching goals.

Introduction

In our world, computer based physical simulations are
omnipresent. They are used for science and engineering
as well as in computer games and in animations for the
movie industry. Professionals working with computer
based physical simulations are aware of the fact that it
takes good skills at least in the following fields for pro-
ducing such computer based applications: physical
modeling, geometry, numerical mathematics, program-
ming and graphics programming. The significant skills
for producing physical simulations are all located in the
STEM fields'. Work in this field is interdisciplinary. It
takes physicists, mathematicians and computer scientist
working together in such projects.

The guiding questions of this paper: Could physical
simulation be used in early teaching of mathematics,
physics and computer science at school? Could this lead
to more application oriented understanding of the dif-
ferent topics in mathematics, physics and computer

' STEM = science, technology, engineering, and mathematics

science? Could this strengthen an interdisciplinary
thinking for these domains?

1 Teaching Physics and Physical
Simulation

There are numerous publications dealing with the ques-
tion on how to improve teaching in science and espe-
cially in physics [7,8,9]. In a physics lecture, students
shall learn the theory of physics and they shall learn
how apply this knowledge to real world scenarios. Ex-
periments play an important role when teaching physics.
Experiments are used to confirm theoretical models. On
the other hand side, experiments are stimulated by theo-
ry. Students should learn, how theoretical models are
used to describe nature and how experiments in nature
are used to verify theoretical models.

Physical simulation is a supplement to theory and
experiment. Working with physical models means ap-
plying theoretical knowledge [6]. Just like real world
experiments, physical simulations are motivated by
theory. The students have to analyze the simulation runs
to see if or if not the physical simulation confirms their
expectations about the real world behavior. Physical
simulations can never be a substitute for experiments.
Physical simulations are used for verification and clari-
fication: Is the physical simulation, which is based on
the theoretical formulas, consistent with the real world
observations from experiments?

A learner who is starting to set up his first physical
simulation is confronted mainly with two different chal-
lenges: Understanding the physical model and under-
standing the way of implementing the physical model
using a programming language.
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The following aspects have to be considered when
learning programming: learn the syntax of a program-
ming language, learn the fundamental, imperative con-
cepts of programming and optionally learn the concepts
of object orientated programming such as classes and
instances, inheritance and dynamic binding. From a
didactic point of view it is important to keep the differ-
ent aspects of programming as separated as possible and
to teach them in a step-by-step manner.

The approaches presented in this paper are based on
the Physolator framework (see www.physolator.de).
Physolator uses the Java programming language. Java is
taught in many secondary schools. Frameworks such as
Mathematica or Matlab could also be used for physical
simulations. However, they come with their own pro-
gramming language and the student has to learn this
extra programming language to get started with such
frameworks. The Physolator is Java based. Students do
not have to learn an extra programming language before
they get started with physical simulations.

Applying Java in the context of physical simulations
helps students to acquire a deeper understanding of Java
since implementing a physical simulation is an exercise
of already taught programming lessons.

Furthermore, Physolator is able to encapsulate the
higher level OOP parts of Java, therefore entanglements
of too many didactic aspects can be avoided effectively.

An exercise on the beginner level should put a focus
on one topic only: One exercise for learning the mean-
ing of gravity by playing with a given model, another
exercise for learning how to build a physical model,
another exercise for learning how to build graphics
components. Each of these topics should first be learned
in an isolated way. When for example building a first
physical model in a science class, students should put a
focus on understanding the underlying physical context,
and the corresponding formulas. Students should not at
the same time have to deal with the complexity of mod-
ern object oriented programming or with numerical
mathematics or with graphics programming.

2 The Physolator Framework

Programming a physical simulation from scratch is
considered to be very challenging. The Physolator is
designed for physical simulations at the beginner's level.
Physical systems are implemented as Java programs.
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Figure 1: The Physolator Framework.
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To build your own physical system up and running,
you write a piece of Java code, load it to the Physolator
framework and then start the simulation by pressing the
start button inside the Physolator. The Physolator
framework is based on ODE solvers. From the Physola-
tor's perspective, physical values are initial value prob-
lems and it uses ODE solvers for executing the simula-
tions. Besides the ODE solvers, the Physolator frame-
work also supports an event oriented programming style
for simulating physical events such as collisions.

Figure 1 shows a snapshot of the Physolator frame-
work. A physical system with a satellite revolving
around moon and earth has already been loaded. Physi-
cal variables are always displayed on the left. Their
values change during simulation. On the middle there is
a graphical representation of the physical system and on
the right there is a plotter for displaying the function
graphs of selected variables. With the round buttons on
the top you can load physical systems, start and stop
them. During simulation time the user may also inter-
fere and change the variables values manually. Editing
the variables immediately changes the state of the sys-
tem and its graphical representation.

The Physolator has been designed for modular style
of implementing physical systems. With the Physolator
one can build a set of basic physical components. Using
this set of physical components, one can build more
complex components by just joining together the basic
components. Also the graphical components for visual-
izing the simulation results as well as the numerical
procedures are developed independently. For every
exercise the instructors provide the students with a set
of base components: physical components, graphics
components and numerical procedures. During the exer-
cise, the students have to build a physical system on top
of this infrastructure. They can focus their work on a
very specific task. The given infrastructure of compo-
nents should cover all the aspects the students should
not have to take care off.

This paper presents different categories of exercises
related to physical simulation with a focus on exercises
at the beginner level. The different categories represent
different categories of didactic concepts.

With the Physolator one could also define exercises
for advanced students such as programming numerical
algorithms. Such advanced tasks, however, are not part
of the scope of this paper. This paper limits itself to
exercises that are well suited for students at school level
or at the beginner level at a university.

2.1 Category 1: Experimentation with a
given physical system

Traditionally, physical experiments are based on me-
chanical or electrical devices. During the exercise, the
students build an apparatus by assembling these devices
and then execute different runs with varying parameters
and conditions. Such experiments pursue the following
teaching goals:

e Give the students a practical experience of the theo-
retical physical concepts presented during the theo-
retical parts of the lecture (e.g. gravitation, fric-
tion...).

e Make sure, the students can apply theoretical con-
cepts to the real world: relationship between varia-
bles and formulas in the theoretical world and obser-
vations in the real world.

e Explain to the students the meaning of physical mod-
els computer based simulations as a part of the scien-
tific research process of physicists.

Readymade computer simulations can be a complement
for such real experiments. For good real world examples
you need the right devices. Some of them are costly and
assembling an apparatus is time consuming. Some ex-
periments that would be useful to for a better under-
standing of the physical domain, simply cannot be run
in a classroom. One can simulate the orbit of a satellite
on the computer, but not in a classroom.

The moon-earth-satellite example is a physical sys-
tem that is well suited exercises of this category. Exer-
cises: Give the satellite the right initial position and
speed and observe the path of its movement! Try find an
initial position and speed so the satellite runs on a
closed orbit! During simulation time observe the rele-
vant forces and accelerations: gravity, Coriolis force,
centrifugal force!

In this kind of experiment, the student loads a read-
ymade physical system to the Physolator. In this virtual
experiment interacting with the physical system means
‘playing’ with the physical variables and observing the
impact on the behavior of the physical system.

2.2 Category 2: Building a physical model

In this kind of experiments, mathematical formulas shall
be used to build a model of a simple physical system.
The students shall write down the physical variables and
physical formulas in Java notation and then load and
start their physical system.
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The learning tasks to be pursued with this kind of
exercises are:
e Learn, how to describe a consistent physical model
using physical variables, formulas, and derivation re-
lationships and provide the physical system with an
initial state.
e Understand the relationship between formulas defin-
ing the behavior and temporal progressions of physi-
cal systems following the rules defined by these for-
mulas.
e Learn how to define physical models and learn about
the limitations of physical models.
In this kind of exercise, students write Java program
code. The programming language Java, however, is
used in a very limited way. In this context it is only used
for writing down physical variables and formulas. The
entire program code only consists of Java variable dec-
larations and value assignments to variables. The Java
variables correspond to physical variables. Java varia-
bles are a means for representing physical variables in a
computer. Variable assignments are a means for repre-
senting formulas. The variable assignment in Java as-
signs a value to the variable. The value is defined by a
mathematical expression. The mathematical expression
represents the formula.

The following program code gives an example for
such a physical system.

public class SpringMassPendulum
extends PhysicalSystem {

@V (unit = "m")
public double p0 = 1;
@V (unit = "m")
public double g
@V (unit = "kg")
public double m = 0.03;
@V (unit = "N/m")
public double D
@V (unit = "")
public double k = 0.05;
@V (unit = "N")
public double F;
@V (unit = "m", derivative = "v")
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public double x = 0;

@V (unit = "m/s", derivative = "a")

public double v;

@V (unit = "m/s”2")

public double a;

public void f(double t, double h) {
F=g*m+D* (p0 - x) - k * v;
a=F/ m;

}

public void initPlotterDescriptors (
PlotterParameters r) {
r.add("x,v,F", 5, -7, 7);

The program code above defines a spring mass pendu-
lum with damping. The mass m, the pivot position pO,
the earth acceleration g, the spring constant D and the
coefficient of friction K are given constants. The posi-
tion of the point mass X and its actual velocity v define
the state of the physical system. Annotations @V are
used for attaching physical units to the variables and for
defining derivation relationships. In this case, V is the
first derivative of X and a is the first derivative of v. The
formulas are defined inside method f. These formulas
define the actual force and the actual acceleration.

This kind of Java program represents a physical sys-
tem. The students learn, that this kind of notation is used
for writing down physical variables, formulas and deri-
vation relationships. At that time, the students do not
necessarily have to understand Java. There are no con-
cepts being used that go beyond physical variables and
formulas — no control structures, no parameters, no
methods, no exception handling etc..

The initPlotterDescriptors method declares, that X, v
and F shall be plotted during simulation. Figure 2 shows
the result of the simulation run.

29718 s
v

Figure 2: Spring mass pendulum with damping.

2.3 Category 3: Building a physical system
by composing given physical
components

In this kind of experiment, physical systems are build up

by composing given physical components. The follow-

ing program code describes a double pendulum with
two point masses connected to a pivot point via two

springs (see Figure 3).
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In the first the basic variables are declared and they
are initialized with appropriate values. You do not really
need to have any Java knowledge to understand, that
this piece of code creates a vector g representing the
earth acceleration, one pivot point, two springs and two
point masses. In the second part (the constructor), these
physical components are connected to each other. The
first spring refers to the pivot and the first point mass,
the first point mass refers to the first and the second
spring, the second spring refers to both point masses and
the second point mass refers to the second spring.

public class SpringDoublePendulum2D
extends PhysicalSystem
public Vector2D g =
new Vector2D(0, -9.81);
public Vector2D pivotl =
new Vector2D(4, 8);
public Spring2D springl =
new Spring2D(25.5, 1, 1le5);
public Spring2D spring2 =
new Spring2D(25.5, 1, le5);
public PointMass2D pml =
new PointMass2D(3.5, 4, 0.5, 1, 0.5, g);
public PointMass2D pm2 =
new PointMass2D(5.5, 1.5, 0.2, 0,0.5, g);
public SpringDoublePendulum2D() {
springl.rl = pivotl;
springl.r2 = pml.r;
spring2.rl = pml.r;
spring2.r2 = pm2.r;
pml.springs =
new Spring2D[] { springl, spring2 };
pm2.springs = new Spring2D[] { spring2 };
}
}

This piece of program code represents a physical system
that is ready to be loaded and run. Be aware, that this
physical system does not contain any formula. All you
have to do is create such components and connect them
with one another. The physical formulas are inside these
components. This is why a spring ‘knows’, how to cal-
culate its force as soon as it is connected with two end-
points. If a point mass is connected to one or several
springs, then the point mass ‘knows’, that the forces
from the springs have to be applied to the point mass.

Exercises from this category are similar to catego-
ry 1. The students should learn about specific physical
phenomena. Other than in category 1, the physical sys-
tem is not ready made, but the students can compose
them by themselves.

Thereby, they can also vary the model and build
their own physical model. Example: Build a chain of
point masses interconnected with springs, stimulate the
first point mass and see how a wave moves through the
physical system.
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Figure 3: Structure of spring mass double pendulum.

Basically, this example uses object oriented program-
ming techniques. The students, however, do not neces-
sarily have to understand the underlying concepts. The
program code is used as a specific kind of notation for
describing physical components and the relationships
between these components. This is how the students get
used to object oriented modeling in an application ori-
ented fashion — without yet knowing the underlying
object oriented concepts such as classes, instances,
constructors, and inheritance. After loading the physical
system, the structure of this physical system with its
hierarchy of components and subcomponents and its
derivation relationships is visually represented in the
Physolator framework (see Figure 3).
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For such systems, one may also provide graphics
components that automatically visually represent the
state of the system on the screen. MechanicsTVG is a
generic 2D graphics component for visualizing simple
mechanical systems. Adding the following program
code to the above physical system results in an addi-
tional graphics component drawing the point masses
and springs on the screen (see figure 4).

public void initGraphicsComponents (
GraphicsComponents g, Structure s,
Recorder r, SimulationParameters sp) {
g.addTVG (new MechanicsTVG(this, s, r));

Figure 4: Spring mass double pendulum.

2.4 Category 4: Graphics programming

Simple two dimensional graphics programming is well
suited for programming exercises at the beginner's level.
When the program draws lines and circles on the screen,
students get an immediate visual feedback, showing if
the program is doing what it is supposed to do. At the
same time, the students also have to deal with geometry
in an applied manner.

For a simple two dimensional graphics program-
ming, you would not necessarily need the Physolator
framework. If your students, however, have already
built a physical model such as the examples from cate-
gory 2 or 3, then it makes perfect sense to define an
exercise, where the students program a graphics compo-
nent that graphically displays the state of the physical
system.

During a physical simulation, the graphics are in
motion. The graphic represents the physical system state
and the physical system state changes during time. Time
dependent graphics are nothing but movies.

With the Physolator, you can also produce movies
without having to deal with any physics: Build an empty
physical system, let this physical system load a graphics
component and from inside the graphics component
access the actual value of the simulation time t.

The Physolator framework also supports three di-
mensional graphics based on OpenGL. Three dimen-
sional graphics programming is far more challenging. In
such an exercise the students have to learn, how to de-
fine a 3D environment with a given camera position and
camera direction, certain sources of light, 3D objects of
certain shapes and a certain reflection behavior of their
surfaces, fog, etc..

2.5 Category 5: Object oriented
programming

Teaching object oriented programming concepts is not
easy. The teaching goals of such lectures are:

e Learn the basic language constructs and concepts of
an object oriented programming language: classes,
instance, constructors, encapsulation and inheritance.

e Learn, how to apply these language constructs for
developing complex software system and build a
software structure that is designed for reusability.

Object oriented programming pays out when developing
complex software. Unfortunately, in a programming
class the time for the practical exercises is very limited
and this is why in such exercises usually only small
pieces of program code are produced. For small sized
problems, it is hard to explain, that object oriented tech-
niques are superior to the quick and dirty approach
without a welldefined object oriented structure.

In a category 5 exercise, students shall use object
oriented programming techniques to build their own
physical components and use them within physical
systems. Before starting with a category 5 exercise,
students should first do some category 3 exercises. In a
category 3 exercise, students have learn, how to build a
physical system by composing given physical compo-
nents. In a category 3 exercise, the students are using
the notations from object oriented programming without
necessarily understanding, that this program code is
about object oriented programming and that the pro-
gram code deals with classes, uses constructors and
creates instances of classes.
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As a preparation for a category 5 exercise, students
have to learn the meaning of these language concepts.
Then the students shall use these concepts to build their
own physical components and use them inside physical
systems.

An exercise from this category could ask the stu-
dents to build the physical components from scratch. As
an example, the program code for point masses and
springs is easy to implement. Examples with point
masses and springs can be found in [4]. This book also
thoroughly discusses different kinds of modeling tech-
niques using these examples. Other examples for physical
components and the object oriented approaches being
used to implement them, can be found in [3] and [5].

An object oriented modeling exercise does not nec-
essarily have to start from scratch. Inheritance can also
start with a given example. Sample-Scenario: Build a
physical system which is based on the following physi-
cal system, but replace the graphics component with
your own graphics component and use different simula-
tion parameters. Another example, where inheritance is
used on the level of physical components: Build a phys-
ical system, that is based on the string double pendulum
example from category 3, but replace the given linear
springs (Hooke's law) with nonlinear plate springs. The
following program code uses inheritance to define
PlateString2D a son class of Spring2D. Due to the fact,
that PlateSiring2D inherits from Spring2D, one can
modify the spring double pendulum code by replacing
all occurrences of oring2D by PlateString2D and then
run the same example with plate springs.

The program code below adds the relevant parame-
ters of a plate springs (FO, p and h) and uses overwriting
to provide the class with a new implementation of
method computeF in order to define the physical behav-
ior of the plate spring.

public class PlateSpring2D
extends Spring2D
public double FO;
public double p;
public double h;
public PlateSpring2D(double F0, double p,

double h) {
this.F0 = FO;
this.p = p;
this.h = h;

}

public double computeF (double distance) {
double sigma = distance / h;
return FO * sigma *

((1 - sigma) * (1 - 0.5 * sigma) *
Math.pow(h / p, 2) + 1);

2.6 Category 6: Learning basics about
physical simulation

In the exercises from the previous categories, students
run physical simulations without necessarily under-
standing, how physical simulations are executed. There
are quite some facts, that students could learn about
physical simulations and there are exercises for deepen-
ing the understanding. This kind of knowledge is not
only applicable to physical simulation, but also gives
the students a better understanding about the core prin-
ciples of computer games and computer based anima-
tions.

The teaching goals to be pursued in this category of
exercises.

¢ Understand, that a physical simulation is executed in
a time discrete manner.

e Learn, that a numerical simulation has limited accu-
racy. Understand, that a smaller step width results in
a more precise simulation run, but result in a higher
computational effort.

e Learn, that there some physical systems such as a
simple trajectory, where there are algebraic ways to
describe the behavior of a physical system with re-
spect to time (closed solutions). In most other cases,
the computer based simulations have to be used.

e Learn about different kinds of numerical procedures:
fixed step width vs. flexible step width, single step
vs. multi-step procedures.

The exercises from this category shall deepen the under-
standing about this domain. The Physolator framework
provides several simulation parameters. The simulation
parameters allow the user to choose, how the simulation
is carried out. Among others, the user may choose a step
width and the user may also choose among different
kinds of numerical procedures (ODE solvers) such as
Runge-Kutta, Adam-Bashforth, Cash-Karp and Dor-
mand-Prince. In an exercise, students could be asked to
load a given physical system and then find the right
simulation parameter settings so the simulation runs
with a highest possible accuracy and with a minimum of
computational effort (CPU time consumption).
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The Moon-Earth-Satellite from figure 1 would be
well suited for this purpose — but one could also use any
other physical system. In this exercise, students have to
choose the right numerical procedure and the right step
width. The computational effort for every simulation
run can be monitored using the Physolator's built in
monitoring tools (see Figure 5).

Students working on this exercise will quickly real-
ize, that the accuracy and the computational effort are
depending on the underlying numerical procedure as
well as the step width. They will first have to produce a
very precise result using very small step widths thus
decreasing the truncation error. Too small step widths,
however, lead to an increase of the round-off error. By
working on such an exercise, the student get an aware-
ness of the fact, that simulations are run in a time dis-
crete manner and that the total error increases the longer
the simulation runs. In a follow-up lecture one could
explain the underlying theoretical problems.
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Figure 5: Performance monitor.

A variation of this kind of exercise would work with a
physical system, where a direct, algebraic solution ex-
ists. Examples for such physical systems: simple trajec-
tory, damped point-spring-pendulum. Other than in the
previous type of exercise, a precise solution is given and
therefore it is easy to compute the error at any time.
Working with such an example would also deepen the
awareness, that at least for some physical systems, the
behavior of physical systems can be described using
closed equations and a physical simulation is not neces-
sarily required in these cases.

3 Summary and Conclusion

This paper has presented different categories of exercis-
es related to physical simulation and it has been ex-
plained, how the Physolator simulation framework can
be used as an infrastructure for such exercises.

It has been shown, that the different types of exer-
cises pursue different kinds of teaching goals. All of the
teaching goals for such exercises are in the STEM field.
In many exercises, several STEM qualifications are
needed: physics, programming, mathematics. These
qualifications have to be combined when working on
the exercise. This is why physical simulation is a do-
main, where students not only acquire knowledge from
different STEM fields, but also learn, how to work in an
interdisciplinary manner and combine these skills.
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