
S N E E D U C A T I O N A L N O T E

 SNE 27(1) – 3/2017 45

Physical Simulation Related Exercises for the
Education in the STEM Field – Approaches Based

on the Physolator Framework
Dirk Eisenbiegler1*, Dietmar Gruber2, Thomas Jörg2

1University of Furtwangen, Germany; *dirk.eisenbiegler@hs-furtwangen.de
2Hector Seminar, Germany

Abstract. This paper presents different kinds of ap-
proaches towards using physical simulation based exer-
cises for early teaching of STEM topics at school1. The
approaches presented in this paper are based on the
Physolator physics simulation framework. This paper
analyzes to which degree these approaches can be used
to meet given teaching goals.

Introduction

1 Teaching Physics and Physical
Simulation

 Eisenbiegler et al. Physical Simulation Related Exercises for the Education in the STEM Field

 46 SNE 27(1) – 3/2017

EN

2 The Physolator Framework

Figure 1: The Physolator Framework.

 Eisenbiegler et al. Physical Simulation Related Exercises for the Education in the STEM Field

 SNE 27(1) – 3/2017 47

E N
2.1 Category 1: Experimentation with a

given physical system

•

•

•

2.2 Category 2: Building a physical model

 Eisenbiegler et al. Physical Simulation Related Exercises for the Education in the STEM Field

 48 SNE 27(1) – 3/2017

EN

•

•

•

public class SpringMassPendulum
 extends PhysicalSystem {
 @V(unit = "m")
 public double p0 = 1;
 @V(unit = "m")
 public double g = -9.81;
 @V(unit = "kg")
 public double m = 0.03;
 @V(unit = "N/m")
 public double D = 2;
 @V(unit = "")
 public double k = 0.05;
 @V(unit = "N")
 public double F;
 @V(unit = "m", derivative = "v")
 public double x = 0;
 @V(unit = "m/s", derivative = "a")
 public double v;
 @V(unit = "m/s^2")
 public double a;
 public void f(double t, double h) {
 F = g * m + D * (p0 - x) - k * v;
 a = F / m;
 }

 public void initPlotterDescriptors(
 PlotterParameters r) {
 r.add("x,v,F", 5, -7, 7);
 }
}

m p0
g D
k
x v

@V

v
x a v

f

x v
F

Figure 2: Spring mass pendulum with damping.

2.3 Category 3: Building a physical system
by composing given physical
components

 Eisenbiegler et al. Physical Simulation Related Exercises for the Education in the STEM Field

 SNE 27(1) – 3/2017 49

E N

public class SpringDoublePendulum2D
 extends PhysicalSystem {
 public Vector2D g =
 new Vector2D(0, -9.81);
 public Vector2D pivot1 =
 new Vector2D(4, 8);
 public Spring2D spring1 =
 new Spring2D(25.5, 1, 1e5);
 public Spring2D spring2 =
 new Spring2D(25.5, 1, 1e5);
 public PointMass2D pm1 =
 new PointMass2D(3.5, 4, 0.5, 1, 0.5, g);
 public PointMass2D pm2 =
 new PointMass2D(5.5, 1.5, 0.2, 0,0.5, g);
 public SpringDoublePendulum2D() {
 spring1.r1 = pivot1;
 spring1.r2 = pm1.r;
 spring2.r1 = pm1.r;
 spring2.r2 = pm2.r;
 pm1.springs =
 new Spring2D[] { spring1, spring2 };
 pm2.springs = new Spring2D[] { spring2 };
 }
}

Figure 3: Structure of spring mass double pendulum.

 Eisenbiegler et al. Physical Simulation Related Exercises for the Education in the STEM Field

 50 SNE 27(1) – 3/2017

EN

MechanicsTVG

public void initGraphicsComponents(
 GraphicsComponents g, Structure s,
 Recorder r, SimulationParameters sp) {
 g.addTVG(new MechanicsTVG(this, s, r));
}

Figure 4: Spring mass double pendulum.

2.4 Category 4: Graphics programming

t

2.5 Category 5: Object oriented
programming

•

•

 Eisenbiegler et al. Physical Simulation Related Exercises for the Education in the STEM Field

 SNE 27(1) – 3/2017 51

E N

PlateString2D Spring2D
PlateString2D Spring2D

Spring2D PlateString2D

F0 p h

public class PlateSpring2D
extends Spring2D {

 public double F0;
 public double p;
 public double h;
 public PlateSpring2D(double F0, double p,
 double h) {
 this.F0 = F0;
 this.p = p;
 this.h = h;
 }
 public double computeF(double distance) {
 double sigma = distance / h;
 return F0 * sigma *

 ((1 - sigma) * (1 - 0.5 * sigma) *
 Math.pow(h / p, 2) + 1);
 }
}

2.6 Category 6: Learning basics about
physical simulation

•

•

•

•

 Eisenbiegler et al. Physical Simulation Related Exercises for the Education in the STEM Field

 52 SNE 27(1) – 3/2017

EN

Figure 5: Performance monitor.

3 Summary and Conclusion

References

