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Editorial 
Dear Readers - This fourth SNE issue of the year 2016, SNE 26(4), the special issue ‘Modelling and Simulation in Modern Control 
Engineering’ was suggested and compiled by SLOSIM, the Slovenian Simulation Society – underlining the strategy of SNE to pub-
lish contributions on recent trends and developments in modelling and simulation. For the front cover we have chosen figures from 
the eight contributions, sketching model approaches and other characteristic features, which indeed show the broad variety of mod-
elling and simulation in modern control engineering. This issue also rounds up the emphasis of SNE on thematic – oriented issues, 
with special issues either of topic-oriented subjects – like this issue and SNE 26(3)with emphasis on System Dynamics – or of issues 
emphasizing on general developments in modelling and simulation – like SNE 26(2) – the ‘EUROSIM 2016 Congress’ special issue. 
And last but not least, this issue reflects the status of SNE as membership journal of EUROSIM, the Federation of European Simu-
lation Societies, and the activities of the member societies as SLOSIM, which are invited to edit special issues.  
 
 I would like to thank all authors for their contributions, and especially the guest editor Vito Logar from SLOSIM for compiling this 
special issue. And last but not least thanks to the Editorial Office for layout, typesetting, preparations for printing, and web pro-
gramming for electronic publication of this SNE issue. 
 

Felix Breitenecker, SNE Editor-in-Chief, eic@sne-journal.org; felix.breitenecker@tuwien.ac.at 
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Editorial SNE Special Issue  ‘Modelling and Simulation in 
Modern Control Engineering’  

The progress in computer technology and IT has made 
Modelling and Simulation approaches an essential tool 
in modern industry in several aspects, especially when it 
comes to control design. The field has been given spe-
cial attention, as the pursuit of modern systems are both 
state-of-the-art design and adequate process control, 
where modelling and simulation approaches are indis-
pensable when effective, optimal and lean operation is 
required.  

The issue starts with the contribution of Š. Kore ko 
et al. - Jadex/JBdiEmo Emotional Agents in Games with 
Purpose: a Feasibility Demonstration. The authors pre-
sent a 3D game engine jMonkeyEngine, combined with 
Jadex agent system and JBdiEmo emotional extension 
and their use in virtual testing grounds for development 
of software controllers of various devices, embedded to 
them. 

The paper by D. Dovžan et al. - Evolving Fuzzy 
Model (eFuMo) method for on-line fuzzy model learning 
with application to monitoring system presents an eFu-
Mo method – a modelling approach based on model de-
sign and adaptation according to measured data. The au-
thors show that evolving fuzzy model can be used to 
predict sensor signals in case of their failure. Similarly, 
eFuMo approach can also be used for model-based con-
trol, when real-time measurements are not accessible. 

The paper by P. Boškoski et al. - Model-based pre-
diction of the remaining useful life of the machines deals 
with simulation-based life-span prediction of shot blast-
ing machines. The authors show that simulated estima-
tion of the remaining life of the machine is satisfactory 
and can be used for maintanence planning of the system. 

The paper AMEBA-evolutionary computation meth-
od: Comparison and toolbox development, by M. Corn 
and M. Atanasijevi -Kunc presents the AMEBA meth-
od and the corresponding toolbox. The method is based 
on evolutionary algorithms and can be used for different 
purposes, such as system identification or control de-
sign. Comparative results between AMEBA method and 
other relevant methods are shown to demonstrate its po-
tential and accuracy when identifying a nonlinear multi-
variable system. 

The next three papers deal with more problem-
oriented challenges, arising from practical applications. 
M. Golob’s - Modelling and Simulation of GMA Weld-

ing Process and Welding Power Sources presents a 
practical problem arising from power source control in 
welding units. The author shows that proper electrical 
model allows controller development, ensuring steady 
and pulsed direct current welding. A problem oriented 
study from a different field is in focus of the paper In-
verse Simulation Methods Applied to Investigations of 
Actuator Nonlinearities in Ship Steering by D. J. Mur-
ray-Smith. The paper shows that inverse simulation 
methods can be used to predict the ship’s rudder satura-
tion and rate limiting effect in terms of the maneuvera-
bility of the vessel. It is also shown that a two-stage in-
verse-simulation method allows direct assessment of the 
difference between desired and achievable maneuvers. 
Another study was performed by T. Björkqvist et al. - 
Conversion of Iterative Balance Models to Directly 
Calculating Explicit Models for Real-time Process Op-
timization and Scheduling. The authors use a method for 
direct evaluation of the model output, instead of using 
an iterative calculation and show its implementation on 
modelling of the copper production line. The method is 
used for process optimization and scheduling and is sig-
nificantly faster than classical modelling methods. 

The last paper Modelling of indoor lighting condi-
tions in buildings for control design purposes, by V. 
Logar presents a fuzzy modelling approach to describe 
indoor lighting conditions in buildings. The model can 
be, due to its simplicity, used for broader environments, 
such as control design or model-based control.  

The scientific value of this contributions will be 
used also in the preparation of the curricula and syllabi 
for the doctoral study in the frame of European ERAS-
MUS+ Project 573751-EPP-1-2016-1-DE-EPPKA2-
CBHE-JP entitled  'InMotion - Innovative teaching and 
learning strategies in open modelling and simulation 
environment for student-centered engineering education' 
in which the partner University of Ljubljana, Faculty of 
electrical engineering also covers the area of modern 
control systems in computer modelling and simulation 
engineering. 

The editor would like to thank all authors, who have 
contributed to this special issue and to the SNE Editorial 
Office for the support in compiling this special issue.  
 

Vito Logar, University of Ljubljana, Faculty of Electrical 
Engineering; vito.logar@fe.uni-lj.si        
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Jadex/JBdiEmo Emotional Agents in Games with 
Purpose: a Feasibility Demonstration 

Štefan Kore ko*, Branislav Sobota, Peter Zemianek 

Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, 
Technical University of Košice, Letná 9, Košice, Slovakia; *stefan.korecko@tuke.sk 

 
 

Abstract.  The jMonkeyEngine 3D game engine, com-
bined with Jadex agent system and JBdiEmo emotional 
extension may offer a suitable toolset for effective crea-
tion of feature-rich virtual environments, provided that 
an appropriate interface, allowing to use the full poten-
tial of all included components, exists. Then, such envi-
ronments may profit from the jMonkeyEngine ability to 
model and simulate the physical world and capability of 
Jadex and JBdiEmo to express both rational and emo-
tional aspects of characters inhabiting it. One of the 
meaningful ways of utilization of such environments is to 
use them as virtual testing grounds for software control-
lers of various devices, embedded to them. To involve 
real humans in the testing, they may have a form of a 
game, where the testing occurs during an interaction 
between the devices and players. In this paper we pre-
sent both the interface and the embedding on an emer-
gency simulation game called JFireEmSim2. The primary 
goal of the player in the game is to rescue a family from 
a house under fire and the controller embedded into it is 
of a simple autonomous cleaning robot. The paper de-
scribes the architecture of the game, focusing on the 
interface, implementation of characters as Jadex and 
JBdiEmo agents and embedding of the controller. It also 
discusses suitability of the components for the given 
task. 

Introduction
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1 The Platform 

1.1 Jadex 
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1.2 JBdiEmo 

Figure 1: OCC to BDI mapping as implemented in  
JBdiEmo. 

1.3 jMonkeyEngine 

1.4 Jadex 3D visualization interface 

2 JFireEmSim2 Game 
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JFireEmSim2

2.1 Game core  

App

SimpleApplication

App

main SimpleAppli-

cation simpleInitApp sim-

pleUpdate

bulletAppState

fire firePositions fireNodes

hudControl

App

start

 Play-

er

Character

act

2.2 Jadex/jME interface 
Communica-

tor AgentControl
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Figure 2: JFireEmSim2 screenshot. 

Communicator

agents

AgentControl

Communicator

AgentControl

getBoolean getInt getFloat

agent Char-

acter

shared UpdatePlan

shared

AgentControl

Communicator UpdatePlan

AgentControl

2.3 NPCs behavior  

<<ADF>>

shared Marrie Joe

Jane John fami-

ly_saved John Joe Jane

child_saved

reproached Joe jane_saved

Jane joe_saved

WanderPlan

run_from_fire RunFrom-

FirePlan

fear

run_from_fire cry

CryPlan

RunFromFirePlan disap-

proving wander

0.7 GiveUpPlan

stay_calm

StayCalmPlan

fol-

low_player FollowPlan

re-

ject_follow RejectPlan

3 Controller in Game 
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Figure 3: UML class diagram showing essential part of the JFireEmSim2 game structure. 
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Figure 4: Cleaning bot sensors arrangement. 

nne ene ese sse ssw

wsw wnw nnw nne

0

2700 ene

2700` 5400`

maxMsrblDst

up-

dateAndEvaluate

nne

nnw

•
•
•

p2gAngleInMin

p2gDst

botOn

botCleaning

angleInMin dst

safeDstCl safeDstMov

3.1 Jadex/JBdiEmo/jME as simulation 
platform 
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Figure 5: Cleaning bot interface. 

3.2 Simulation vs. GwP 

safeDstCl safeDstMov

3.3 Cleaning bot in JFireEmSim2 

Figure 6: The second fireman representing the robot ap-
proaching the fire sites, i.e. places to clean.  

CBotController

CBotControllerCore ProximSensors

updateAndEvaluate

CBotController

Robot

Character

updateAndEvaluate

updateAndEvaluate

RelativePosition

4 Related Work 
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5 Conclusion 
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Abstract. With evermore complex system the monitor-
ing and fault detection is becoming a crucial part of con-
trol systems. They allow fast and effective fault diagno-
sis and can decrease the cost of system maintenance.
Modelling of processes plays a crucial part when design-
ing a monitoring system. In this paper an on-line ap-
proach for modelling of fuzzy model is presented (Evolv-
ing Fuzzy Model - eFuMo). As demonstrated in the paper,
the method can be used in the design of model based
fault detection system.

Introduction

Increasing demands of productivity and reliability call

for extending the ability of a common SCADA systems

with the monitoring and fault detection systems. There

are several approaches for designing the fault detection

system. In our paper the monitoring system is based

on a process model. The model is based on a evolving

fuzzy model method (eFuMo). The presented method

is able to build Takagi-Sugeno fuzzy model (TS) from

scratch, starting with one cluster and a local model. The

TS fuzzy models are a powerful practical engineering

tool for modelling and control of complex systems.

They expand and generalize the well-known concept of

gain scheduling. They utilize the idea of linearization

in a fuzzily defined region of the state space. Due to

the fuzzy regions (clusters), the nonlinear system is

decomposed into a multi-model structure consisting of

linear local models [1].

This enables the T-S fuzzy model to approximate

virtually any nonlinear system within a required accu-

racy, provided that enough regions are given [2].

The eFuMo method is an on-line learning method

that is also able to adapt models during the function-

ing of the system. Depending on the learning abilities,

the on-line fuzzy-identification methods can be divided

into: Adaptive methods (e.g., ANFIS [3], GANFIS [4],

rFCM [5], rGK [6]), where the initial structure of the

fuzzy model must be given. The number of space par-

titions/clusters does not change over time, only the pa-

rameters of the membership functions and local mod-

els are adapted; Incremental methods (e.g., RAN [7],

SONFIN [8], SCFNN [9], NeuroFAST [10], DENFIS

[11], eTS [12], FLEXFIS [13], PANFIS [14]), where

only adding mechanisms are implemented; Evolving
methods (e.g., SAFIS [15], SOFNN [16], GAP-RBF

[17], EFuNN [18, 19], D-FNN [20], GD-FNN [21],

ENFM [22], eTS+ [23], ENFM [22], FLEXFIS++

[24], AHLTNM [25], SOFMLS [26]) which, besides an

adding mechanism, implement removing and some of

them also merging and splitting mechanisms. More on

evolving methods can be found in [27] and [28], where

concepts and open issues regarding these methods are

presented.

The paper is organized in the following order. First,

the eFuMo learning method is described, next the mon-

itoring problem is given followed by results and conclu-

sions.

1 eFuMo Structure

The eFuMo method has two types of mechanisms for

identifying the fuzzy model: the adaptation algorithm

and the evolving mechanisms. The first is responsible

for parameter adaptation, such as cluster centers and lo-

SNE 26(4) – 12/2016
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Figure 1: The eFuMo top scheme.

cal models’ parameters; the second is responsible for

structure update: adding, removing, merging and split-

ting of clusters. A central decision logic (CDL) decides

which type of mechanism will be used at current sam-

ple. The block scheme is presented on Figure 1. In

the following subsection, the adaptation and evolving

mechanisms will be presented and at the end the CDL

will be described.

1.1 Adaptation mechanisms

In order to build the TS fuzzy model clusters and local

linear models must be identified. Adaptation mecha-

nisms are responsible for identifying clusters’ and local

models’ parameters and for their adaptation. To parti-

tion input-output data space recursive clustering algo-

rithm is used and for identifying the local models’ pa-

rameters the fuzzy recursive least squares is used.

Space partitioning. For data space partitioning,

the cluster centers and fuzzy covariance matrix must be

calculated. The centers are adapted with the following

equation:

vi(k+1) = vi(k)+Δvi(k) (1)

Δvi(k) =
μi(k)η (x f (k)−vi(k)

)
si(k)

(2)

where η is fuzziness factor, vi is the center position

vector x f is clustering vector, μi is membership degree

of the current clustering vector to the i-th cluster also

called the firing degree of the i-th cluster and si(k+ 1)
is the sum of past membership degrees / firing levels of

the i-th cluster:

si(k) = λcsi(k−1)+μi(k)η . (3)

where λc was introduced as a forgetting factor to en-

able the adaptation of centers. The membership degrees

μi can be calculated as in equation 4 (c is the number

of existing clusters), either based on rFCM [5] (equa-

tion 5), rGK [6] (equation 6) or Mahalanobis distance

(equation 7).

μi(k)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

∑c
j=1

(
di(k)
d j(k)

) 2
η−1

if x f (k) �= vi; i = 1, ...,c

1 if x f (k) = vi
0 if x f (k) = v j; i �= j

(4)

di(k) =
((

x f (k)−vi(k)
)T (x f (k)−vi(k)

))0.5
(5)

di(k)=
((

x f (k)−vi(k)
)T

det(Fi)
1
p F−1

i
(
x f (k)−vi(k)

))0.5

(6)

di(k) =
((

x f (k)−vi(k)
)T F−1

i
(
x f (k)−vi(k)

))0.5

(7)

To get the area of cluster influence the fuzzy covari-

ance matrix Fi is calculated. The recursive equation for

Fi is the following:

Fi(k+1) = γc
si(k−1)

si(k)
Fi(k)+

μi(k)η

si(k)
DFi(k)

DFi(k) = (x(k)−vi(k))(x(k)−vi(k))
T . (8)

where γc is the forgetting factor. To be able to calculate

the Gustafson-Kessel clustering distance (equa-

tion 6) the inverse and determinant of fuzzy covariance

matrix must be calculated. The recursive equation for

the inverse matrix is obtained by using the Woodbury

matrix identity lemma. The equation is following:

[Fi(k+1)]−1 =
1

γc

si(k)
si(k−1)

[
[Fi(k)]

−1 − B
C

]
(9)

B = [Fi(k)]
−1 DFi [Fi(k)]

−1 (10)

C = γc
si(k−1)

μi(k)η +dT
Fi
[Fi(k)]

−1 dFi (11)

dFi = x f −vi(k). (12)
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The determinant is obtained using determinant lemma

(equation 13):

det(A+uvT) = (1+vTA−1u) det(A). (13)

The recursive equation for determinant calculation is:

det(Fi(k+1)) =

(
γc

si(k−1)

si(k)

)p

det(Fi(k))(1+A)

(14)

A =
1

γc

μi(k)η

si(k−1)

(
dT

Fi
[Fi(k)]

−1 dFi

)
, (15)

where p is the number of rows/colmuns of fuzzy co-

variance matrix. The detailed derivations of equations

are given in [6]. The eFuMo method implements the

method for stopping the cluster parameters adaptation

if the clusters firing level is below a certain user defined

threshold βcuttrh . This prevents clusters, that are far from

current clustering vector, to converge to that area. The

clusters’ firing levels 4 that are below the threshold are

set to zero. The rest of the firing levels are then normal-

ized.

Local models’ parameters identification.
Each cluster has a linear local model, that is valid in that

area. The output of the local model is calculated as:

ymi(k) = θ T
i [1 xk(k)T ]T , (16)

where xk(k) is the regression vector and θ T
i are the local

model parameters. The regression vector is usually the

input part of the clustering vector:

x f (k) = [xk(k)T y(k)]T , (17)

where y is the process output. However unlike many ex-

isting on-line fuzzy identification methods the eFuMo

method allows the clustering vector to be different than

the regression vector.

The eFuMo has different fuzzy least squares based

identification methods included ([12], [22], [5] and

[29]). Usually best results are obtained using local

fuzzy weighted least squares presented in [12]:

xe(k) = [1 xk(k)
T ]T

Pi(k+1) =
1

λr

(
Pi(k)− βiPi(k)xe(k)xT

e (k)Pi(k)
λr +βixT

e (k)Pi(k)xe(k)

)
θ i(k+1) = θ i(k)+Pi(k)βixe(k)

(
y(k)−xT

e (k)θ i(k)
) (18)

where i is the cluster index, θ is the vector of local

model’s parameters and β is the firing level of cluster

and the y is the process output. The firing levels are

calculated on the input space. Usually the methods use

Gaussian functions equation 19 or equation 20:

μi(k) = e
− (x fk

−vik
)2

2ηmFik,k k = 1,2, ...p−1 i = 1,2, ...,c

βi =
p−1

∏
k=1

μi(k)

(19)

βi = e
−D2

ik
2ηm i = 1,2, ...,c,

D2
ik =

(
x fin(k)−viin

)T F−1
iin

(
x fin(k)−viin

)
.

(20)

where ηm is the overlapping factor usually set to 1, Fik,k
is diagonal element k of fuzzy covariance matrix, x fk
and vik are the k-th element of clustering vector and k-th

element of i-th cluster center vector, respectively. The

Fiin is the input fuzzy covariance matrix, x fin is the clus-

tering vector containing only the input variables and viin
is the cluster center in an input space. The obtained fir-

ing levels are then normalized:

βi =
βi

∑c
k=1 βk

i = 1,2, ...,c. (21)

One can also use the same equation for firing level cal-

culation as with clustering algorithm. However, with

Gussian functions the transitions between local models

(clusters) are more smooth.

When building the simulation model, the model pa-

rameters can be identified more accurately using the in-

strumental version of least squares [30]. The instrumen-

tal variable adaptation algorithm for equation 22 can be

written as:

xe(k) = [1 xk(k)
T ]T

xem(k) = [1 xkm(k)
T ]T

Pi(k+1) =
1

λr

(
Pi(k)− βiPi(k)xem(k)xT

e (k)Pi(k)
λr +βixT

e (k)Pi(k)xem(k)

)
θ i(k+1) = θ i(k)+Pi(k)βim xem(k)

(
y(k)−xT

e (k)θ i(k)
)
(22)

where xem(k) is the regression vector where the delayed

process outputs were replaced with model outputs and

βim is the membership degree of vector x fm(k), which

is the clustering vector, where delayed process outputs
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Figure 2: The clustering algorithm.

were replaced with model outputs:

x f (k) = [u(k−n) ...u(k) y(k− r) ... y(k−1)]

x fm(k) = [u(k−n) ...u(k) ym(k− r) ... ym(k−1)]

(23)

where ym is the model output and y is the real output. In

both cases the dead zone for adaptation can be consid-

ered [31].

The adaptation procedure can be represented by the

diagrams as shown on figure 2 and figure 3. In figure

2 the clustering procedure is represented and in figure

3 the local model parameters identification algorithm is

presented.

1.2 Evolving mechanisms

To upgrade the fuzzy model structure evolving mecha-

nisms, such as adding and removing the clusters is im-

plemented in the eFuMo method.

Figure 3: The parameter adaptation algorithm.

Adding mechanism. This is one of the most im-

portant mechanisms. It adds new clusters to the fuzzy

model structure and improves the fuzzy model perfor-

mance. In the literature, there are several different con-

ditions of adding new clusters based on model out-

put error, distance of current sample to existing cluster

and ε-completeness which is based on current samples

membership degree to existing clusters.

In [32] (DFKNN) a cluster adding is based on Eu-

clidian distance to the existing cluster centers and the

change of variance that the new sample brings to the

closest cluster. The distance and variance change must

be greater than the predefined threshold. A new cluster

is added if a certain number of sequential samples sat-

isfy this condition. In [11] (DENFIS) adding is based

on an Euclidian distance. If the distance of current

sample to closest cluster is grater than two times the

threshold a new cluster is added. In [20] (D-FNN) and

[21] (GD-FNN) adding is based on model error and dis-

tance of new sample vector to closest cluster. If both are

grater than a user defined threshold the cluster is added.

The threshold is decreasing with time. In [17] (GAP-

RBF) and [15] (SAFIS) a new cluster is added if the

model error and distance of the current sample to ex-

isting clusters is over a threshold. They calculate the

decrease in error if current sample would be taken for a

new cluster. If the decrease is large enough new cluster

is created. In [18, 19] (EFuNN) the adding is based on

sensitivity calculated based on normalized fuzzy differ-
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ence distances. The eTS method [12] adds a new cluster

when the potential of current sample is higher than a po-

tential of existing clusters and if it is distanced enough

from the nearest cluster. In [33] (NFCN), [22] (ENFM),

[8] (SONFIN), [9] (SCFNN), [16] (SOFNN) adding is

based on ε-completeness principle. In [13] (FLEXFIS)

the adding is based on distance and vicinity quotient.

In practice, the distance conditions work best.

Therefore, the eFuMo implements two conditions for

adding: the distance conditions and the consequent

samples conditions. Both conditions must be satisfied

in order for a new cluster to be added. The consequent

samples condition is to prevent a new cluster being cre-

ated based on outlier sample. This condition means that

several consecutive samples must satisfy the distance

condition before a new cluster is added. The condition

is explained in [32].

The distance adding condition is based on a normal-

ized distance. There is an option of choosing the com-

ponent distances or Mahanalobis distance. The normal-

ized component distances are calculated as:

di j =
|x f j(k)− vi j |

kn
√

fi j j

, j = 1, ..., p i = 1, ...,c (24)

where x f j(k) is the j-th element of clustering vector,

vi j is the j-th component of i-th cluster center, p is the

length of clustering vector, c is the number of clusters,

fi j j is the j-th diagonal element of i-th cluster’s fuzzy

covariance matrix and kn is the user defined constant,

usually set to 2. When using normalized Mahanalobis

distance the normalization vector is formed from diag-

onal elements of fuzzy matrix:

sinorm = [
√

fi11

√
fi22

...
√

fipp ]
T , (25)

The normalized distance is then calculated as:

dinorm =
((x f (k)−vi)

T F−1
i (x f (k)−vi))

0.5

kn(sT
inorm

F−1
i sinorm)

0.5
(26)

With the first condition, a cluster can be added is any

of the component distance equation 24 is larger than 1.

The same component distance must be larger than 1 for

all existing clusters. With the second condition a cluster

can be added if the distances equation 26 to all clusters

are larger than 1. Figures 4(a) show the possible adding

space for the component distance conditions and figure

4(b) for the Mahanalobis distance condition. Both fig-

ures show the possible adding space (orange) for two

(a) Component adding

distance.

(b) Mahalanobis adding

distance.

Figure 4: Different adding distance conditions.

dimensional space. When a cluster is added, the param-

eters of the cluster must be initialized. The center of

a new cluster is set at the position of current clustering

vector. The fuzzy covariance matrix is initialized as di-

agonal matrix where the distances to closest cluster are

considered. The diagonal elements are defined as:

fnew j j =− d2
i j

2ηm ln(εβ )
, (27)

where εβ is a user defined constant, normally set to

0.15. If the distance di j is smaller than standard de-

viation (
√

fi j j ), then this diagonal element is equal to

a diagonal element of the closest cluster’s fuzzy covari-

ance matrix ( fnew j j = fi j j ).

The first cluster is added at the position of the first

clustering vector. Its fuzzy covariance is initialized in

the similar manner considering the input-output space

boundary and expected number of clusters:

dmax j = max(x j)−min(x j), j = 1, ..., p (28)

where dmax j is an expected range of j-th element of

clustering vector. The influence zone of the j-th com-

ponent is then calculated as:

din f luence j =
dmax j

2 c
, j = 1, ..., p (29)

where c is the expected number of clusters. The di-

agonal j-th element of fuzzy covariance matrix is then

calculated as:

σ2
j =−

d2
in f luence j

2ηm ln(εβ )
j = 1, ..., p (30)
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The fuzzy covariance is built with σ2
j as:

Fi =

⎡
⎢⎢⎢⎣

σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
p

⎤
⎥⎥⎥⎦ (31)

The parameters of new local model can be initialized

using weighted mean:

θi+1 j =
∑c

i=1 ωi j θi j

∑c
i=1 ωi j

(32)

where i is the index of cluster and j is the parameter

index. Weights ωi j can be equal to normalized firing

levels of clusters, or equal to normalized firing levels of

clusters combined with parameters variances:

ωi j = βi
1

σ2
Pi j j

, (33)

where σ2
Pi j j

is the j-th diagonal element of least squares

covariance matrix of i-th cluster.

Removing mechanism. It is meant to remove old

clusters and clusters created based on outliers. In

eFuMo method, this mechanism is not so important as

the method incorporates the forgetting factors that en-

sure the adaptation of the structure to the new data.

However, it may happen that a cluster is created in a

partition of input-output space that doesn’t have much

samples and is not very important for the model accu-

racy. This mechanism ensures that these clusters are

removed from the model structure. In literature, differ-

ent ideas are presented. In [34] the cluster is removed

if in a certain time the cluster doesn’t receive any sup-

port sample. Cluster receives a support sample if it has

greater firing level than other clusters. This might be a

problem with industrial processes, where it might hap-

pen that the process is in one working point for a longer

period of time. In this case, other clusters, that describe

different working points, might be removed from the

structure. In [20], [21], [17], [15] in [16] (D-FNN, GD-

FNN, GAP-RBF, SAFIS in SOFNN) the removing is

based on model error. In [20] (D-FNN) the error re-
duction ratio is introduced. The amount of error, that a

certain cluster brings to the overall model error is calcu-

lated. If this is small, the cluster is considered as redun-

dant and is therefore deleted. Similar concept is used in

[21] (GD-FNN), where sensitivity index is introduced.

In [15] (SAFIS) an equation is introduced to estimate

the error change if a certain cluster is removed from

the structure. If this change is small, the cluster is re-

moved. In [16] (SOFNN) removing is based on optimal
brain surgeon approach [35, 36]. In [37] (Neural gas)

the clusters are removed based on their age. All clusters

that are older than an user defined age are removed from

the structure. In [38, 39] (exTS) the removing is based

on cluster’s support and cluster’s age. The clusters are

removed based on support-age ratio. Similar conditions

are introduced in +eTS [23], where also the utility con-

dition is added. This condition is based on the ratio of

sum of firing levels and age of cluster. The threshold

values are defined with standard deviation and mean

values of the ratios. In general, this is not adequate,

since there is usually small number of clusters; there-

fore, using standard deviation and mean value are not

really representative. In +eTS also minimal existence

condition is introduced. With this condition, a newly

created cluster must gather a certain amount of support

samples in a certain time period after creation. If the

gathered support is lower than a predefined threshold,

the cluster is removed from the structure. In [18, 19]

(EFuNN) the removing is based on cluster’s age and

sum of cluster’s firing levels. In [32] (DFKNN) remov-

ing is based on minimal support and time period. If the

cluster has lower support than an user defined threshold

the cluster is deleted. The cluster is also removed if in

certain time period after cluster’s creation, no support

sample is assigned to it.

The proposed eFuMo method has two conditions for

removing: A minimal existence condition and support-

age ratio condition. The minimal existence condition

is the same as in [23]. It simply removes clusters that

in certain period after creation (kdelay) don’t receive

enough support samples (Nsi). The time period (kdelay)

and support threshold (Nstrh) are user defined constant

usually set to 20 and 10, respectively. The support-age

ratio condition is based on clusters’ supports Nsi nor-

malized with clusters’ age (equation 35). Cluster with

the ratio lower than a percent ε of mean ratio is deleted.

Age ai is defined as a number of samples from the clus-

ter’s creation ki and current sample k:

ai = k− ki (34)

Sni =
Nsi

ai
. (35)
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Both conditions for removing can be written as:

IF Sni < ε mean(Sn)

OR
(
Nsi < Nstrh AND k > ki + kdelay

)
THEN remove i-th cluster.

(36)

Splitting mechanism. It is in our case meant for

fine tuning the evolving fuzzy model. It can add clus-

ters in input-output space, where the output model er-

ror is higher than predefined threshold. The concept of

splitting was used in the on-line incremental learning

of Gaussian Mixture Models in [40], where the Cher-

noff bound is used and in [41], where fidelity measure

is used. It is argued in [42] that these methods are slow

and don’t produce good results. Therefore they pro-

pose an integrating a joint incremental on-line split-and-

merge scenario, that should overcome under- and over-

clustered partitions. The splitting is based on a BIC

value. The BIC is a combination of Gaussian density

function function and cluster overlapping. The clusters

that are split are found using trail and error procedure.

In [10] (NeuroFAST) clusters are split based on mean

squared error (MSE). The error is checked every P step.

The cluster that has the highest MSE and is at least P-

times activated is split.

The eFuMo’s splitting mechanism is based on rel-

ative model error, that clusters gather over time. The

error is updated every time the splitting mechanism is

called and the current sample doesn’t satisfy the dis-

tance adding condition. First the relative model error is

calculated:

e(k) =
|ym(k)− y(k)|

3.4σy
, (37)

where y is the real output and ym is the model output.

The σy is calculated by CDL block and represents cur-

rent standard deviation of the process output. The error

is then divided among the existing clusters and added to

the previous error:

esumi(k) = esumi(k−1)+βie(k), (38)

where βi is the firing level of i-th cluster. The splitting

mechanism checks the cluster with the highest error. If

its support from the last change in cluster number till

now is higher than a threshold (usually set to 20) and

its error normalized with N (number of samples used

to calculate the error) is larger than a threshold value,

the cluster is split. The error threshold is set by the

user, specifying the maximal and minimal error thresh-

old and the decay constant. The current threshold is

calculated as:

etrh = max(emaxexp(−N/T ),emin), (39)

where etrh is the current threshold, emax is the maximal

error threshold, emin is the minimal error threshold, N
and T are the number of samples that are used for error

calculation and decay constant, respectively.

The positions of the split clusters are calculated us-

ing diagonal elements (vector sinorm) of the fuzzy covari-

ance matrix.

vi1 = vi +0.5sinorm

vi1 = vi −0.5sinorm

(40)

where i is the index of the cluster that is split. The new

center positions can also be calculated using the sin-

gular value decomposition as in [43]. The fuzzy co-

variance matrix, support and sum of past membership

degrees are set to half of their original value for both

clusters. The time of cluster creation is for both clusters

initialized as the creation time of the original cluster.

Merging mechanism. There are two types of

merging algorithms implemented in eFuMo: supervised

and unsupervised. In literature different concept of

merging techniques can be found. In [32] (DFKNN),

the center positions are monitored. If the centers are

converging to the same area the clusters are merged.

The used similarity measure is based on samples mem-

bership degrees and is similar to the correlation between

clusters firing levels. It is presented in detail in [44]. In

[18] (EFuNN), the merging is done based on clusters’

firing levels correlation. The method merges neigh-

borhood clusters, where after merging the total radius

does not exceed the predefined maximal radius. In [22]

(ENFM),the clusters are merged if the membership de-

gree of the first cluster to the second and vice versa is

higher than a predefined threshold. In [16] (SOFNN)

clusters are merged if the cluster centers of the two clus-

ters are the same. The possibility of using similarity

measure from [45] is mentioned. In [46] (FLEXFIS+),

the merging based on membership function intersec-

tions is proposed and the overlapping index is calcu-

lated. If this index for the two clusters is higher than

a predefined threshold and the angles between the local

models’ parameters are small the clusters are merged.

The eFuMo unsupervised merging is based on most

commonly used principle of merging. It merges clusters
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that are close together. The similarity and the vicinity

of the two clusters are measured by the normalized dis-

tance:

d2
ik = (vi−vk)

T F−1
i (vi−vk), i,k = 1, ...,c i �= k. (41)

dnormik =

√
d2

ik

2sT
inorm

F−1
i sinorm

(42)

The distances are calculated only for clusters that have

higher support from last change in cluster number than

an user defined threshold (usually set to 20 for both val-

ues). The clusters are considered for merging if both

normalized distances dnormik and dnormki are shorter than

the predefined threshold εβ :

dnormik <
√
−ln(εβ ) (43)

If this criterion is satisfied, the distance ratio is checked:∣∣∣∣1− min(dnormik ,dnormki)

max(dnormik ,dnormki)

∣∣∣∣< kdmerge (44)

if the ratio is above the user defined threshold kdmerge

(usually 10 percent) clusters are merged.

The parameters of new cluster are initialized as a

weighted mean. The fuzzy covariance as proposed in

[22]:

Fnew =
1

(Nsi +Nsk)3
((Ns3

i +2Ns2
i Nsk +NsiNs2

k)Fi+

+(Ns3
k +2Ns2

kNsi +NskNs2
i )Fk+

+(Ns2
i Nsk +NsiNs2

k)(vi −vk)(vi −vk)
T )

(45)

The new center is calculated as:

vnew =
Nsivi +Nskvk

Nsi +Nsk
(46)

In the same manner a the new sum of past membership

degree is calculated. New support of the cluster 47 and

time of creation are calculated as weighted mean where

weights are sum of past membership degrees (si, sk):

Nsnew =
Nsisi +Nsksk

si + sk
. (47)

The local linear model parameters are calculated as

weighted mean:

θnew j =
ωi j θi j +ωk j θk j

ωi j +ωk j

j = 1, ...p, (48)

where weights ω are the cluster supports Ns combined

with a variance of the parameters.

The supervised merging considers the prediction

model error. The supervised merging has three different

measures to detect the clusters that could be merged to-

gether. It uses angles between local models’ parameters

(angle merging condition), correlation between clusters

firing levels (correlation merging condition) and dis-

tance ratio (distance ratio merging condition). Only

clusters that gathered higher support and sum of past

membership degrees than a predefined threshold can be

considered for supervised merging. The correlation co-

efficient is calculated based on monitoring of firing lev-

els and their products βi j(k) = βi j(k− 1)+βi(k)β j(k),
βii(k) = βii(k−1)+βi(k)βi(k) and is calculated as:

Ci j(k) =
βi j

β 0.5
ii β 0.5

j j
(49)

If the coefficient Ci j(k) is above user-defined threshold

(usually set to 0.9) the clusters i and j are considered

for merging.

The distance ratio criterion for merging is similar

than with the unsupervised merging. The distance ratio

is calculated as:

dik =

√
(vi −vk)T det(Fi)

1
p F−1

i (vi −vk)

Kd
|1−min(dik,dki)|

max(dik,dki)

(50)

The clusters are considered for merging if the distance

ratio Kd is lower than an user defined threshold (usually

0.05) and the correlation coefficient is at least half of

the threshold defined for correlation merging condition.

The angle merging criterion is based on local mod-

els’ angles. First the parameters are normalized. The al-

gorithm sweeps all local models’ parameters to find the

vector of the largest absolute value of parameters. Then

the parameters of local models are normalized with this

vector. The angles for the two clusters for all parame-

ters are calculated:

αi jk = |arctan(θik)− arctan(θ jk)| (51)

where k is the parameter index. The clusters are consid-
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ered for merging if all angles αi jk , k = 1, ..,r, where r is

the number of local model’s parameters, are below the

user-defined threshold (usually set to 2 degrees) and the

correlation coefficient is at least half of the threshold

defined for correlation merging condition.

After the eFuMo identifies the possible merging

pairs with the correlation, angle and distance ratio

merging conditions it then checks the local models for

the error:

x1 = [1, ū1, ..., ūp−1]
T

e1 = |θ T
i x1 −θ T

j x1|

e2 =
p

∑
r=1

|θir(x1r +2σur−1
)−θ jr(x1r +2σur−1

)|

e3 =
p

∑
r=1

|θir(x1r −2σur−1
)−θ jr(x1r −2σur−1

)|

e =
1

10.2 σy

3

∑
r=1

er

(52)

where ū is the mean value of a certain input variable

σur−1
is its standard deviation, σy is the standard devia-

tion of the process output, p−1 is the number of inputs,

j and i are the cluster indexes θi is the i-th cluster’s local

model parameter vector and θir is the r-th parameter of

the i-th local model.

The pair that has the lowest error and the error is be-

low the threshold is merged. The center of the merged

cluster is positioned in the middle between maximum

and minimum border of both clusters:

d1 = vi −v j

v′i = vi + sign(d1)sinorm

v′j = v j − sign(d1)s jnorm

d2 =
v′i −v′j

2

vnew = v j +d2

(53)

The fuzzy covariance matrix and support of a new

merged cluster is initialized as a sum of both clusters’

fuzzy covariance matrices and supports, local model pa-

rameters are initialized as a mean of both local models’

parameters and the creation time is initialized to the cre-

ation time of the oldest cluster. The sum of past mem-

bership degrees is initialized to the max sum of past

membership degrees of both clusters.

Figure 5: Scheme of the CDL.

1.3 Central decision logic

The CDL is responsible for proper flow of the opera-

tions. It controls the calls to evolving mechanisms and

adaptation mechanisms. It also calculates the mean and

standard deviations of the inputs and output of the pro-

cess, that is identified with eFuMo. The scheme of the

CDL block is shown on figure 5 and the sub-blocks are

shown on figure 6.

The input to the eFuMo identification method are

clustering vector (x f ), regression vector (xk), output of

the process (y) and number of current sample (i). The

CDL block first checks the current sample number (i) to

the sample number when the last change in cluster num-

ber was made and the user defined time delay. If the

sum of these two values are smaller than a current sam-

ple number, the evolving mechanisms may be called.

Otherwise the CDL skips the call to evolving mecha-

nisms.

The CDL first calls the adding mechanism, then the

removing mechanism, follows the supervised merging

mechanism and unsupervised merging mechanism and

at the end the CDL calls the splitting mechanism. If one

of the mechanisms changes the cluster number other

evolving mechanisms that follow are not called and the

eFuMo continues with the adaptation algorithm.
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(a) Block A (b) Block C

(c) Block B (d) Block B

Figure 6: The CDL scheme blocks. The c is the number of clusters, c_trh is the maximal allowed number of clusters, age_trh is
the age threshold for minimal existence condition and last_change is the sample number when the last change in
cluster number occurred.
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Figure 7: Scheme of the MBBR.

The CDL algorithm is also responsible for calculating

the variance and mean of the input variables and output.

The variance σ2 is calculated on line by the following

equation:

σ2
x (k) =

1

k

(
(k−1)(σ2(k−1)+ x̄(k−1)2)+ x(k)2

)−
− 1

k2
((k−1)x̄(k−1)+ x(k))2

(54)

where x is the variable and x̄ is the mean of it, calculated

as:

x̄(k) =
1

k
((k−1)x̄(k−1)+ x) (55)

If the splitting is enabled, the CDL also calls the error

update algorithm. The algorithm updates a cluster error

equation 38. This algorithm is only called if the current

data sample doesn’t satisfy the distance adding condi-

tion. The CDL also calculates the clusters’ firing levels

products used to calculate the correlation coefficient 49.

2 Monitoring Example
2.1 Monitoring system idea

The monitoring system that includes the evolving fuzzy

model was tested on measured data from a pilot waste-

water treatment plant, shown in figure 7. The pilot plant

consists of two anoxic reactors, two aerobic reactors

and an additional reactor, where the water is collected

before returning as an internal recycle or passing down

to the settler. To ensure the homogeneity, the waste wa-

ter is mixed by mixers in the anoxic reactors and by air

flow in the aerobic reactors. In this example the mon-

itoring of oxygen concentration in anoxic reactors will

be done. The monitoring system is based on Takagi-

Sugeno (TS) fuzzy model that estimates the relations

between the input and output variables. The oxygen

concentration is estimated from the air flow, the tem-

perature in the reactor and the previous measurement of

the oxygen concentration. First order local models are

used. The inputs were selected by a backward selec-

tion. The idea is to detect the error in the process output

based on the inputs. The outputs of the FDS are yso f t(k)
and alarm(k). The output alarm(k) indicates the pres-

ence of the fault in the measured signal (alarm(k) = 1:

fault detected). The output yso f t(k) is the process output

with the removed fault. If there is no fault detected the

output yso f t(k) is equal to the process output y(k). If the

fault is detected, the output yso f t(k) is calculated based

on a fuzzy model that describes the proper relations be-

tween the input signals and the monitored signal.

The FDS determines the fault based on the internal

fuzzy model of the signal relations. For monitored sig-

nal, three models are kept in the FDS’s memory: a full

evolving fuzzy model, an adaptive fuzzy model (param-

eters of clusters and local models are adapted) and a

fuzzy model with fixed parameters that holds the in-

formation about the last good known parameters. The

learning of the fuzzy models is delayed for 200 samples.

The delay was introduced for future research to cope

with slower faults. The data sample is used for learning

if there was no fault detected. For each sample and each

model the relative prediction error is calculated. The

calculated error (its absolute value) is assigned to the

model. The prediction error assigned to the fuzzy model

is combined with the simulation error, which is calcu-

lated periodically on every 200-th sample using the 200

samples in the buffer. The prediction error is also used

for learning the prediction-error fuzzy model. Namely,

each model that describes the signal relations is accom-

panied by the error model. The error model is used to

calculate the allowed difference between the estimated

and measured signals. For estimating the sensor output

during the failure, the model with the lowest assigned

error is used.

The adaptive and fixed model structure and parame-

ters can be replaced when a cluster is added or removed

from the evolving fuzzy model’s structure. Before the

number of cluster changes, the error of each model is

checked. If the evolving model has the smallest error,

the adaptive and fixed model structure is replaced by the

evolving model’s structure. In addition their error mod-

els are replaced. The simplified diagram of the proce-

dure is shown in figure 8.

The variances denoted as σ_evolving, σ_adaptive
and σ_ f ixed are calculated from the error model:

σ =
c

∑
i=1

βi

√
Fir,r , (56)
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Figure 8: Scheme of the FDS for a subprocess.

where Fir,r is the last diagonal element of the error fuzzy

model’s cluster i. This element represents the variance

of the error. As seen in figure 8, the alarm is raised

if the difference between the estimated output and the

measured output is higher than the maximum allowed

difference. Note that the alarm is turned off when for at

least 30 consecutive samples the difference is below the

defined threshold for turning off the alarm. To ensure a

smooth transition from the estimated output to the mea-

sured output, when the alarm is turned off a filter was

implemented that calculated the output of the FDS as:

yso f t =
((30− kalarm)ymodel + kalarmy)

30
, (57)

where kalarm is the number of samples from the sam-

ple when the condition for turning the alarm off was

reached. The maximum number of kalarm is 30 and its

value is reset to 0 every time a new alarm is raised.

2.2 Detecting the false alarms due to manual
calibration

Manual tuning and offset repairs of the oxygen concen-

tration signal is performed every few months. This is

seen on the upper graph in figure9. The drift of the sen-

Figure 9: Effect of sensor calibration.

sor was manually reduced by the operator, causing the

FDS to report an error. It can be seen that the shapes

of the estimated and measured outputs are practically

the same. However, due to an offset of the signal the

FDS detects the error. To automatically turn off such

alarms, an additional algorithm was implemented to the

FDS. This algorithm is turned on when a new alarm

is detected. With this procedure the algorithm starts to

calculate the variances of the estimated output, the mea-

sured output and the variance of their difference when

the alarm is raised. The idea behind this solution is that

the variance of the estimated and measured output (if

they are only shifted) should be higher than the variance

of their difference, under the assumption that the model

used for estimating the output is not biased and the pro-

cess output changes (there is an excitation present). The

variances are calculated recursively with equations 55

and 54. When the variance of the difference between

the estimated and measured outputs falls under the vari-

ance of both, the estimated and the measured outputs

the raised alarm is turned off. The algorithm starts to

check this condition after the alarm is present for some

time (in our case 300 samples). The algorithm is turned

off when, for at least a certain number of consecutive

samples (in our case 100), the variance of error is below

the model and process variance. The algorithm is also

turned off if its maximum functioning time is reached.

3 Results and Discussion
The presented idea was tested on real data. To esti-

mate the performance of the system during a sensor’s
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Figure 10: Oxygen-concentration fault detection.

malfunction a failure was simulated on a known part of

the data. Note that the duration of the simulated fault

was exaggerated in order to test the system. The sim-

ulated faults lasted for about 7000 samples (around 39

hours). Usually, the faults last from about a few min-

utes up to 6 hours. The settings of the evolving method

were obtained based on trail and error. The fault was

simulated between the samples 35000 and 43000. The

whole experiment is shown in figure 10. The first 8000

data points were used for the initial learning of the fuzzy

model. The learning was performed using the eFuMo

method. The alarm signal and the number of fuzzy

model clusters are shown in figure 11. Besides the sim-

ulated fault, the system also detected some faults that

were not added to the signals. These faults were caused

by sudden spikes in the monitored signals and therefore

the detection of the fault seems justified.

Even though the estimated signal is not entirely cov-

ering the measured signal, we believe that the estima-

tion accuracy is still good enough. The error between

the measured and estimated signal during the fault is

given in Table 1. This table also includes the NIDE

index, the minimum, maximum and mean absolute er-

ror, the signal range for the faulty samples, the mini-

mum, maximum and mean relative error, and the sam-

ples where the fault was simulated are given.

As can be seen on the upper graph in figure 9, the

manual tuning creates an offset of the measured signal,

resulting in the detection of a fault. At around sam-

ple 8400 a real fault occurs, which then quickly van-

ishes. Later on the measured signal is shifted. The FDS

Figure 11: Alarm signal and number of clusters over the
experiment.

Estimation Error Concentration O2

NDEI 0.488

min. abs. 2.83e-5
[
g/m3

]
max. abs. 1.347

[
g/m3

]
avg. abs. 0.189

[
g/m3

]
signal range 2.72

[
g/m3

]
min. rel. 1.04e-5

max. rel. 0.495

avg. rel. 0.0695

faulty samples [103] 35−43

Table 1: Estimation error during the simulated fault.

detects the alarm. Because the signal is shifted after

the fault, the alarm is still present. The alarm is finally

turned off at sample 11500, when the measured signal

comes into the allowed difference zone and stays there

long enough for the fuzzy model to adapt itself to the

signal shift. On the lower graph in figure 9, the false-

alarm detection was implemented. It can be seen that

the signal shift is successfully detected and the alarm is

turned off more quickly than without the implemented

false-alarm detection algorithm.

On figure 12, the course of variances are shown. The

variance of the difference (between the estimated and

measured signal) falls under the measured signal’s vari-

ance very quickly. This is partly because the initial fault

of the measured signal is included in the variance cal-

culation. The variance of the difference falls under the

variance of the estimated signal at sample 9475. With
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Figure 12: The course of variances.

this, the conditions for overriding the original alarm are

met. The last alarm based on the output differences is

raised at sample 9740. Therefore, the variance proce-

dure is switched off at sample 9840. The procedure suc-

cessfully detected the signal offset caused by the man-

ual calibration.

4 Conclusion
In this paper an evolving fuzzy model method for on-

line learning of fuzzy models was presented. The

method is useful when dealing with nonlinear time-

varying processes. The method was used in an exam-

ple of fault detection system. The presented results

show that the approach can be successfully used for

such tasks. The only issue of the method and all such

methods is in its tuning. There are a number of parame-

ters that need to be tuned. Their tuning highly depends

on a problem and require an expert to tune them. Fur-

ther research will be focused on lowering the number of

tuning parameters and on self tuning of the method.
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Abstract. Accurate anticipation of the remaining use-
ful life (RUL) of a machine is becoming mandatory for
efficient exploitation of the asset and avoiding the un-
planned downtimes. This should be achieved without
extra investments in additional sensors and processing
power. In this paper we present an approach to the RUL
prediction of a shot blasting machine by using record-
ings from inexpensive vibrational sensors. The key idea
consists in (i) employing generalised Jensen-Rényi diver-
gence (JRD) as a measure of change in the vibrational
pattern and (ii) associating JRD with the abrasive wear
in rotor blades. It is essential to note that these two
show monotonic relationship. Hereupon, a simple hid-
den Markov model with stochastic inputs and JRD as out-
put is proposed. The hidden states of the model are up-
dated on-line bymeans of Kalman filter. Prediction of the
remaining useful life is done by executing Monte Carlo
simulations on the updated model and evaluation of the
first passage time of the JRD. The approach is success-
fully validated experimentally by running themachine up
to failure, hence allowing for naturally evolving wear pro-
gression and breakdown.

Introduction
Stable and anticipative condition of process equipment,

high availability and reliability, along with product

quality are key factors that allow companies to stay

competitive on the market. However, wear, material

stress and environmental factors cause equipment to

fail. The problem occurs if that happens unexpectedly,

since the consequence can be partial or total break-

down of a production line, destroyed equipment and

even catastrophes.

Migrating towards more cost effective condition-

based and predictive maintenance (instead of sticking

to the outdated concepts of reactive and periodic main-

tenance) has become a way to raise the overall process

performance and cost efficiency. To accomplish this

goal, systems for on-line and non-destructive condition

monitoring (CM) have to be employed to timely alert

about the onset and location of fault in the early stage

[1]. Indeed, the degradation of an asset usually goes

through a distinct incipient phase with some noticeable

indicators, which provide advanced warning about on-

set of failure. However, what the operators and main-

tenance people indeed want to know is when to stop

the machine and take accommodation actions. Reliable

estimate of the remaining useful life (RUL) becomes

indispensable.

In spite of significant advances in condition moni-

toring in the last decade in terms of methodology and

key enabling technologies, yet no massive use in indus-

trial sector has been witnessed to date [2]. There are

several reasons for that, including (i) (still) relatively

high cost of the design and commissioning, especially

when domain specific solutions have to be adopted and

(ii) the fact that traditional approaches require addi-

tional instrumentation (e.g. for rotational speed) to be

implemented hence rising the cost.

Compared to CM, predicting RUL is by far more

difficult problem. Only limited success has been

achieved in special cases like in aeronautics and defence

systems. The problem is notoriously demanding for

several reasons: (i) data about overall useful life from

similar items of equipment are seldom available, (ii)

knowledge about degradation, i.e. wear mechanisms is

incomplete and (iii) comprehensive knowledge of oper-

ating history, disturbances and past maintenance actions

is usually unavailable.

The objective of the design approach presented be-

low is to comply with the three main requirements: (i)

to come up with signatures sufficiently robust to varia-

tions in the operating conditions; (ii) to set up the alarm

threshold the required prior knowledge should be min-

imal (meaning that all the required information should
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be extracted from data in fault-free operation) and (iii)

to perform condition monitoring (CM) using minimal

number of sensors thus making the method both broadly

applicable and financially viable.

In this paper we propose an approach to the RUL

prognosis based solely on vibrational records. The idea

is to exploit the relationship between the degradation

phenomena in the material, the remaining life and char-

acteristic information patterns in measured signals. The

latter are obtained by statistical signal processing of

signals from vibrational sensors in a way to accom-

plish monotonous dependance with the level of ma-

chine degradation. Evaluation of the vibrational fea-

tures is based on statistical analysis of the envelope of

the generated vibration [3]. State of health of the ma-

chine is determined from change in the vibrational sig-

nature by calculating the "distance" between initial and

current signatures. That is achieved by evaluating the

generalised Jensen-Rényi divergence of the vibrational

features. Since the degradation is stochastic process,

we will exploit hidden Markov models to describe the

degradation phenomena. The states of the models are

updated on-line and then used to simulate propagation

of the future degradation and hence evaluate the proba-

bility density function of the remaining useful life.

The concept of RUL estimation above is applied to

a shot blasting machine.

The rest of the paper is organised as follows. Section

2 introduces the problem related to the degradation of

the machines during operation. Simple process model

for RUL prediction, complemented with the health in-

dex, is presented in Section 3. Experimental results are

highlighted in Section 4. The paper ends up with con-

cluding remarks.

Shot lasting achine
Shot blasting machines are widely used in the process of

surface cleaning where contaminants from the surface

of castings are removed in order to prepare the metal

parts for further finishing like, for example, painting,

coating or mechanical treatment.

In shot blasting machines (Figure 1) small shots of

abrasive material are fed to the turbine blades where the

shots form a stream flowing along the blade length. De-

pending on the actual arrangement of the separating ro-

tor and the sleeve, the flowing stream will be roughly

uniform on the blades’ width and length. As soon as

the stream of shots leaves the blades, its direction is

controlled by setting the wheel, whilst its shape changes

both in width and length, thus forming a range of shot

flow that hits the surface of object under treatment.

Figure 1: The shot blasting machine and illustration of the
principle of operation.

The problem addressed in this paper concerns abra-

sive wear of the rotor blades. Abrasive grains transverse

the blade from center to the periphery and their kinetic

energy increases due to centrifugal forces of the rotat-

ing blade. Hence the abrasive grains scrap the surface of

the blade thus forming "micro-chips", i.e. small pieces

of material removed from the blade surface. With in-

creasing number of the operating cycles the wear in-

creases, gradually leading to the damaged blade, which

can eventually break and cause downtime.

The outlook of a new blade at the beginning of the

process and near failure is given in Figure 2. The prob-

lem is that it is not possible to accurately judge the level

of wear on the basis of the number of cycles. Therefore

it is of utmost interest for the operators to have an indi-

cator on the level of wear in non-intrusive manner, i.e.

without interrupting the blasting process.

Inference on the level of damage is done on the basis

of signal analysis from vibrational sensor mounted on

the housing of the machine close to the rotor bearing.
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Figure 2: Turbine blade at the beginning of the operation
(left) and at the end of the useful life (right).

Vibrational features and
health index

.1 Feature extraction from vibrational signal

Faults in the rotational machines affect the inner pat-

terns of vibrational signals referred to as features [3].

By tracking the way these features evolve over time, it

is possible to perform sufficiently accurate RUL predic-

tion.

Wear in a turbine blade of the machine gradually

results in increased imbalance of the rotor system. Vi-

brations resulting thereof can be viewed as the result of

excitation, caused by rotor movement, on the machine

eigen-structure. The resulting spectrum contains char-

acteristic components at the frequencies m ·nblades · frot
where m ∈ 1,2, ..., nblades is the number of blades and

frot is rotational speed. By applying the narrow-band

filtering around the characteristic frequency we get a

narrow-band stochastic signal whose energy (or enve-

lope) is Rice distributed.

Sampling of vibrational signal is performed at high

frequency during short measurement sessions with an

interval of 2 hours between two consecutive sessions.

Changes in the probability distribution function (pdf)

are characterised by calculating the "distance" between

the current pdf and the reference one obtained when the

machine is in nominal (healthy) state. Among several

possible metrics that can be used to describe this dis-

tance, we suggest the so-called f -divergence measures,

more precisely the generalised Jensen-Rényi (JR) diver-

gence [4]. The rationale is simple. Instead of compar-

ing two distributions, we compare two ensembles of dis-

tributions, one from fault-free reference condition and

the other from current condition. The strength of this

approach lies in the fact that comparing only two distri-

butions is subjected to considerable fluctuations, which

make final decision making difficult.

.2 Jensen-Rényi divergence

The generalised Jensen-Rényi divergence (JRD), de-

noted by JRw
α serves to quantify the dissimilarity

among n pdfs P1, ...,Pn. It reads:

JRw
α(P1, . . . ,Pn) = Hα

(
n

∑
i=1

wiPi

)
−

n

∑
i=1

wiHα (Pi)

(1)

where ∑n
i=1 wi = 1 and Hα is the Rényi entropy:

Hα(P) =
1

1−α
ln ∑

x∈D

pα(x). (2)

with α ∈ [0,1].
The selection of weights wi in (1) is in principle ar-

bitrary. If wi are selected uniformly i.e. wi = 1/n, the

divergence reaches maximal value [5]. JR divergence

quantifies shared information among n random vari-

ables. If they are identical, i.e. P1 = P2 = . . . = Pn,

the divergence is zero.
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Figure 3: (a) Pdfs three random signals, and (b) pairwise JR
divergence as a function of α .

The usability of the JR divergence concept can be

described with a simple example. Figure 3(a) shows
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three pdfs of Rician family. By considering the pairwise

JR divergence with uniform weights, the relation (1) be-

comes:

JRw
α(P1,P2) = Hα

(
1

2
(P1 +P2)

)
(3)

− 1

2
(Hα (P1)+Hα (P2)) ,

where P1 and P2 are pdfs of interest. As shown in

Figure 3(b), the JR divergence corresponds to the dis-

similarity between corresponding pdfs.

Figure 3(b) additionally shows the effect of the val-

ues of the parameter α . Low value of α ≈ 0 emphasizes

dissimilarity among pdfs in the lower part of the range

of random variable (approximately x ∈ (6,8)) where

pdfs do not differ much, hence low divergence values.

In the middle region (x ≈ 4, α ≈ 0.2) the pdfs differ the

most, hence the highest values of JR divergence. Fi-

nally, α ∈ (0.6,1) captures the region of the bulk prob-

ability masses and the divergence drops in a relatively

linear manner.

.3 The role of weights wi

To allow tracking the changes in pdfs, the exponential

weights wi are suggested in this paper. The weights wi
are calculated using the exponential function of the fol-

lowing form:

wi =C · e− λ
n i (4)

where λ is sensitivity parameter, n is the number of pdfs

(1), i = 1,2, . . . ,n and C is normalising constant. One

can easily see that (4) reduces to the uniform weighting

for λ → 0 and n → ∞.

The influence of weights wi on JR divergence can

be illustrated by a simple simulated example. The sim-

ulation consists of 21 Gaussian pdfs with one heaving

significantly different μ as shown in Figure 4(a). The

JR divergence is calculated as: JRw
α(P1,P2, . . . ,Pi),

i = 1 . . .21.

The rate of change in JR divergence is condi-

tioned with the selection of weights as shown in Fig-

ure 4b. The most notable increase is observed if uni-

form weighting is applied, i.e. wi = 1/n [5], while ex-

ponential weighting delays the impact.

.4 Health index

The concept of health index is widely used in system

condition monitoring and serves to describe the aggre-
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Figure 4: The evolution of JR divergence after measurement
sessions. Note that all pdfs are equal except the
pdf #11. (a) Pdf’s of the simulated signals
associated to the measurement sessions 1, . . . ,21

(b) JR divergence. Up to i < 11 there is no
dissimilarity in the distribution,
hence JRw

α (P1,P2, . . . ,Pi) = 0.

gated level of health either of a component or machine

as a whole. In the case of shot blasting machines the

health H is perfect when the machine is new, hence

H = 0. With evolving abrasive processes on the blades,

more and more surface material is removed, which re-

sults in increased vibrations. The Jensen-Rényi diver-

gence is viewed as an appropriate metric that reflects

the change in vibrational pattern caused by the level of

wear in turbine blades. To find the relationship, life-

long experiments have been run in which machine oper-

ation was periodically interrupted by operators who per-

formed invasive measurement of the blades volume. All

the time during operation, the vibrations were regularly

measured. The most important result of the experiment

is the finding that between JRD and the extent of dam-

age (equivalent to removed volume of blade material)
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there exists a monotone relationship. This is indicated

in Figure 5. Consequently, one can adopt the health in-

dex to be equal to the normalised JRD, i.e. Hk =
JRDk
JRD∗

where JRD∗ stands for JRD when the machine turbine

is considered worn out.

Note that health index H does not rise monoton-

ically all the time, but in the period approximately

[30,100] it slightly decreases. Such a behaviour looks

illogical given the fact that the machine should get more

and more worn with new operating cycles. The expla-

nation lies in the fact that at the begining of the opera-

tion, the machine is not perfectly balanced. If we take

into account that abrasive processes are not the same on

all the blades, then asymmetry in abrasion slightly cor-

rects the position of the center of gravity, hence result-

ing in lower vibrations and apparently improved condi-

tion. Such a situation changes as soon as abrasion pro-

gresses. Then asymmetrical wear in the blades results

in increased imbalance and consequently raised vibra-

tions.

Stochastic odel of brasive
ear

.1 Abrasive wear

The key mechanism of deterioration of condition of the

turbine blades is abrasive wear [6]. Each time a shot

particle enters the turbine, it travels along the blade’s

length. Along that path it removes a small layer of the

blade material of volume δV according to the Archard’s

law

δV = k ·δA ·δL, (5)

where k is the wear coefficient, δA is the contact area

and δL is the length of the path traversed by the shot

particle on blade’s surface.

In the ideal case, when all the blades were identi-

cal, the mass removed from each blade would be the

same. Thus the center of gravity would stay at the ro-

tational axis, which means negligible vibrations. How-

ever, due to irregularities in the particle size, angle of

entry and variations of the blade’s microstructure, there

are minute variations in the mass removed from each

blade. As a result, the generated vibrations tend to in-

clude amplitude modulations that depend on the num-

ber of blades and the rotational speed. Therefore, the

intensity of these sidebands can be directly correlated

with the removed volume of the blade material due to

abrasive wear. Since there is no other source of vibra-

tions, one can safely assume that any particular change

in the vibration’s signature in the lower frequency band

(<2 kHz) is due to mass loss and is therefore directly

related to the blades’ condition.

.2 Hidden Markov model

The Archard’s law (5) describes mass loss due to the

blade interaction with single shot particle. During nor-

mal operation a number of particles travel along the

blade’s surface. During the interval of time [tk−1, tk] the

loss of volume can be written as:

ΔVk = k · Ãk · L̃k, (6)

where Ãk is the cumulative contact area of the shot parti-

cles and L̃k is the cumulative traversed distance. These

two quantities are results of stochastic processes and,

consequently, also ΔVk is stochastic process. Therefore,

the total volume loss at k+1 would be:

Vk+1 =Vk +ΔVk. (7)

Due to surface changes, the contact area and the tra-

versed length are expected to change over time. There-

fore, based on (7), we can assume that the volume loss

ΔVk is a process defined by the stochastic variable de-

fined on the set of non-negative real numbers. To con-

sistently model such a process, several options are at

disposal as for example, gamma or Weibull distribu-

tion. The problem is that in such a case recursive up-

dates can be done only by numerical techniques. A

way around is to assume that the increments ΔVk fluctu-

ate around some mean value μ . The size of fluctuation

can be described by a normally distributed white noise

wμ ∼N (0,σ2
μ) such that σμ 	 μ . From here it follows

that

ΔVk −ΔVk−1 = wμ,k −wμ,k−1

and consequently one can write

ΔVk = ΔVk−1 +wΔV,k

where wΔV,k ∼ N (0,2σ2
μ)

Hence we get a state-space model with states Vk and

ΔVk. The problem now is that none of the states is avail-

able through on-line sensor reading. This can be sorted

out by replacing the volume Vk by health index Hk,

which is calculated on-line from acquired vibrational

records.
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Figure 5: The relation between fault progression and evolution of health index (JR divergence): (a) at the beginning of the
experiment, (b) in the middle of the experiment and (c) at the end of the experiment.

Hence the resulting state space model reads as fol-

lows [
Vk+1

ΔVk+1

]
︸ ︷︷ ︸

xxxk+1

=

[
1 1

0 1

]
︸ ︷︷ ︸

A

[
Vk

ΔVk

]
︸ ︷︷ ︸

xxxk

+

[
0

wΔV,k

]
︸ ︷︷ ︸

wwwk

(8)

The measurement equation that relates system states

and computable health index Hk reads

Hk = [1 0]︸︷︷︸
CCC

[
V (k)
ΔVk

]
+nk (9)

where nk ∼ N (0,σ2
n ) is white noise uncorrelated

with wwwk.

.3 Kalman fiter

The states of the discrete model (8) can be effectively

estimated using the Kalman filter approach [7, 8]. The

unknown states are updated at each measurement ses-

sion resulting in the moments of the posterior distribu-

tion of system states xxxk ∼ N (x̂xxk|k,PPPk|k) as follows

1. Initialisation step: set the estimates x̂xx0|0 =

x̄xx0, PPP0|0, QQQ=wwwwwwT , RRR= σ2
n from data obtained through

life-long experiments on similar machines.

2. Prediction step

x̂xxk|k−1 = AAAx̂xxk|k−1

PPPk|k−1 = AAAPPPk−1|k−1AAAT +QQQ

3. Update step: calculate the system output vector yyy
based on calculated JRD and then update the moments

of state probability distribution function

KKKk = PPPk|k−1CCCT (CCCPPPk|k−1CCCT +RRR)−1

x̂xxk|k = x̂xxk|k−1 +KKKk(yyyk −CCCx̂xxk|k−1)

PPPk|k = (III −KKKkCCC)PPPk|k−1

4. When the next measurement session appears set

k = k+1 and go to step 2.

.4 RUL predictor

Having an updated model at a given measurement ses-

sion k one can simulate the possible future trajectories

of the state space model (8) by Monte Carlo approach.

Using realisations of random processes of noise terms

wΔ,k+s, nk+s, s > 0 is is possible to calculate the cor-

responding trajectories of the state vector xxxk+s and the

predicted health index Hk+s. Based on that one can eas-
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ily calculate the distribution of first passage time, i.e.

the time s∗ at which the health index H crosses the up-

per bound H∗.

Results of experiments

The RUL estimation algorithm was evaluated on a shot

blasting turbine in real operating environment. The

blades were subjected to 400 operational hours spread

over a period of 4.5 months. Vibration signals were

acquired during 10 seconds long measurement sessions

every two hours while the machine was in full opera-

tion. In that period, three visual inspections were per-

formed after 10 hours of operation, at the 120th hour

and at the end of the experiment. Vibrations were mea-

sured on the bearing housing nearest to the turbine with

sampling frequency of 10 kHz.

.1 Evolution of the health index

The health index was calculated as JR divergence ac-

cording to (1) with unifirm weights wi. First 20 hours

of operation were used as a reference point. The evolu-

tion of the health index is shown in Figure 5.

As shown in Figure 5, in the initial phase, the health

index values were near zero. This is an indication that

the energy distribution of the newly observed vibra-

tion is very similar to the initial ’fault-free’ distribution,

hence the minimal JR divergence.

The first significant increase of the JR diver-

gence occurred around the 30th hour of operation. Af-

ter the initial increase the JR divergence gradually de-

creased. As said, this effect can be attributed to the run-

in phase of the turbine blades.

The onset of fault is visible at the 80th hour of opera-

tion. At this point the degradation of the blade condition

commenced. This is clearly indicated by the increase in

the calculated JR divergence. The observed degrada-

tion was confirmed by the visual inspection performed

at 120th hour, as shown in Figure 5. The degradation

trend is kept almost constant until the last fifth of the

run i.e., around the 130th hour. The calculated health

index surpassed the threshold at the 180th hour. The

operation was halted at the 190th hour with the blade

condition corresponding to the estimated health index,

as shown in Figure 5.

.2 RUL prediction

The evolution of the calculated health index is evalu-

ated according to the Archard’s law, as described in

Section 4.1. Based on results of Kalman filtering, the

trajectories of future states, and consequently health in-

dex, are calculated from a set of noise realisations.

The RUL prediction based on the first 100 measure-

ments is shown in Figure 6. At each time moment, the

Kalman filter provides estimates of the posterior prob-

ability distribution of the state vector xxxk+s and the out-

put yk+s. To come to the distribution of the actual RUL

we perform Monte Carlo simulations of the output tra-

jectoris. The distribution of the RUL can be evaluated

from the histogram of first passage times for each sim-

ulation run. As shown in Figure 6, the proposed un-

scented Kalman filter (UKF) provides left skewed RUL

estimates. The 3σ confidence interval is sufficiently

narrow and corresponds to the actual evolution of the

health index.

For proper assessment of the model’s accuracy, the

RUL estimates should be plotted versus a theoretically

expected RUL. Typically, the theoretical RUL is ex-

pected to be a linear function with gradient -1. This

is shown in Figure 7. Note that during the first 2/3

of the operational life the RUL prediction is not reli-

able. However, in the last third of the life, predictions

become rather accurate meaning that roughly 2 months

before the blades are fully worn the operators have reli-

able information, which could be used to plan the main-

tenance actions at a convenient occasion in a way that

do not disturb regular production (for example, during

a weekend or night shift).

Figure 6: RUL prediction at the 100th measurement
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Conclusion

The proposed feature based on JR divergence is shown

to be sufficiently sensitive to perform accurate condition

monitoring of shot blasting machines. Furthermore, it

is shown that the evolution of the JR divergence can be

directly related to the removed mass from the turbine’s

blades due to abrasive wear. As a result, the evolution

profile can be described through Archard’s law of abra-

sive wear. Based on this result, accurate RUL prediction

is be achieved by estimating the models’s states using

computationally simple Kalman filter and Monte Carlo

simulations over noise realisations.
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Abstract.  Evolution algorithms are optimization meth-
ods that mimic a process of the natural evolution. Their 
stochastic properties result in a huge advantage over 
other optimization methods, especially regarding solving 
complex optimization problems. In this paper, several 
types of evolutionary algorithms are tested regarding a 
dynamic nonlinear multivariable system modelling and 
control design. We have defined three problems: the first 
one is the so-called grey box identification problem 
where the characteristic of the system’s valve is under 
investigation, the second one is a black box identification 
where the goal is a dynamic system’s model develop-
ment using system’s measurements data, while the third 
one is a system’s controller design. The efficacy of solving 
presented problems was compared to the usage of the 
following optimization methods: genetic algorithms, 
differential evolution, evolutionary strategies, genetic 
programming, and a developed approach called AMEBA 
algorithm. All methods have proven to be very useful for 
grey box identification and design of a system’s control-
ler, but AMEBA algorithm has also been successfully 
used in a black box identification, where it generated a 
corresponding dynamic mathematical model. 

Introduction 
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1 Three Coupled Tanks System 

Figure 1: System of three coupled tanks. 

1.1 Model structure 

V3

Valve V3

u2(t)

u1(t)

Part model

h1(t)

h2(t)

h3(t)

Izh(t) 

Pumps

vh 1(t) 

vh 2(t) 

Figure 2: Block diagram of the three coupled tanks  
system structure. 



  Corn  et al.     AMEBA-Evolutionary Computation Method: Comparison and Toolbox 
 

   SNE 26(4) – 12/2016 231 

T N 

Figure 3: Input signals u1(t) and u2(t). 

Figure 4: Responses of the system to chosen input  
signals. 

1.2 Controller design 

u2(t)

u1(t)

Process
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h2(t)

h3(t)

vh1(t) 

vh2(t) 
Pumps

h2ref (t)

h1ref (t) e1(t)

e2(t)
Controller

Figure 5: Closed-loop system operation 

href1 href2

e1 e2
h1 h3 href1

href2 u1 u2
wopt

Figure 6: Reference signals. 

2 Modelling Results 

2.1 Parametrical evolutionary algorithms 

a1 a2 a3 a4 
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Met. 
Error identification 

[%] 
Error validation 

[%] 
DE 1.77 3.27
ES 1.79 3.58
GA 1.88 4.57

Table 1: Evaluation of modelling results of parametrical 
algorithms. 

Figure 7: Comparison of measurements with the re-
sponse of the model generated by the DE 
method. 

Figure 8: Average convergence of parametrical methods 
 

2.2 Structural evolutionary algorithms 

Algorithm Error ident. [%] Error valid. [%]
GP 1.62 3.12

AMEBA valve 3.57 4.65
AMEBA full model 5.63 7.23

Table 2: Evaluation of modelling results when using 
structural algorithms. 



  Corn  et al.     AMEBA-Evolutionary Computation Method: Comparison and Toolbox 
 

   SNE 26(4) – 12/2016 233 

T N 

Figure 9: Solution generated with the GP method. 

Figure 10: Graph representation of model of the valve 
generated with AMEBA algorithm. 

Color Node Color Node
 Input  Amplification 
 Output  Exponent 

 Low pass filter  Delay 
 High pass filter  Derivative 

 Multiply  Integral 

 Divide  Add 

Table 3: Color-legend of different types of nodes. 

Figure 11: Graph representation of system’s model  
generated with the use of AMEBA algorithm. 

3 Results of the Controller 
Design 

3.1 Parametrical evolutionary algorithms 
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Kp
Ki

Algorithm Error Energy used
DE 2.04 % 35.9% 
GA 2.04 % 36.5% 
ES 2.48 % 35.3% 

Table 4: Evaluation of controller optimization results 
calculated with parametrical methods. 

3.2 Structural evolutionary algorithm 

Algorithm Error Energy used
AMEBA 1.5 % 34.1 % 
GP 9.3 % 35.5 % 

Table 5: Results of controllers generated by structural 
evolutionary methods. 

Figure 12: Graph representation of controller generated 
by the AMEBA algorithm. 

4 Toolbox development 

Figure 13: Settings of simulation environment. 
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Figure 14: General setting. 

Figure 15: Agent settings. 

Figure 16: Node settings. 

Figure 17: Reproduction settings.  

Figure 18: Additions functionalities of Toolbox. 
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Abstract.  Simulation techniques are useful tools for 
study and research of new welding technologies, and for 
the rapid development of new control algorithms and 
control units such as power source circuits, and welding 
current or voltage controllers. The objective in this re-
search is to combine the simulation of Gas Metal Arc 
Welding (GMAW) process models with the simulation 
models of inverter based power machines. The GMAW 
process is considered as an electrical circuit and the 
mathematical model is based on physical descriptions of 
several parts of GMAW process, as are the electric circuit 
of power supply, the arc dynamics, and the electrode 
melting process. To establish the validity of the proposed 
GMAW model, a simple welding application was simulat-
ed and welding parameters were derived from experi-
mental conditions. Next, the simulation model of full-
bridge DC-DC converter is presented and the discrete PI 
controller for welding current feedback control is pro-
posed. Both models, the GMAW model and the inverter 
power supply model, are combined and simulated to-
gether. Finaly, the simulation study of firing the 
thyristors, which enables steady and pulsed direct 
current welding with a single fully controlled bridge 
converter is shown.  

Introduction
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1 GMAW Process Dynamic 
Model 

u R 
L
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ve vm
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ld l  ls
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Figure 1: Schematic diagram of GMAW process and 
electrical circuit of the self-regulating arc 
process. (1) Power source; (2) wire feed unit; (3) 
shielding gas; (4) welding gun; (5) workpiece; (6) 
welding arc and material transfer process. 
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2 Welding Power Sources 

2.1 Inverter based power sources 

Figure 2: Power supply architecture of modern-inverter 
based welding machine. 

Figure 3: Power supply architecture of modern-inverter 
based welding machine. 

2.2 Thyristor based power sources 
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Figure 4: Power supply architecture of modern-inverter 
based welding machine. 

3 Simulation Examples and 
Results 

3.1 Simulation of GMAW Proces 

H
ve

u

ve

t

Parameter Descr. of the parameter  Value 

R Power source resistance 0.07  Ω 
L Power source inductance 0.02 mH 

ρ Specific electrical resistance 
of the electrode 0.1 Ω/m  

A Cross-sectional area of the 
electrode wire 1.02 ·10-6 m2 

E Electric field strength 675 V/m 
ua+c Arc voltage constant 11.55 V  
Rarc Arc resistance 0.03 Ω 
ve Feeding speed of electrode 0.5 m/min 
k1 Empirical constant 0.626 m/(As) 
k2 Empirical constant 7.55 ·10-5 (A2s)-1 

H Contact tip to workpiece 
distance (CTWD) 0.16 m 

Table 1: GMAW process simulation parameters. 

H
ve

h 
H

l

Figure 5: Simulated results of contact to workpiece volt-
age waveform (third plot) and welding current 
waveform (fourth plot). Simulation response of 
the GMAW model when the CTWD was changed 
from 16 mm to 12 mm (first plot) and the elec-
trode feeding speed ve was changed from 0.5 
m/min to 0.7 m/min (second plot). 
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3.2 Simulation of Dynamic Behaviour of a 

Full-Bridge DC-DC converter 

Parameter Descr. of the parameter  Value 

fs Switching frequency 40 kHz  
C Capacitance 1 μF 

Pn Transformer nominal power 5 kW 
n1 : n2 : n2 Transformer turns ratio 3.5 : 1 : 1  

S1 - S4 Ideal switch, IGBT  
Ron Switch internal resistance 140 mΩ 
Rs Snubber resistance 1MΩ 
Csd Snubber capacitance 4.7 nF 
Ts Control sample time 0.1 ms 
TI PI controller Integral constant 2 ms 
KP PI controller proportional gain 0.2 %/A 

Table 2: DC-DC converter and other circuit parameters. 

Figure 6: Simulation results of the welding process with 
current control feedback and PWM full-bridge 
DC-DC converter-based welding power source. 
The upper plot shows the change of the CTWD 
from 16 mm to 18 mm. The forth plot presents 
the welding current transient response, and on 
the fifth plot the time response of the primary 
current is shown. 

H

ve

Figure 7: Simulation results of generated PWM signals, 
which depend on the duty cycle controlled with 
simple PI controller. The second and third plots 
show the PWM signals for driving the full-bridge 
DC-DC converter switches. The fourth and fifth 
plots show the corresponding changes of prima-
ry current and secondary - welding current. 

3.3 Simulation of Dynamic Behaviour of a 
Thyristor Based Weldin Power Source 
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Figure 8: The simulation scheme of a three-phase welding source with thyristor full bridge circuits in Matlab/Simulink. The 
scope window shows the time graphs of signals within a time window of 100 ms. 

Figure 9: Voltage and current waveforms and variation of 
the firing angle by pulse frequency fp = 100 Hz 
and pulse width tp = 6.6 ms. 

fp

tP

Figure 10: Voltage and current waveforms and variation 
of the firing angle by pulse frequency fp = 50 Hz 
and pulse width tp = 3.3 ms. 
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Figure 11: Fourier spectrum of the AC current during 
pulsed current welding with pulse frequency fp 
= 50 Hz and pulse width tP = 3.3 ms by changing 
the firing angle from 0 deg to 60 deg. 

4 Conclusion 
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Abstract.  Actuators associated with control surfaces in 
aircraft, ships and underwater vehicles often introduce 
problems in terms of the control characteristics of the 
vehicle if significant saturation and rate limiting effects 
are present. Rate limits, in particular, have been linked to 
a number of well-publicised safety and handling-qualities 
issues for aircraft. Such limits also present difficulties in 
ship steering and ship autopilot systems. This paper 
describes an investigation of the effects of actuator non-
linearities involving a ship steering control application. 
The method of approach involves the use of inverse 
simulation to detect the onset of limiting. The paper 
shows that inverse simulation methods allow direct 
prediction of situations in which rudder saturation and 
rate limiting have significant effects in terms of the ma-
noeuvrability of the vessel. It is also shown that a two-
stage inverse-simulation method allows direct assess-
ment of the difference between desired and achievable 
manoeuvres.  

Introduction

1 Models of Actuators and Ship 
Steering Dynamics  



Murray-Smith        Inverse Simulation Methods Applied to Ship Steering 

 246 SNE 26(4) – 12/2016 

TN

Gr

Ga c

 cU cL

Ga

G c

t t

t

Figure 1: Simplified block diagram of actuator system 
with amplitude and rate limiting. 
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Table 1: Parameter values used for the model of R.O.V. 
Zeefakkel [8]. 

2 Inverse Simulation Methods 

2.1 Iterative methods of inverse simulation 
based on discrete models  

2.2 The continuous system simulation 
approach 

U

 
     T K  

  
d

 
d
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2.3 Principles of the feedback approach 

G s

K s
W s V

K s
G s

K s W s V s

 

Figure 2: Block diagram for inverse simulation using 
feedback principles for a given linear or  
nonlinear model G. For a high value of the gain 
K, the variable w is a close approximation to 
the model input required to produce an  
output that matches a given time history v(t).  
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3 Inverse Simulation Applied to 
the Ship Model 

3.1 Feedback applied to the ship model with 
the actuator sub-model included. 

K

Figure 3: Block diagram of the feedback system used for 
inverse simulation with the actuator  
sub-model incorporated within the feedback 
loop. Here the block A represents the actuator 
and V represents the vehicle. The variable HR 
is the vehicle heading rate. The reference 
model generates the time history of the  
desired manoeuvre in terms of the required 
heading-rate time history. The block shown as 
having a gain factor L is a subsidiary feedback 
loop and, in the case of the application  
considered here, involves angular acceleration 
feedback.  

L

K L 
 

 K

L 

Ref. 
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W (actuator input 
from the inverse 
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Figure 4: Reference input applied to the feedback  
system for the case of the ship model with 
forward speed of 5 m/s and a demanded 
heading change of 8 deg.  

 
 Figure 5: Heading change corresponding to the  

heading-rate reference signal of Figure 4.  

Figure 6: Rudder angle time history found using the  
inverse simulation process for the ship model 
with forward speed of 5 m/s. 

Figure 7: Rudder angular velocity time history found  
using the inverse simulation process for the 
ship model with forward speed of 5 m/s.
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Figure 8: The difference between the heading-rate  
reference input and the heading-rate found 
from a forward simulation using the rudder 
deflection time history of Figure 6. 

Figure 9: The error in heading corresponding to the re-
sults shown in Figure 8. 

Figure 10: Rudder angle time history found for forward 
speed of 2.6 m/s. Other conditions for this 
simulation are the same as for the previous 
results.

Figure 11: Rudder angular-rate time history found for 
forward speed of 2.6 m/s. Other conditions for 
this simulation are the same as for the  
previous results. 

Figure 12: Rudder angle time history found for forward 
speed of 5 m/s for a demanded manoeuvre 
corresponding to a 40 deg heading change. 
Other conditions for this inverse simulation 
are the same as for the previous results. 
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Figure 13: Rudder angular-rate time history found for 
forward speed of 5 m/s s for a demanded 
manoeuvre corresponding to a 40 deg  
heading change. 

Figure 14: Results in terms of rudder angle obtained by 
inverse simulation using the feedback  
approach for the case of the ship model with 
forward speed of 2.6 m/s and a demanded 
heading change of 30 deg with a rudder  
saturation limit of ±35 deg and rudder rate 
limit of ±7 deg/s.  
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3.2 A two-stage feedback method 

Figure 15: Block diagram of the two-stage procedure  
for inverse simulation using the feedback 
method. 

Figure 16: Results in terms of rudder angle obtained by 
inverse simulation using the two-stage ap-
proach for the case of the ship model with 
forward speed of 2.6 m/s and a demanded 
heading change of 30 deg with a rudder satu-
ration limit of ±35 deg and rudder rate limit 
of ±7 deg/s.  

Figure 17: Heading rate error from forward simulation 
(second stage of the two-stage inverse simu-
lation procedure) using the rudder deflection 
time history of Figure 16.  
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Figure 18: Heading error from forward simulation (sec-
ond stage of the two-stage inverse simulation 
procedure) using the rudder deflection time 
history of Figure 16.  

4 Discussion and Conclusions 
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Abstract.  Optimal utilization of complex processes 
involves real-time operational optimization and schedul-
ing, especially in cases where the production line con-
sists of both continuous and batch operated unit pro-
cesses. This kind of real-time optimization requires pro-
cess models which can be computed significantly faster 
than real-time. Iterative balance calculation is typically 
far too slow for these cases. This paper presents a meth-
od for converting an iterative balance model to a directly 
calculating model suitable for on-line process optimiza-
tion. The approach is demonstrated with the first unit 
process in the copper smelting line, the flash smelting 
furnace (FSF). The method consisted of formulating an 
equation group based on the constrained FSF HSC-Sim 
model and solving the unknown parameters and static 
states with use of a symbolic calculation software. The 
solution was implemented as a function whose calcula-
tion time fulfilled the requirements for scheduling use. 

Introduction 
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1 Examples of Industrial 
Process Optiomization and 
Scheduling 
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2 Copper Production Line 
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Figure 1:Flow sheet of copper process at Boliden Harjavalta [22]. 

3 Model Conversion 
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3.1 Legacy model 

3.2 Method for derivation of fast  
calculating model 
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Figure 2: A comparison between analytical solution results with blue line and iteratively calculated  
HSC-Sim results with red line. 

4 Model Validation and 
Discussion 

4.1 Similarity to legacy model 

4.2 Calculation time 

5 Model Utilization 
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Figure 3: Direct input output model utilized in  
scheduling. 

5.1 Direct input output 

5.2 Closed analytic solution 

5.3 Model based schedule calculation 

Figure 4: Closed analytic solution utilized in scheduling 
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Figure 5: A plausible schedule of an optimization  
algorithm. 

Figure 6: Outcome of example routine including both 
needed process feeds and matte state. 

6 Conclusions 
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Abstract. Lighting conditions in buildings and efficient 
use of solar energy are a subject of considerate attention 
in order to provide sufficient living comfort and to re-
duce the energy use. For this reason numerous methods 
and techniques, practical and theoretical, have been 
developed. In this paper a theoretical approach to mod-
elling of the indoor lighting conditions is proposed, 
based on fuzzy black-box modelling. The presented 
model is able to estimate indoor illuminance levels as its 
outputs, by using measured external conditions as its 
inputs. The model can be used to study the influence of 
both controllable and uncontrollable variables to the 
indoor lighting conditions, such as weather, time of the 
year, blinds position, electric lighting and others. Fur-
thermore, using the above model studies on control 
design can be performed in order to obtain algorithms 
for maximal use of the solar energy and to minimize the 
energy consumption. The study has shown that a fuzzy 
illuminance model can estimate the indoor illuminance 
levels comparable to the measured data. Small error 
measures show that similar modelling approach can be 
used in order to integrate the proposed model into other 
environments and can further be used for simulations 
on indoor lighting comfort, control design or model-
based control.  

Introduction
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1 Indoor Environment 



  Logar  et al.     Modelling of Indoor Lighting Conditions in Buildings 

   SNE 26(4) – 12/2016 269 

T N 

Figure 1: Floor plan of the modelled room, with the 
marked positions of the sensors (indoor and  
external illuminance, global and diffuse solar  
radiation (placed on the roof of the building), 
blinds' position), the window area and the 
blinds. 

2 Fuzzy Model 
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2.1 Structure of the model 

Figure 2: Schematic representation of the fuzzy black-box 
illuminance model. 
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2.2 Illuminance reconstruction 

tstart tend

tsat

qreconstruct

qill

linspace(a,b)
a b

Figure 3: Comparison between the measured and the  
reconstructed external illuminance for 5 days in 
early August. 

2.3 Parameterisation of the model 
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Figure 4: A part (5 days in early August) of the input data 
for the model training, including the  
reconstructed external illuminance (upper  
panel), the global and diffuse solar radiation 
(middle panel), the lights' status and the blinds' 
position (lower panel). 

3 Results 

Figure 5: Shape and distribution of the fuzzy membership 
functions on all five inputs for all three data  
clusters as obtained by the ANFIS training  
algorithm. 
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Figure 6: Illuminance model validation; first graph shows 
the comparison of the measured (black line) and 
model simulated (grey line) indoor illuminances 
for 12 different days (days 1-3: June, days 4-6: 
September, days 7-9: December, days 10-12: 
March); second graph shows the measured  
external illuminances with reconstruction; third 
graph shows the position of the blinds and the 
lights' status, respectively; fourth graph shows 
the illuminance estimation error (dashed vertical 
lines show the mean absolute error interval). 
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EUROSIM 
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Simulation Societies 

General Information.   EUROSIM, the Federation of Eu-
ropean Simulation Societies, was set up in 1989. The 
purpose of EUROSIM is to provide a European forum for 
simulation societies and groups to promote advance-
ment of modelling and simulation in industry, research, 
and development.  www.eurosim.info 
Member Societies.   EUROSIM members may be na-
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societies and groups dealing with modelling and simula-
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organised by CAE-SMSG, the Spanish simulation so-
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EUROSIM Member Societies 
ASIM 
German Simulation Society 
Arbeitsgemeinschaft Simulation 

ASIM (Arbeitsgemeinschaft Simulation) is the associa-
tion for simulation in the German speaking area, servic-
ing mainly Germany, Switzerland and Austria. ASIM 
was founded in 1981 and has now about 600 individual 
members, and 90 institutional or industrial members.  

 www.asim-gi.org with members’ area 
 info@asim-gi.org, admin@asim-gi.org  
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T. Pawletta, pawel@mb.hs-wismar.de 

Secretary Ch. Deatcu, christina.deatcu@hs-wismar.de
 A. Körner, andreas.koerner@tuwien.ac.at 
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ASIM is organising / co-organising the following inter-
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• ASIM Int. Conference ‘Simulation in Production 
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• ASIM ‘Symposium Simulation Technique’  
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A. Körner, andreas.koerner@tuwien.ac.at 
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Sciences; niki.popper@drahtwarenhandlung.at 

 
Working Groups for Simulation in Business  
Administration, in Traffic Systems, for Standardisa-
tion, etc. 

 

CEA-SMSG – Spanish Modelling and 
Simulation Group 
CEA is the Spanish Society on Automation and Control 
and it is the national member of IFAC (International 
Federation of Automatic Control) in Spain. Since 1968 
CEA-IFAC looks after the development of the Automa-
tion in Spain, in its different issues: automatic control, 
robotics, SIMULATION, etc. In order to improve the ef-
ficiency and to deep into the different fields of Automa-
tion. The association is divided into national thematic 
groups, one of which is centered on Modeling, Simula-
tion and Optimization, constituting the CEA Spanish 
Modeling and Simulation Group (CEA-SMSG). It looks 
after the development of the Modelling and Simulation 
(M&S) in Spain, working basically on all the issues 
concerning the use of M&S techniques as essential en-
gineering tools for decision-making and optimization. 
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 emilio.jimenez@unirioja.es 
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31, 26004 Logroño (La Rioja), SPAIN 

CEA - SMSG Officers 
President Emilio Jiménez, 

 emilio.jimenez@unirioja.es 
Vice president Juan Ignacio Latorre juanigna-

cio.latorre@unavarra.es 
Repr. EUROSIM Emilio Jiminez, emilio.jimenez@unirioja.es
Edit. Board SNE Emilio Jiminez, emilio.jimenez@unirioja.es
Web EUROSIM Mercedes Perez mercedes.perez@unirioja.es

Last data update June 2016



 Information EUROSIM and EUROSIM Societies 
   

 N 4 SNE 26(4) – 12/2016 

 

CROSSIM  – Croatian Society for 
Simulation Modelling 
CROSSIM-Croatian Society for Simulation Modelling 
was founded in 1992 as a non-profit society with the 
goal to promote knowledge and use of simulation me-
thods and techniques and development of education. 
CROSSIM is a full member of EUROSIM since 1997. 

 www.eurosim.info 
 vdusak@foi.hr 
 CROSSIM / Vesna Dušak 

Faculty of Organization and   
Informatics Varaždin, University of Zagreb 
Pavlinska 2, HR-42000 Varaždin, Croatia 

CROSSIM  Officers 
President Vesna Dušak, vdusak@foi.hr  
Vice president Jadranka Božikov, jbozikov@snz.hr 
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Web EUROSIM Jadranka Bozikov, jbozikov@snz.hr 
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CSSS – Czech and Slovak 
Simulation Society 

CSSS -The Czech and Slovak Simulation Society has 
about 150 members working in Czech and Slovak nation-
al scientific and technical societies (Czech Society for 
Applied Cybernetics and Informatics, Slovak Society for 
Applied Cybernetics and Informatics). The main objec-
tives of the society are: development of education and 
training in the field of modelling and simulation, organis-
ing professional workshops and conferences, disseminat-
ing information about modelling and simulation activities 
in Europe. Since 1992, CSSS is full member of EU-
ROSIM. 

 www.fit.vutbr.cz/CSSS 
 snorek@fel.cvut.cz 

 CSSS / Miroslav Šnorek, CTU Prague 
FEE, Dept. Computer Science and Engineering, 
Karlovo nam. 13, 121 35 Praha 2, Czech Republic 

CSSS  Officers 
President Miroslav Šnorek, snorek@fel.cvut.cz 
Vice president Mikuláš Alexík, alexik@frtk.fri.utc.sk 
Scientific Secr. A. Kavi ka, Antonin.Kavicka@upce.cz 
Repr. EUROSIM Miroslav Šnorek, snorek@fel.cvut.cz 
Edit. Board SNE Mikuláš Alexík, alexik@frtk.fri.utc.sk 
Web EUROSIM Petr Peringer, peringer@fit.vutbr.cz 

Last data update December2012

DBSS – Dutch Benelux Simulation Society 
The Dutch Benelux Simulation Society (DBSS) was 
founded in July 1986 in order to create an organisation 
of simulation professionals within the Dutch language 
area. DBSS has actively promoted creation of similar 
organisations in other language areas. DBSS is a mem-
ber of EUROSIM and works in close cooperation with its 
members and with affiliated societies.  

 www.DutchBSS.org 
 a.w.heemink@its.tudelft.nl 
 DBSS / A. W. Heemink 
Delft University of Technology, ITS - twi, 
Mekelweg 4, 2628 CD Delft, The Netherlands 

DBSS Officers 
President A. Heemink, a.w.heemink@its.tudelft.nl 
Vice president M. Mujica Mota, m.mujica.mota@hva.nl
Treasurer M. Mujica Mota, m.mujica.mota@hva.nl
Secretary P. M. Scala, p.m.scala@hva.nl 
Repr. EUROSIM M. Mujica Mota, m.mujica.mota@hva.nl
Edit. SNE/Web M. Mujica Mota, m.mujica.mota@hva.nl

Last data update June 2016

FRANCOSIM - Société Francophone de Simulation 
FRANCOSIM was founded in 1991 and aims to the pro-
motion of simulation and research, in industry and aca-
demic fields.  

 djouani@u-pec.fr 
 FRANCOSIM / Yskandar Hamam 
Groupe ESIEE, Cité Descartes, 
BP 99, 2 Bd. Blaise Pascal, 
93162 Noisy le Grand CEDEX, France 

FRANCOSIM Officers 
President Karim Djouani, djouani@u-pec.fr 
Treasurer François Rocaries, f.rocaries@esiee.fr 
Repr. EUROSIM Karim Djouani, djouani@u-pec.fr 
Edit. Board SNE Karim Djouani, djouani@u-pec.fr 

Last data update December2012
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HSS – Hungarian Simulation Society 
The Hungarian Member Society of EUROSIM was estab-
lished in 1981 as an association promoting the exchange 
of information within the community of people involved 
in research, development, application and education of 
simulation in Hungary and also contributing to the en-
hancement of exchanging information between the 
Hungarian simulation community and the simulation 
communities abroad. HSS deals with the organization of 
lectures, exhibitions, demonstrations, and conferences. 

 www.eurosim.info 
 javor@eik.bme.hu 
 HSS / András Jávor,  
Budapest Univ. of Technology and Economics,  
Sztoczek u. 4, 1111 Budapest, Hungary 

HSS Officers 
President András Jávor, javor@eik.bme.hu 
Vice president Gábor Sz cs, szucs@itm.bme.hu 
Secretary Ágnes Vigh, vigh@itm.bme.hu 
Repr. EUROSIM András Jávor, javor@eik.bme.hu 
Deputy Gábor Sz cs, szucs@itm.bme.hu 
Edit. Board SNE András Jávor, javor@eik.bme.hu 
Web EUROSIM Gábor Sz cs, szucs@itm.bme.hu 

 Last data update March 2008

ISCS – Italian Society for Computer 
Simulation 
The Italian Society for Computer Simulation (ISCS) is a 
scientific non-profit association of members from indus-
try, university, education and several public and research 
institutions with common interest in all fields of com-
puter simulation. 

 www.eurosim.info 
 Mario.savastano@uniina.it 
 ISCS / Mario Savastano, 
c/o CNR - IRSIP, 
Via Claudio 21, 80125 Napoli, Italy 

ISCS Officers 
President M. Savastano, mario.savastano@unina.it
Vice president F. Maceri, Franco.Maceri@uniroma2.it 
Repr. EUROSIM F. Maceri, Franco.Maceri@uniroma2.it 
Secretary Paola Provenzano,  

paola.provenzano@uniroma2.it 
Edit. Board SNE M. Savastano, mario.savastano@unina.it

 Last data update December2010

 

 
LIOPHANT Simulation 

Liophant Simulation is a non-profit association born in 
order to be a trait-d'union among simulation developers 
and users; Liophant is devoted to promote and diffuse 
the simulation techniques and methodologies; the Asso-
ciation promotes exchange of students, sabbatical years, 
organization of International Conferences, courses and 
internships focused on M&S applications.  

 www.liophant.org 
 info@liophant.org 

 LIOPHANT Simulation, c/o Agostino G. Bruzzone, 
DIME, University of Genoa, Savona Campus 
via Molinero 1, 17100 Savona (SV), Italy 

LIOPHANT Officers 
President A.G. Bruzzone, agostino@itim.unige.it 
Director E. Bocca, enrico.bocca@liophant.org 
Secretary A. Devoti, devoti.a@iveco.com 
Treasurer Marina Masseimassei@itim.unige.it 
Repr. EUROSIM A.G. Bruzzone, agostino@itim.unige.it 
Deputy F. Longo, f.longo@unical.it 
Edit. Board SNE F. Longo, f.longo@unical.it  
Web EUROSIM F. Longo, f.longo@unical.it 

Last data update June 2016

LSS – Latvian Simulation Society 
The Latvian Simulation Society (LSS) has been founded 
in 1990 as the first professional simulation organisation 
in the field of Modelling and simulation in the post-
Soviet area. Its members represent the main simulation 
centres in Latvia, including both academic and industri-
al sectors. 

 briedis.itl.rtu.lv/imb/ 
 merkur@itl.rtu.lv 
 LSS / Yuri Merkuryev, Dept. of Modelling 
and Simulation Riga Technical University 
Kalku street 1, Riga, LV-1658, LATVIA 

LSS Officers 
President Yuri Merkuryev, merkur@itl.rtu.lv 
Secretary Artis Teilans, Artis.Teilans@exigenservices.com

Repr. EUROSIM Yuri Merkuryev, merkur@itl.rtu.lv 

Deputy Artis Teilans, Artis.Teilans@exigenservices.com

Edit. Board SNE Yuri Merkuryev, merkur@itl.rtu.lv 

Web EUROSIM Vitaly Bolshakov, vitalijs.bolsakovs@rtu.lv 
Last data update June 2016
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KA-SIM Kosovo Simulation Society 
Kosova Association for Modeling and Simulation (KA – 
SIM, founded in 2009), is part of Kosova Association of 
Control, Automation and Systems Engineering (KA – 
CASE). KA–CASE was registered in 2006 as non Profit 
Organization and since 2009 is National Member of 
IFAC – International Federation of Automatic Control. 
KA-SIM joined EUROSIM as Observer Member in 
2011. In 2016, KA-SIM became full member. 
KA-SIM has about 50 members, and is organizing the in-
ternational conference series International Conference in 
Business, Technology and Innovation, in November, in 
Durrhes, Albania, and IFAC Simulation Workshops in 
Pristina. 
 

  www.ubt-uni.net/ka-case 
  ehajrizi@ubt-uni.net 
 MOD&SIM KA-CASE;       Att. Dr. Edmond Hajrizi 

      Univ. for Business and Technology (UBT) 
      Lagjja Kalabria p.n., 10000 Prishtina, Kosovo 
 

KA-SIM Officers 
President Edmond Hajrizi, ehajrizi@ubt-uni.net 
Vice president Muzafer Shala, info@ka-sim.com 
Secretary Lulzim Beqiri, info@ka-sim.com 
Treasurer Selman Berisha, info@ka-sim.com 
Repr. EUROSIM Edmond Hajrizi, ehajrizi@ubt-uni.net 
Deputy Muzafer Shala, info@ka-sim.com 
Edit. Board SNE Edmond Hajrizi, ehajrizi@ubt-uni.net 
Web EUROSIM Betim Gashi, info@ka-sim.com 

 Last data update December 2016

 

PSCS – Polish Society for Computer 
Simulation 
PSCS was founded in 1993 in Warsaw. PSCS is a scien-
tific, non-profit association of members from universi-
ties, research institutes and industry in Poland with 
common interests in variety of methods of computer 
simulations and its applications. At present PSCS counts 
257 members. 

 www.eurosim.info (www.ptsk.man.bialystok.pl) 
 leon@ibib.waw.pl 
 PSCS / Leon Bobrowski, c/o IBIB PAN, 
ul. Trojdena 4 (p.416), 02-109 Warszawa, Poland 

 

PSCS Officers 
President Leon Bobrowski, leon@ibib.waw.pl 
Vice president Tadeusz Nowicki,  

Tadeusz.Nowicki@wat.edu.pl 
Treasurer Z. Sosnowski, zenon@ii.pb.bialystok.pl 
Secretary Zdzislaw Galkowski, 

Zdzislaw.Galkowski@simr.pw.edu.pl
Repr. EUROSIM Leon Bobrowski, leon@ibib.waw.pl 
Deputy Tadeusz Nowicki, tadeusz.nowicki@wat.edu.pl 
Edit. Board SNE Zenon Sosnowski, z.sosnowski@pb.ed.pl 
Web EUROSIM Magdalena Topczewska  

m.topczewska@pb.edu.pl 
Last data update December2013

SIMS – Scandinavian Simulation Society 
SIMS is the Scandinavian Simulation Society with 
members from the four Nordic countries Denmark, Fin-
land, Norway and Sweden. The SIMS history goes back 
to 1959. SIMS practical matters are taken care of by the 
SIMS board consisting of two representatives from each 
Nordic country (Iceland one board member). 

 
SIMS Structure. SIMS is organised as federation of re-
gional societies. There are FinSim (Finnish Simulation 
Forum), DKSIM (Dansk Simuleringsforening) and NFA 
(Norsk Forening for Automatisering). 

 
 www.scansims.org 
 esko.juuso@oulu.fi 
 SIMS / Erik Dahlquist, School of Business, Society and 
Engineering, Department of Energy, Building and Envi-
ronment, Mälardalen University, P.O.Box 883, 72123 
Västerås, Sweden 

 
SIMS Officers 
President Erik Dahlquist, erik.dahlquist@mdh.se 
Vice president Bernd Lie, lie@hit.noe 
Treasurer Vadim Engelson,  

vadim.engelson@mathcore.com 
Repr. EUROSIM Erik Dahlquist, erik.dahlquist@mdh.se 
Edit. Board SNE Esko Juuso, esko.juuso@oulu.fi 
Web EUROSIM Vadim Engelson,  

vadim.engelson@mathcore.com 
Last data update June 2016
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SLOSIM – Slovenian 
Society for Simulation 
and Modelling 

SLOSIM - Slovenian Society for Simulation and Mod-
elling was established in 1994 and became the full 
member of EUROSIM in 1996. Currently it has 90 mem-
bers from both Slovenian universities, institutes, and in-
dustry. It promotes modelling and simulation approach-
es to problem solving in industrial as well as in academ-
ic environments by establishing communication and co-
operation among corresponding teams. 

 
 www.slosim.si 
 slosim@fe.uni-lj.si 
 SLOSIM / Vito Logar, Faculty of Electrical  
Engineering, University of Ljubljana,  
Tržaška 25, 1000 Ljubljana, Slovenia 

SLOSIM Officers 
President Vito Logar, vito.logar@fe.uni-lj.si  
Vice president Božidar Šarler, bozidar.sarler@ung.si 
Secretary Aleš Beli , ales.belic@sandoz.com 
Treasurer Milan Sim i , milan.simcic@fe.uni-lj.si 
Repr. EUROSIM B. Zupan i , borut.zupancic@fe.uni-lj.si 
Deputy Vito Logar, vito.logar@fe.uni-lj.si
Edit. Board SNE B. Zupan i , borut.zupancic@fe.uni-lj.si  

Vito Logar, vito.logar@fe.uni-lj.si  
Blaž Rodi , blaz.rodic@fis.unm.si 

Web EUROSIM Vito Logar, vito.logar@fe.uni-lj.si 
 Last data update December 2016

UKSIM - United Kingdom Simulation Society 
The UK Simulation Society is very active in organizing 
conferences, meetings and workshops. UKSim holds its 
annual conference in the March-April period. In recent 
years the conference has always been held at Emmanuel 
College, Cambridge. The Asia Modelling and Simula-
tion Section (AMSS) of UKSim holds 4-5 conferences 
per year including the EMS (European Modelling Sym-
posium), an event mainly aimed at young researchers, 
organized each year by UKSim in different European 
cities.  
Membership of the UK Simulation Society is free to 
participants of any of our conferences and their co-
authors.  

 
 www.uksim.org.uk 
 david.al-dabass@ntu.ac.uk 

 UKSIM / Prof. David Al-Dabass 
Computing & Informatics,  
Nottingham Trent University 
Clifton lane, Nottingham, NG11 8NS 
United Kingdom 

 

UKSIM Officers 
President David Al-Dabass, 

david.al-dabass@ntu.ac.uk 
Secretary A. Orsoni, A.Orsoni@kingston.ac.uk
Treasurer A. Orsoni, A.Orsoni@kingston.ac.uk 
Membership chair G. Jenkins, glenn.l.jenkins@smu.ac.uk 
Local/Venue chair Richard Cant, richard.cant@ntu.ac.uk 
Repr. EUROSIM A. Orsoni, A.Orsoni@kingston.ac.uk 
Deputy G. Jenkins, glenn.l.jenkins@smu.ac.uk
Edit. Board SNE A. Orsoni, A.Orsoni@kingston.ac.uk 

Last data update March 2016

 
 

RNSS – Russian Simulation Society 
NSS - The Russian National Simulation Society 
(    -

 – ) was officially registered in Russian 
Federation on February 11, 2011. In February 2012 NSS 
has been accepted as an observer member of EUROSIM, 
and in 2015 RNSS has become full member. 

 www.simulation.su 
 yusupov@iias.spb.su 
 RNSS / R. M. Yusupov,  
St. Petersburg Institute of Informatics and Automation 
RAS, 199178, St. Petersburg, 14th lin. V.O, 39  

RNSS Officers 
President R. M. Yusupov, yusupov@iias.spb.su 
Chair Man. Board A. Plotnikov, plotnikov@sstc.spb.ru 
Secretary M. Dolmatov, dolmatov@simulation.su 

Repr. EUROSIM R.M. Yusupov, yusupov@iias.spb.su  
Y. Senichenkov,  

senyb@dcn.icc.spbstu.ru 
Deputy B. Sokolov, sokol@iias.spb.su 
Edit. Board SNE Y. Senichenkov, 

senyb@dcn.icc.spbstu.ru 
Last data update June 2016
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EUROSIM OBSERVER MEMBERS 

ROMSIM – Romanian Modelling and 
Simulation Society 
ROMSIM has been founded in 1990 as a non-profit so-
ciety, devoted to theoretical and applied aspects of mod-
elling and simulation of systems. ROMSIM currently 
has about 100 members from Romania and Moldavia. 

 www.eurosim.info (www.ici.ro/romsim) 
 sflorin@ici.ro 
 ROMSIM / Florin Hartescu,  
National Institute for Research in Informatics, Averescu 
Av. 8 – 10, 71316 Bucharest, Romania 

 
ROMSIM Officers 
President  
Vice president Florin Hartescu, flory@ici.ro 

Marius Radulescu, mradulescu@ici.ro 
Repr. EUROSIM Florin Stanciulescu, sflorin@ici.ro 
Deputy Marius Radulescu, mradulescu@ici.ro 
Edit. Board SNE  
Web EUROSIM Zoe Radulescu, radulescu@ici.ro 

 Last data update partly June 2016

 

MIMOS – Italian Modelling and 
Simulation Association 
MIMOS (Movimento Italiano Modellazione e Simula-
zione – Italian Modelling and Simulation Association) is 
the Italian association grouping companies, profession-
als, universities, and research institutions working in the 
field of modelling, simulation, virtual reality and 3D, 
with the aim of enhancing the culture of ‘virtuality’ in 
Italy, in every application area.  
MIMOS became EUROSIM Observer Member in 2016 
and is preparing application for full membership. 

 
 www.mimos.it 
 roma@mimos.it – info@mimos.it 
 MIMOS – Movimento Italiano Modellazione e Simulazio-
ne;  via Ugo Foscolo 4, 10126 Torino – via Laurentina 
760, 00143 Roma 

 

 

 

 

MIMOS Officers 
President Paolo Proietti, roma@mimos.it 
Secretary Davide Borra, segreteria@mimos.it 
Treasurer Davide Borra, segreteria@mimos.it 
Repr. EUROSIM Paolo Proietti, roma@mimos.it 
Deputy Agostino Bruzzone, agosti-

no@itim.unige.it 
Edit. Board SNE Paolo Proietti, roma@mimos.it 

Last data update December 2016

 

CANDIDATES 

Albanian Simulation Society 
At the Department of Statistics and Applied Informatics, 
Faculty of Economy, University of Tirana, Prof. Dr. 
Kozeta Sevrani at present is setting up an Albanian 
Simulation Society. Kozeta Sevrani, professor of Com-
puter Science and Management Information Systems, 
and head of the Department of Mathematics, Statistics 
and Applied Informatic, has attended a EUROSIM 
board meeting in Vienna and has presented simulation 
activities in Albania and the new simulation society. 
The society – constitution and bylaws are being worked 
out - will be involved in different international and local 
simulation projects, and will be engaged in the organisa-
tion of the conference series ISTI – Information Sys-
tems and Technology. The society intends to become a 
EUROSIM Observer Member. 

 
 kozeta.sevrani@unitir.edu.al 
  Albanian Simulation Goup, attn. Kozeta Sevrani 
University of Tirana, Faculty of Economy  
 rr. Elbasanit,  Tirana 355  Albania 

 

Albanian Simulation Society-  Officers (Planned) 
President Kozeta Sevrani,  

kozeta.sevrani@unitir.edu.al 
Secretary  
Treasurer  
Repr. EUROSIM Kozeta Sevrani,  

kozeta.sevrani@unitir.edu.al 
Edit. Board SNE Albana Gorishti,  

albana.gorishti@unitir.edu.al 
Majlinda Godolja,  

majlinda.godolja@fshn.edu.al 
Last data update December 2016
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9th EUROSIM Congress on Modelling and Simulation

 

La Rioja, Logroño, Spain, July 2019

  

 
EUROSIM Congresses are the most important modelling and simulation events in Europe. For 
EUROSIM 2019, we are soliciting original submissions describing novel research and 
developments in the following (and related) areas of interest: Continuous, discrete (event) and 
hybrid modelling, simulation, identification and optimization approaches. Two basic contribution 
motivations are expected: M&S Methods and Technologies and M&S Applications. Contributions 
from both technical and non-technical areas are welcome.  
 
Congress Topics The EUROSIM 2019 Congress will include invited talks, parallel, special and 
poster sessions, exhibition and versatile technical and social tours. The Congress topics of interest 
include, but are not limited to:  
 
Intelligent Systems and Applications  
Hybrid and Soft Computing  
Data & Semantic Mining 
Neural Networks, Fuzzy Systems & 

Evolutionary Computation  
Image, Speech & Signal Processing  
Systems Intelligence and  

Intelligence Systems  
Autonomous Systems  
Energy and Power Systems 
Mining and Metal Industry 
Forest Industry 
Buildings and Construction 
Communication Systems 
Circuits, Sensors and Devices 
Security Modelling and Simulation  
 

Bioinformatics, Medicine, Pharmacy 
and Bioengineering  

Water and Wastewater Treatment, 
Sludge Management and Biogas 
Production 

Condition monitoring, Mechatronics  
and maintenance 

Automotive applications 
e-Science and e-Systems  
Industry, Business, Management, 

Human Factors and Social Issues  
Virtual Reality, Visualization, 

Computer Art and Games  
Internet Modelling, Semantic Web  

and Ontologies  
Computational Finance & Economics  
 

Simulation Methodologies and Tools 
Parallel and Distributed 

Architectures and Systems  
Operations Research  
Discrete Event  Systems  
Manufacturing and Workflows  
Adaptive Dynamic Programming 

and Reinforcement Learning  
Mobile/Ad hoc wireless  

networks, mobicast, sensor  
placement, target tracking  

Control of Intelligent Systems  
Robotics, Cybernetics, Control 

Engineering, & Manufacturing  
Transport, Logistics, Harbour, Shipping

and Marine Simulation  
 

Congress Venue / Social Events The Congress will be held in the City of Logroño, Capital of La 
Rioja, Northern Spain. The main venue and the exhibition site is the University of La Rioja (UR), 
located on a modern campus in Logroño, capital of La Rioja, where 7500 students are registered. 
The UR is the only University in this small, quiet region in Northern Spain. La Rioja is where the 
Monasteries of San Millán de la Cogolla, cradle of the first words written in the Spanish language, 
are situated, sites included in UNESCO’s World Heritage List in 1996. Of course, social events will 
reflect this heritage – and the famous wines in la Rioja. 
 
Congress Team: The Congress is organised by CAE CAE-SMSG, the Spanish simulation society, 
and Universidad de la Rioja. 
Info: Emilio Jiménez, EUROSIM President, emilio.jimenez@unirioja.es 
           Juan Ignacio Latorre,  juanignacio.latorre@unavarra.es                   www.eurosim.info 



To learn more about how you can reinforce engineering concepts  
using a combination of theory, simulation, and hardware, view this webinar.

www.maplesoft.com/SNEWebinar

Contact us: +49 (0)241/980919-30

A modern approach to  
modeling and simulation

www.maplesoft.com  |  vertrieb@maplesoft.com

© 2016 Maplesoft, ein Bereich von Waterloo Maple Inc., 615 Kumpf Drive, Waterloo, ON, N2V1K8, Kanada. Bei Maplesoft, Maple und MapleSim 
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MapleSim is built on Maple, which combines 
the world’s most powerful mathematical 
computation engine with an intuitive, “clickable” 
user interface.

With MapleSim, educators have an  
industry-proven tool to help bridge  
the gap between theory and practice.

• MapleSim illustrates concepts, and  
helps students learn the connection  
between theory and physical behavior

• A wide variety of models are available  
to help get started right away
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