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Abstract. The approach in this paper renders it possi-
ble to simulate large-scale smart grids by efficient par-
allel computations. This permits a detailed analysis of
the consumption behaviours, efficiency and impact of
green energies, and self-sustainability of a smart grid.
The smart grid is modelled as a multi-agent system. Each
agent represents a building which is optimally controlled.
That is, an agents meets its prescribed energy demand
by trading energy or applying devices, e.g. solar panels
and fuel cells, minimising its costs. A cooperative bar-
gaining game is devised in which the agents participate
to obtain a global optimal solution. In this paper, this in-
herently serial bargaining game is parallelised. The par-
allelisation is necessary to be able to deal with the large
amount of data and computations which need to be per-
formed. In the experiments the validity of the presented
approach is shown and as a proof of concept a large
smart grid of over 40 million agents is simulated.

Introduction
With technologies for integrating energy generation and

storage in residential buildings, the notion of smart grid

was derived [1, 2]. Smart grids have been in the focus

of research because of various aspects. Among others,

the energy generation and storage devices themselves,

e.g. combined heat and power generation and energy

storages, and the coordination of them pose many chal-

lenges [3, 4, 5, 6, 7]. The focus of this paper, however,

is on the interactions of participants of the smart grid.

The smart grid is modelled by a multi-agent system.

Each agent optimally controls a residential buildings

and is able to generate and store energy with the appro-

priate devices [8, 9]. Based on the models of [10, 11],

the agents are able to communicate with each other to

participate in a cooperative bargaining game which pos-

sesses a unique Nash equilibrium. In addition, the pric-

ing scheme from [13] is applied to obtain fair energy

prices during bargaining.

The efforts of this paper go beyond the previously

mentioned approaches of simulating smart grids: The

smart grid model used in this paper extends the model

[10] by incorporating a more detailed agent model

which was published in [11]. In both publications a se-

rial, weak coupling approach for solving the bargaining

game is realised. The goal of this paper is enable sim-

ulations of realistically sized, large smart grids. There-

fore the serial approach is parallelised for a distributed

memory architecture, because a single computer can

no longer deal with the intended complex and memory

consuming simulation.

With this parallelisation, detailed information about

the optimal, efficient usage of energy can be obtained.

In particular, the efficient usage of green energies and

the self-sustainability of the smart grid can be exam-

ined. To that end, a smart grid of more than 40 million

agents, which is of equivalent size of Germany [12], is

simulated in parallel. To the knowledge of the authors,

this is the largest smart grid simulation performed until

today.

In Section 1, a brief overview about the applied

model and the serial algorithmic approach is given. The

parallelisation of the cooperative bargaining game is

presented in Section 2. Finally, the experimental vali-

dation and performance results are presented in Section

3. The test results validate the approach and show the

parallel performance in strong scaling experiments.

1 Smart Grid Model

The smart grid model and the solution approach are es-

sentially based on [10, 11, 13]. In the following a brief

summary of the method published in [11] is given. Con-

sider a smart grid as depicted in Figure 1.
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Figure 1: Schematic illustration of a smart grid with line
capacities. The differently shaped nodes indicate
different roles. The values within nodes specify the
required net load.

In this paper the line capacities ci of Figure 1 are

assumed to be infinite, so that the grid does not pose

any restrictions and can be neglected.

A smart grid consists of agents and a grid operator

which are capable of communicating with each other.

The grid operator uses power plants to generate energy

and substations to distribute the energy. Since the line

capacities are infinite, the substations can be neglected.

Buildings are optimally controlled by agents by a

solving optimisation problem. The optimisation prob-

lem takes devices, like e.g. central heating, fuel cells,

refrigerators, into account, and enforces that a pre-

scribed energy demand is met. This is incorporated

in constraints of the optimisation problem. The con-

straints define a non-empty, convex feasible set Ωn for

each agent n. The details about the feasible set are not

relevant for the considerations below, but can be found

in [11]. It is sufficient to assume that the set is non-

empty (to ensure feasibility) and that the choice of the

optimal solution is restricted in one way or the other

(excluding a trivial solution).

The agents’ optimisation problems are solved to

minimise their respective costs. Since the goal is to sim-

ulate millions of agents, it is assumed that the agents

form a market which determines the price with respect

to demand and supply. Therefore, the agents can adapt

their demand to the prices and influence the prices by

changing the demand. This adaption is modelled by

a cooperative bargaining game to minimise the agents’

costs which is presented below.

The total incurring costs C of the budget balanced

grid operator to supply the agents is defined by

C :=

(
N

∑
n=1

xn

)2

,

where N is the number of agents and xn is the net load of

agent n. The net load subsumes an agent’s demand and

supply in one variable. If xn > 0 it represents a demand,

if xn < 0 it represents a supply. The cost function C
can be understood as the squared deviation of a self-

sustaining smart grid. If C �= 0 the grid operator must

intervene and costs incur which must be covered by the

agents.

Based on the fair pricing scheme suggested by [13],

the total costs are split among the agents proportionally

to their contribution to the total costs. This yields the

individual incurring costs Cn of agent n with respect to

all other agents’ loads x−n:

Cn(xn;x−n) =

price︷ ︸︸ ︷
(xn + x−n) ·

net load︷︸︸︷
xn , (1)

with x−n :=
N

∑
j=1

j �=n

x j.

So each agent minimises (1), the local objective func-

tion, in an optimisation problem. In particular, C =

∑N
n=1 Cn(xn;x−n).

In order to obtain a global optimum, a bargaining

game is devised:

• Players: All agents in the smart grid.

• Strategies: Player n computes its best response

xn = argminCn(xn,x−n) s.t. xn ∈ Ωn.

• Costs: Cn for agent n.

For the considered game it was shown in [10] that a

unique Nash equilibrium exists. Therefore, the locally

computed optima by the agents lead to a global opti-

mum. This Nash equilibrium is characterised by each

player obtaining its optimum. Moreover, if one player

deviates from the optimum solution, the costs increase

for that player.

Since the costs of one agent are dependent on the net

loads of all other agents, as indicated in (1), the game is

played in rounds. In each round, all agents adjust their

played net load to their respective current best responses
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after another. This is done until no adjustments are car-

ried out by all agents. This procedure of the game is

summarised in Algorithm 1. In the subsequent section,

this algorithm is parallelised.

1: k ← 0

2: Set xk to initial total grid load

3: repeat
4: δ ← 0

5: yk ← xk

6: for all agent n in the smart grid do
7: xk−n ← yk − xk

n
8: xk+1

n ← argminCn(xk+1
n ;xk−n) s.t. xk+1

n ∈ Ωn
9: yk ← xk+1

n + xk−n
10: δ ← δ + |xk

n − xk+1
n |/N

11: end for
12: xk+1 ← yk

13: k ← k+1

14: until δ < ε
Algorithm 1: Serial bargaining algorithm.

2 Parallel Bargaining Game

In order to parallelise Algorithm 1, the best response

computation is distributed on processes which run in

parallel. In general, more agents than processes are

used, therefore one process is assigned multiple agents

for computation. Thus each process computes the best

responses of its agents serially as in Algorithm 1. This

can be interpreted as computing a single best response

for each process, independent of the actual number of

agents associated with the process. So instead of refer-

ring to the agents’ best responses, below the processes’

best responses are considered.

An essential property of the game in Algorithm 1 is

the successive best response computation. Evidently,

when processes compute the best responses in paral-

lel as described above, this property is violated. Con-

sequently, for the parallel approach a synchronisation

scheme needs to devised which is applied after the pro-

cesses’ best response computation to compensate the

lack of the successive best response computations.

Consider again Algorithm 1. Since the best response

computation is the solution to the agents’ optimisation

problems, this entails that the process’ costs never in-

crease. This non-increase property is expressed as

Cn(xk+1
n ;xk

−n)≤ Cn(xk
n;xk

−n) (2)

and must hold for every iteration k. This also implies

that |xk+1
n | ≤ |xk

n| for all n = 1, . . . ,N. In fact, the objec-

tive value monotonically decreases until a global opti-

mum has been found [10, 14].

The monotonic decrease in (2) holds for each pro-

cess individually. However it must also hold for the

total incurring costs in the smart grid (as in the serial

case), therefore

C k+1 ≤ C k :=
N

∑
n=1

Cn(xk
n;xk

−n). (3)

In the parallel approach, a monotonic decrease in the

total costs is obtained by computing the best response

with respect to an auxiliary term x̄k, which represents

the total net load in the grid. Let

x̄k
−n := x̄k − xk

n.

So instead of minimising Cn(xk+1
n ;xk−n), Cn(xk+1

n ; x̄k−n)
is minimised.

The auxiliary term is defined as

x̄k+1 =
N −1

N2
·

N

∑
n=1

(
xk+1

n + x̄k
−n

)
+

1

N
·

N

∑
n=1

xk+1
n . (4)

It can be shown that (3) holds for this choice of x̄k.

To show that (x̄k)2 ≥ (x̄k+1)2, the reduction γ is intro-

duced to yield (x̄k − γ)2 = (x̄k+1)2. Applying the defi-

nition of x̄k+1 from (4) reads

(
x̄k − γ

)2
=

(
x̄k − 1

N
x̄k

+
N −1

N2
·

N

∑
n=1

(
2 ·N −1

N −1
· xk+1

n − xk
n

))2

.

Obviously,

γ =
1

N
x̄k − N −1

N2
·

N

∑
n=1

(
2 ·N −1

N −1
· xk+1

n − xk
n

)
(5)

must be within 0≤ γ ≤ 2 · x̄k for x̄k ≥ 0 or 0≤−γ ≤ 2 · x̄k

for x̄k ≤ 0 to yield a decrease in the objective value.

In the following the case of x̄k ≥ 0 is elaborated. The

case x̄k ≤ 0 can be derived analogously. To show that

γ ≥ 0, (5) is rewritten as

1

N
·
(

x̄k −
N

∑
n=1

xk+1
n

)
− N −1

N2
·

N

∑
n=1

(
xk+1

n − xk
n

)
.
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Both terms in parenthesis represent the change in the

objective value from iteration k to k + 1. The term in

the first parenthesis is the change with respect to the

auxiliary term x̄k whereas the term in the second is the

change of the best responses ∑N
n=1 xk

n. Both expressions

in parenthesis are negative, but due to the averaging of

x̄k the term in the first parenthesis is more inertial to

change than the second term. Thus the absolute value

of the term in second parenthesis is larger so that γ ≥ 0

holds.

(5) is inserted to γ ≤ 2 · x̄k to show this inequality

also holds:

(2 ·N −1) · x̄k ≥ 2 ·N −1

N

N

∑
n=1

xk+1
n − N −1

N

N

∑
n=1

xk
n.

Recall that |xk+1
n | ≤ |xk

n| from (2) is implied, so

(2 ·N −1) · x̄k ≥
(

2 ·N −1

N
− N −1

N

) N

∑
n=1

xk
n =

N

∑
n=1

xk
n

is obtained. In the course of iteration, x̄k approximates

∑N
n=1 xk

n. Consequently, both terms are within the same

order and the estimate

x̄k ≤
N

∑
n=1

xk
n ≤ 2x̄k < (2N −1) · x̄k ⇒

∣∣∣∣∣x̄k −
N

∑
n=1

xk
n

∣∣∣∣∣≤ |x̄k|

holds. |x̄k −∑N
n=1 xk

n| is generally small and decreases

with increasing number of iterations k, since the xk
n

are computed as solution to optimisation problems and

used to construct x̄k. Therefore (4) yields a monotonic

decrease.

With the monotonic decrease shown in each itera-

tion, it yet needs to be validated that the sequence of

x̄k converges to the optimum. This is done by showing

convergence of x̄k → ∑N
n=1 xk

n for k → ∞. By express-

ing x̄k with respect to the best responses xk+1
n and x̄k the

following recurrence equation for a given initial value

x̄0 = ∑N
n=1 x0

n is obtained:

x̄k+1 =

(
N −1

N

)k+1

· x̄0 +
2 ·N −1

N2
·

N

∑
n=1

xk+1
n

+
N −1

N2
·

k

∑
m=1

(
N −1

N

)k−m+1

·
N

∑
n=1

xm
n . (6)

Since the sequence x̄k is monotonically decreasing, i.e.

converging to a finite limit, the subsequence xm
n is also

convergent. So the sum in (6) containing xm
n can be

bound by a geometric series (since |1/N| < 1) by re-

placing xm
n with xk

n. The geometric series can be rewrit-

ten in a closed form. Using x∗ = ∑N
n=1 xk

n for k → ∞,

from (6)

lim
k→∞

x̄k+1 = 0+

((
N −1

N

)2

+
N −1

N2
+

1

N

)
· x∗ = x∗

is obtained. Consequently, using an auxiliary term as

defined in (4) implies convergence to the optimum.

Thus, the serial bargaining game can be parallelised by

this method.

Concluding this section, the parallel bargaining is

summarised in Algorithm 2. The new variable P in line

15 denotes the total number of agents in the entire smart

grid. This number is required to check the termination

criterion in line 17.

1: Set X to the initial net load

2: X ← allReduce(X ,+)

3: k ← 0

4: repeat
5: Y,δ ← 0

6: for all agent j of process n do
7: X ← X − xk

j

8: xk+1
j ← argminC j(xk+1

j ;X) s.t. xk+1
j ∈ Ω j

9: X ← X + xk+1
j

10: Y ← Y + xk+1
j

11: δ ← δ + |xk
j − xk+1

j |
12: end for
13: X ← allReduce(X ,+)

14: Y ← allReduce(Y,+)

15: δ ← allReduce(δ ,+)/P
16: X ← (N −1) ·X/N2 +Y/N
17: k ← k+1

18: until δ < ε and |X −Y |/N < ε

Algorithm 2: Parallel bargaining algorithm.

Each process performs the computations for its as-

signed agents independent of other processes on a

distributed memory architecture. The “allreduce”-

operation is the only operation which requires interpro-

cess communication. It acts as barrier and all processes

wait for each other at this point. When it is called, each

process collects the passed value from the other pro-

cesses and sums up the values, respectively. The return

value of this function is the same for all processes.

Although in Algorithm 2 it is described that three

communication steps in lines 14 to 16 are required, all
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reductions can be fused in only one reduction by writ-

ing all three variables in one buffer and perform one

reduction on the buffer instead of one per variable.

3 Simulation Results

Experiments were conveyed to validate the approach

of Section 1 and also analyse the parallel performance

of the presented bargaining algorithm. The algorithms

were implemented in C++ using the GNU linear pro-

gramming kit (glpk) [15] as central solver for optimisa-

tion problems and Open MPI [16] for the parallelisation

and interprocess communication.

In Section 3.1, the validity of the approach from

Section 2 is shown. The parallel performance is anal-

ysed with respect to strong scaling in Section 3.2.

3.1 Validation of the approach

The validation was carried out for a reference smart

grid with 10,000 agents. The smart grid is simulated

for 100 time steps, which represents roughly one day

in 15 minutes intervals. 200 bargaining iterations were

performed in each case.

As shown in Figure 2, all plots converge to the ref-

erence result, which was computed serially by the ap-

proach of [11]. So the approach as described in Al-

gorithm 2 allows to compute the optimum in parallel.

It can be observed that, although convergent, the more

processes are used, the slower the convergence. This

can be traced back to the coefficients dependent on N
in (6) which tend to 1 for large N. Therefore the more

processes are used, the slower the convergence rate.

Although the plot shows that the number of required

iterations to reach the optimum increases with increas-

ing number of processes, the total runtime does not in-

crease. These details of the performance are presented

in the next section.

3.2 Parallel performance

The efficiency of the implementation is considered in

the following. Therefore the strong scaling behaviour of

the parallel bargaining approach is presented. The ter-

mination criterion was set to a maximal average change

of net load per agent per time step of 10−2 kWh. Fur-

thermore, the agents are uniformly distributed on the

processes in a round robin fashion.

Figure 2: Convergence of parallel bargaining for 2 to 64
processes, and the reference solution.

The strong scaling test scenario is the same as

in Section 3.1. It was computed on the local com-

pute cluster of the department of computer science 10

of Friedrich-Alexander-Universität Erlangen-Nürnberg

[17]. It has eight compute nodes each of which con-

sists of four Intel Xeon E7-4830 (eight cores each) at

2.4 GHz and 256 GB RAM per node. The serially com-

puted scenario took 42.5 minutes to finish.

As already mentioned, in Figure 2 it can be observed

that the more processes are used the more iterations are

required to attain the optimum. This, however, does not

entail a longer total runtime, as can be seen in Table 1.

In fact, since the optimisation problems of the agents

are uniformly distributed, the time per iteration approx-

imately halves when using twice as much processors.

The number of iterations hardly increases with increas-

ing number of processes. Consequently, the parallelisa-

tion has a greater impact than the number of increased

iterations, therefore the total runtime decreases.

In Table 1, it is stated that there is close to perfect

speed-up up to eight processes. Beyond that the speed-

up of the computations increases less. The reason for

that are the increased communication in addition to the

fluctuating times to solution of an agent’s optimisation

problem. For the considered scenario the latter times

are between 2 s and 0.05 s with a median of 0.07 s. Ob-

viously, most of the agents’ optimisation problems are

solved quickly and few slowly. If the optimisation prob-

lems are distributed among the processes in a way that

the average time to solve all optimisation problems per

process is approximately equal, a good speed-up can be

expected.

For the considered scenario more than 1,250 agents
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# Processes 1 2 4 8 16 32

# iterations 3 4 5 5 6 6

it. time [s] 798 349 181 81 37 21

Speed-up 1 1.7 2.8 6.0 10.9 20.1

Table 1: Strong scaling results for 10,000 agents, showing
the number of iterations, the averaged iteration
time and the speed-up with respect to the serial
computation.

per process yielded excellent scaling. Fewer agents

caused some processes to wait for other, slower pro-

cesses reducing the effects of parallelisation. This effect

is expected to be alleviated by using dynamic instead

of the static load balancing used in the experiments.

Nevertheless the parallel efficiency does not drop below

60% in the experiments, which indicates good scalabil-

ity.

In addition to the strong scaling computations, one

large simulation as proof of concept for the realisa-

tion of a nation-sized smart grid was carried out. Al-

gorithm 2 was executed on the Emmy cluster of Re-

gionales Rechenzentrum Erlangen [18] simulating 40

million agents on 1280 processes. This was the largest

simulation with respect to the physical limitations of the

compute nodes and it completed within 16 hours. This

scenario corresponds to a smart grid in the order of Ger-

many, which is the country with the most private house-

holds in the EU [19]. To the knowledge of the authors,

this is the largest simulated smart grid until today.

This carried out experiment merely hints at the po-

tential of this approach. Being able to simulate smart

grids representing countries, analysis of efficiency and

sustainability can be performed. Especially if invest-

ments pay off can be analysed. From the simulation

aspect, the weak scaling has yet to be examined. This

is necessary to determine the efficiency of this approach

with increasing number of agents on an increasing num-

ber of processes. This is analysed in the current work in

progress.

4 Conclusion and Future Work
In this paper, a cooperative bargaining game was suc-

cessfully parallelised. Since the serial algorithm relies

on successive best response computation, it is necessary

to introduce an auxiliary term to ensure convergence of

the approach.

Almost perfect speed-up is reached in the strong

scaling scenarios, in which 10,000 agents are consid-

ered, if the average time to solution per process is al-

most equal. This was commonly the case for more than

1,250 agents per process in the experiments.

In a next step the parallel efficiency needs to be

evaluated for weak scaling scenarios. When simulat-

ing large smart grids, the presented algorithm is re-

quired to scale well with the problem size. In conclu-

sion, the largest run optimised more than 40 million

agents, a problem size equivalent to a country. Being

able to simulate such a large grid, estimates on a realis-

tic scale about self-sufficiency, demand and supply and

efficiency of green energies can be fleshed out.
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