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Editorial
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Editorial SNE Special Issue ‘Modelling and Simulation in
Modern Control Engineering’

The progress in computer technology and IT has made
Modelling and Smulation approaches an essential tool
in modern industry in several aspects, especially when it
comes to control design. The field has been given spe-
cial attention, as the pursuit of modern systems are both
state-of-the-art design and adequate process control,
where modelling and simulation approaches are indis-
pensable when effective, optimal and lean operation is
required.

The issue starts with the contribution of S. Koretko
et al. - Jadex/JBdiEmo Emotional Agents in Games with
Purpose: a Feasibility Demonstration. The authors pre-
sent a 3D game engine jMonkeyEngine, combined with
Jadex agent system and JBdiEmo emotional extension
and their use in virtual testing grounds for development
of software controllers of various devices, embedded to
them.

The paper by D. Dovzan et a. - Evolving Fuzzy
Model (eFuMo) method for on-line fuzzy model learning
with application to monitoring system presents an eFu-
Mo method — a modelling approach based on model de-
sign and adaptation according to measured data. The au-
thors show that evolving fuzzy model can be used to
predict sensor signals in case of their failure. Similarly,
eFuMo approach can also be used for model-based con-
trol, when real-time measurements are not accessible.

The paper by P. Bo3koski et al. - Model-based pre-
diction of the remaining useful life of the machines deals
with simulation-based life-span prediction of shot blast-
ing machines. The authors show that simulated estima-
tion of the remaining life of the machine is satisfactory
and can be used for maintanence planning of the system.

The paper AMEBA-evolutionary computation meth-
od: Comparison and toolbox development, by M. Corn
and M. Atanasijevi¢-Kunc presents the AMEBA meth-
od and the corresponding toolbox. The method is based
on evolutionary algorithms and can be used for different
purposes, such as system identification or control de-
sign. Comparative results between AMEBA method and
other relevant methods are shown to demonstrate its po-
tential and accuracy when identifying a nonlinear multi-
variable system.

The next three papers deal with more problem-
oriented challenges, arising from practical applications.
M. Golob’'s - Modelling and Smulation of GMA Weld-

ing Process and Welding Power Sources presents a
practical problem arising from power source control in
welding units. The author shows that proper electrical
model alows controller development, ensuring steady
and pulsed direct current welding. A problem oriented
study from a different field is in focus of the paper In-
verse Smulation Methods Applied to Investigations of
Actuator Nonlinearities in Ship Steering by D. J. Mur-
ray-Smith. The paper shows that inverse simulation
methods can be used to predict the ship’s rudder satura-
tion and rate limiting effect in terms of the maneuvera-
bility of the vessal. It is also shown that a two-stage in-
verse-simulation method allows direct assessment of the
difference between desired and achievable maneuvers.
Another study was performed by T. Bjérkquist et al. -
Conversion of lterative Balance Models to Directly
Calculating Explicit Models for Real-time Process Op-
timization and Scheduling. The authors use a method for
direct evaluation of the model output, instead of using
an iterative calculation and show its implementation on
modelling of the copper production line. The method is
used for process optimization and scheduling and is sig-
nificantly faster than classical modelling methods.

The last paper Modelling of indoor lighting condi-
tions in buildings for control design purposes, by V.
Logar presents a fuzzy modelling approach to describe
indoor lighting conditions in buildings. The model can
be, due to its smplicity, used for broader environments,
such as control design or model-based control.

The scientific value of this contributions will be
used also in the preparation of the curricula and syllabi
for the doctora study in the frame of European ERAS-
MUS+ Project 573751-EPP-1-2016-1-DE-EPPKA2-
CBHE-JP entitled 'InMoation - Innovative teaching and
learning strategies in open modelling and simulation
environment for student-centered engineering education'
in which the partner University of Ljubljana, Faculty of
electrical engineering also covers the area of modern
control systems in computer modelling and simulation
engineering.

The editor would like to thank all authors, who have
contributed to this special issue and to the SNE Editorial
Office for the support in compiling this special issue.

Vito Logar, University of Ljubljana, Faculty of Electrical
Engineering; vito.logar @fe.uni-lj.si
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Abstract. The jMonkeyEngine 3D game engine, com-
bined with Jadex agent system and JBdiEmo emotional
extension may offer a suitable toolset for effective crea-
tion of feature-rich virtual environments, provided that
an appropriate interface, allowing to use the full poten-
tial of all included components, exists. Then, such envi-
ronments may profit from the jMonkeyEngine ability to
model and simulate the physical world and capability of
Jadex and JBdiEmo to express both rational and emo-
tional aspects of characters inhabiting it. One of the
meaningful ways of utilization of such environments is to
use them as virtual testing grounds for software control-
lers of various devices, embedded to them. To involve
real humans in the testing, they may have a form of a
game, where the testing occurs during an interaction
between the devices and players. In this paper we pre-
sent both the interface and the embedding on an emer-
gency simulation game called JFireEmSim2. The primary
goal of the player in the game is to rescue a family from
a house under fire and the controller embedded into it is
of a simple autonomous cleaning robot. The paper de-
scribes the architecture of the game, focusing on the
interface, implementation of characters as Jadex and
JBdiEmo agents and embedding of the controller. It also
discusses suitability of the components for the given
task.

Introduction

Jadex [5], [6] is a software framework, where applica-
tions are composed of active, service providing compo-
nents. The components can be implemented in several
forms, with cognitive BDI agents being historically the
first and probably the most sophisticated ones.

BDI stands for belief-desire—intention, a model of
human practical reasoning, introduced in [4]. A BDI
agent has beliefs expressing what it knows about itself
and its environment, desires that represent states it
would like to achieve and intentions that provide means
to achieve the states.

The simplicity of BDI is the source of both its popu-
larity and criticism. The critics point out that BDI fo-
cuses on rational reasoning and ignores other aspects,
such as emotions. To deal with this issue in the context
of the Jadex framework we designed and implemented
JBdiEmo [11], [12] emotional engine, which uses a
modified version of the OCC model of human emotions.
The OCC model [16] considers emotions to be results of
cognitive processes and divides them into three classes:
emotions that are reactions to events, reactions to agents
and reactions to objects. The version used in JBdiEmo
originates from [17] and has a form of an inheritance-
based hierarchy of emotions.

A promising utilization of Jadex and JBdiEmo is in
computer games, where they can simulate both rational
and emotional behavioral aspects of non-playable char-
acters (NPCs), modeled as agents. Such utilization is
supported by Jadex via a visualization interface for the
jMonkeyEngine (JME) 3D game engine. In [13] we
used the interface to develop an emergency simulation
game, where the player’s goal is to rescue people from a
flat under fire. The game proved that JBdiEmo can be
used with the interface without any modifications, but
also revealed that the interface provides only limited
access to jJME.

In [13] we intended to use the platform consisting of
Jadex, JBdiEmo and jME for ordinary computer games
and serious games for education and training. However,
from the control system point of view, it is also interest-
ing to examine the possibilities of its utilization for the
so-called games with a purpose (GwP) [2], i.e. for
games where players are helping to solve serious prob-
lems.

SNE 26(4) - 12/2016
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GwP try to hide their true purpose behind an inter-
esting gameplay and players can be completely unaware
of it. In our case, the GwP should provide a virtual envi-
ronment for evaluation and testing of software control-
lers or their executable prototypes. In the game, the
controller can be represented by an entity that resembles
the device to be controlled by it in the real world. And
the purpose of the player will be to evaluate the control-
ler by interacting with the corresponding entity during
the gameplay.

There is one prominent issue to deal with in order to
use the Jadex/JBdiEmo/jME platform in such way: A
new interface between Jadex and jME that will over-
come the limitations of the visualization interface, pro-
vided by Jadex, should be developed. This is necessary
to be able to use the full potential of jJME for virtual
environment creation. The new interface has been de-
signed and experimentally implemented in a new
emergency simulation game, named JFireEmSim2.
JFireEmSim?2, which is presented in this paper, shares
the basic goal with the original one [13], but features
more sophisticated gameplay and graphically-rich envi-
ronment. To demonstrate the feasibility of the GwP idea
outlined above, it also includes a formally verified con-
trol program supervising an autonomous robot.

The rest of the paper starts with a short overview of
the Jadex/JBdiEmo/jME platform and limitations of the
original visualization interface (section 1). Section 2
presents the new game, focusing on its overall architec-
ture, new Jadex/JME interface and implementation of
NPCs as Jadex/JBdiEmo agents. Section 3 elaborates
the GwP idea by presenting a cost-effective version of
corresponding development process and embedding of
the control program into an already existing game, in
this case the JFireEmSim2. The paper concludes with a
summary of achieved results and plans for future re-
search and development.

1 The Platform

The software platform, both games are built on, consists
of three components, implemented in Java: the Jadex
agent system, the emotional engine JBdiEmo and the
game engine jMonkeyEngine (jJME). While Jadex and
JME are standalone components, JBdiEmo can be used
only with Jadex.

SNE 26(4) — 12/2016

1.1 Jadex

In Jadex agents are defined by beliefs, goals and plans.
Goals stand for desires and plans for intentions. The
plans are executed with respect to the current goals of
the agent, messages the agent receives or events occur-
ring in the system. On the other hand, an execution of a
plan may result in new goals, messages or events.

Agents are specified as classes and actual agents are
instances of these classes. Each class is described by an
agent definition file (ADF), written in XML. An ADF
defines all BDI elements (i.e. beliefs, goals and plans).
It contains names, parameters and properties of the
elements and links to Java classes that implement be-
liefs and plans. At runtime, an agent consists of a mod-
el, created from his ADF, and a set of instantiated ob-
jects, representing his plans and beliefs.

Beliefs are stored in a form of facts. These are ac-
cessed by goals and plans to acquire stored data values.
A fact can be an arbitrary Java object.

Goals represent agent's specific motivations such as
to reach a new state or to perform some activities. Jadex
implements a full lifecycle for goals [5]: A goal can be
created when its creation condition is met, or during an
execution of some active plan. A newly created goal is
adopted and enters the main part of its life cycle. On the
basis of its context condition, an adopted goal can be in
the state ‘option’ or ‘suspended’. A goal in the ‘option’
state eventually becomes active and executes corre-
sponding plans. The active goal can be then suspended
if the context condition is broken during the execution
of the plans. If the plans of the goal achieve desired
results, the goal is finished in the state of success. If
they fail to achieve them, it is finished in the state of
failure. A goal may also be dropped at any time if its
results are no longer desired. Creation, context and other
conditions are specified in ADF.

Plans provide means to achieve active goals. For
every currently active goal, plans are executed until the
goal is reached, suspended, failed or dropped. They are
instantiated at runtime when corresponding events (e.g.
a goal creation) are triggered. They are also capable of
creating new goals.

Configuration of a whole Jadex application is speci-
fied in an application XML file, which defines how
many agents of which type will populate the applica-
tion. If 2D or 3D visualization is used, its settings are a
part of this file, too.
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1.2 JBdiEmo

JBdiEmo engine extends Jadex agents by emotions
associated with their rational plans, beliefs and goals.
The set of all emotions an emotional agent has, together
with their intensity values, form his emotional state. The
engine supports the whole modified OCC model and
how the emotions are mapped to BDI elements is shown
in Figure 1. JBdiEmo is implemented in such a way that
agent's actions can influence his emotional state and the
emotional state can, in turn, influence agent's further
actions.

OCC emotional model (modified)

5.GUI for visualization of the actual emotional state of
emotional agents. It also shows history of the events
that influence emotional plans, beliefs or goals (emo-
tional events).

6.Logger recording emotion intensity values to XML
files for future processing.

7.Helpers, which provide mathematical calculations
and other auxiliary functionality.

1.3 jMonkeyEngine
jMonkeyEngine (JME) is an open source 3D game
engine, built on the OpenGL graphic library. It
also provides an integrated development environ-

_ _ Consequence ment, called jMonkeyEngine SDK, which is based
Eumquam.:g fefion u!agent Aspect D.{ e of action of agent | on the NetBeans Platform. Thanks to the features
of event emotions emotions emotions . X . K X
emations like material and terrain editors the comfort of
pleased, displea- approving, disap- ling, disfing gratification, game development in jJME is comparable to com-
sed. hope, fear, proving, pride, love hate, Femorse, mercial engines, such as UDK or Unity. In should
. d.'smss""‘ sheess; interest, disgust proiue, also be noted that jJME uses Bullet to simulate
gloating, pity reproach anger . . . .
, . . . physical phenomena, which, according to [7], is
Heltto i felt to  felti | feltto one of the more accurate physics engines available
V V V : in contemporary games.
boals Plans Beliefs . .
1.4 Jadex 3D visualization interface
A A For Jadex, jME is only one of several options to visual-
T S —— ize agent behavior. The other ones are textual output
Jadex BDI agent

Figure 1: OCC to BDI mapping as implemented in
JBdiEmo.

The engine consists of seven components:

1.JBdiEmo core, responsible for representation of
agent’s emotional state, checking of eliciting condi-
tions of each emotion, emotion intensity value calcu-
lation and messaging between emotional agents.
Agents access it via a belief.

2.Emotional agent initialization plan, implementing an
initial agent model mapping. It initiates processes
that repeatedly monitor agent’s events and the whole
Jadex platform for a presence of other emotional
agents.

3.Inter-agent emotional messaging plan, providing
message delivery between emotional agents.

4.Language extension allowing to distinguish ordinary
beliefs, goals and plans from the ones with associated
emotions (i.e. from the emotional ones).

and 2D graphics. The application XML file is responsi-
ble for the visualization configuration. Here, 3D models
and animations are associated with agents and models,
textures and positions of other objects are defined. A
direct access to jJME is also provided, but only to a sub-
set of its features.

The master-slave relationship between Jadex and
JME prevents developers to use important jME features,
such as more sophisticated visual effects, collision de-
tection and physics engine. As [13] shows, this puts
several constraints on the visual appearance of the game
and forces developers to implement mechanisms like
collision detection on the Jadex side. In consequence,
the time spared by using Jadex to implement NPCs can
be lost because of the additional implementation work.

2 JFireEmSim2 Game

The constrains the original visualization interface puts
on developers, may render the whole idea of using Jadex
and JBdiEmo for NPCs implementation inefficient.
Fortunately, they can be overcome by designing a new
interface that put Jadex and jME in more equal position.

SNE 26(4) — 12/2016
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The JFireEmSm2 game (Figure 2), which imple-
ments such interface, is situated in a village, where the
player has two goals. First, he has to rescue a family of
four from a house under fire; and second, he has to save
a depressed person on a nearby cemetery before he
commits suicide. To successfully save the family, all its
members have to be taken out of the house. A person
may refuse to follow the player because of the fear of
getting burned or due to the position in the family.

The actual appearance of the game can be seen in
Figure 2, where the situation after saving the first mem-
ber of the family is captured. There are health bars (red)
for all the family members (father John, mother Marie,
son Joe and daughter Jane) in the upper left corner.
Player’s health and extinguisher status are shown in the
lower left corner. The player’s character is the fireman
on the right side, seen from behind. The house under
fire is the wooden one on the left. There are two persons
in front of the house; a neighbor in white T-shirt, ob-
serving the event, and the saved person (Joe, in blue
shirt). In the background we can see another fire site
and a fireman. Their role is described is Section 3.

Structurally the game can be divided into three com-
ponents.

1.Game core with the entry point of the game and clas-
ses defining the basic gameplay, appearance of the
game and user input processing. They have white
background and names typed in normal font in the
class diagram in Figure 3 and are explained in more
detail in Section 2.1.

2.Jadex/JME interface allowing non-restricting com-
munication between both frameworks. It consists of
two classes, Communicator and AgentControl (white
background and names in bold in Figure 3), de-
scribed in Section 2.

3.Agents representing NPCs, which implement their
behavior. The classes and ADF files belonging here
have light gray background in Figure 3, and are treat-
ed in Section 2.3.

There is also a fourth part in Figure 3, consisting of 5
classes with dark gray background. These belong to the
control program embedded into the game and are de-
scribed in more detail in Section 3.

2.1 Game core

The core of the game is designed as a typical jME ap-
plication with its main class, App, implementing the
JME base class SimpleApplication.
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The class App contains the entry point of the game
(method main) and methods required by SimpleAppli-
cation, such as simpleInitApp to initialize and sim-
pleUpdate to update the game in each game loop cycle.
Its properties, among others, provide access to the phys-
ics engine (bulletAppState), handle various objects in
the environment, such as individual fire sites (properties
fire, firePositions and fireNodes) and implement
2D user interface elements (e.g. hudControl to show
health of the player and NPCs). App also includes an
object called start, which initializes Jadex in a sepa-
rate thread.

The player of the game is represented by the Play-
er class, which defines its graphical appearance, includ-
ing animations, properties (e.g. health, extinguisher
charge level) and keyboard and mouse input processing.

NPCs are defined on three levels, first two of them
belonging to the core:

1.Character, a class which provides basic functionali-
ty for all NPCs in the game, such as movement, colli-
sion resolution and animations. The class also defines
an abstract method act, which should define NPC
behavior and all its descendants must implement it.

2.Inherited classes, holding aspects specific to corre-
sponding character category. These are SavingPer-
son for the family members, OtherPerson for a
neighbor observing the situation and QuestPerson for
the person about to commit a suicide on the ceme-
tery. These classes are connected to Jadex agents
(level 3) via corresponding AgentControl objects of
the interface and their instances, one for each NPC,
are properties of the App class.

3.Jadex agents, specifying their rational and emotional
behavior.

All classes implementing entities that can be seen in the
game are also connected to corresponding 3D models,
textures and animations.

2.2 Jadex/jME interface

The new interface, implemented by classes Communica-
tor and AgentControl, is designed as universal; it
doesn’t even require the part connected to Jadex to be
implemented in jJME. Its purpose is to keep the state of
objects representing NPCs on the jME side synchro-
nized with beliefs of corresponding Jadex agents.
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Figure 2: JFireEmSim2 screenshot.

The class Communicator is implemented using single-
ton design pattern to ensure that only one instance of it
is available in the game. Its property agents holds a list
of AgentControl instances, one for each Jadex agent.
The Communicator itself just allows to add and remove
agents, so the whole synchronization is in the hands of
the AgentControl objects, which write values to agents’
beliefs, with their put methods and read belief values with
getBoolean, getInt and getFloat methods.

While on the jJME side the interface is accessed via
the property agent of the classes inherited from Char-
acter, on the Jadex side it is done through a belief
called shared and plan UpdatePlan. These are defined
for each agent. The value of shared is an instance of
the corresponding AgentControl object, obtained via
the Communicator. The UpdatePlan automatically
updates beliefs of the agent every time the values stored
in the corresponding AgentControl object are changed.

2.3 NPCs behavior

The behavior of NPCs in the game is defined almost
exclusively by Jadex agents and each NPC has its own
ADF. In Figure 3 ADFs are depicted in the form similar
to classes, i.e. divided into three blocks. The first one
contains stereotype <<ADF>> to distinguish them from
classes and name of the ADF. The second one lists
agent’s beliefs and the third one goals. Plans are shown
as separate classes, connected to corresponding ADFs.
The diagram doesn’t show goals and beliefs common to

all agents, i.e. the ones belonging to jBdiEmo and the
belief shared. The goals and beliefs of Marrie, Joe
and Jane are similar to those of John: The fami-
ly saved belief is specific to John. Joe and Jane don’t
have the child_saved belief, but have additional belief
called reproached. Joe also has the belief jane saved
and Jane has joe saved.

To illustrate how the agents define behavior of the
NPCs, let us have a look on the family to be saved.
When the game begins, an active goal of all family
members is wander and WanderPlan is carried out. This
means that the persons randomly wander around the
house. If a person gets too close to a fire, the
run from fire goal becomes active and RunFrom-
FirePlan tries to get the person to safe distance. How-
ever, when the intensity of the fear emotion, felt to the
goal run from fire, becomes too high, the cry goal
becomes active. This initiates the CryPlan, which
makes the person stop for few seconds and perform
appropriate animation. Another aspect that can abort
RunFromFirePlan execution is the value of disap-
proving emotion felt to the wander goal being higher
than 0.7. Then the GiveUpPlan is executed, which
means that the person stays in place and only the play-
er’s presence can change it by making the stay calm
goal active and StayCalmPlan executed. When the
player commands a person to follow him, the fol-
low player goal and FollowPlan are activated, pro-
vided the corresponding conditions are met: the mother
refuses to follow until the children are saved, and the
father is the last one to leave. Otherwise, the re-
ject_follow goal and RejectPlan are activated.

3 Controller in Game

Now, let us assume that we are developing a safety-
critical part of a control program for an autonomous
cleaning robot, which works as follows: The robot
stores a list of locations to clean in its memory. After it's
turned on, it goes to the first location from the list and
cleans it. Then it proceeds to the next one. After clean-
ing all locations, it goes to a parking position and
switches to a standby mode.
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Figure 3: UML class diagram showing essential part of the JFireEEmSim2 game structure.
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Figure 4: Cleaning bot sensors arrangement.

The robot should be able to perform its job in public
areas, so from the safety point of view it is critical to
prevent it from hurting people. To detect them, it pos-
sesses a circularly arranged sensor array (Figure 4). The
sensor array returns 8 values, nne, ene, ese, sse, ssw,
wsw, wnw and nnw. The value nne (north north east) is
the distance to a nearest person, detected in the region
from north (compass angle 0 minutes) to north east
(2700 minutes), ene (east north east) the distance in the
region from 2700~ to 5400~ and so on. If no person is
detected in a region, then the corresponding value is
equal to the maximum distance, measurable by the array
(maxMsrblDst). The robot may hurt someone when
cleaning as the cleaning process is harmful for anyone
close enough or when a collision occurs during move-
ment. To prevent this, the control program should obey
safety critical properties, which can be formulated as
follows:

1.The cleaning cannot start or continue if anyone gets
as close or closer to the robot as the distance
safeDstCl.

2.The robot cannot move if anyone gets as close or
closer to its front as the distance safeDstMov.

According to this specification, we design and im-
plement the control program part with a method up-
dateAndEvaluate as its interface (Figure 5). The first
three parameters of the method specify what the robot
should do in the given situation, and the rest (nne to
nnw) are readings from the sensor array. The parameter
command defines whether the robot should:

¢ switch to standby mode immediately (value 0)
e g0 to a specified position and then clean (1) or
e g0 to a specified position and stand by (3).

The specified position is given as a compass angle
(p2gAngleInMin) and distance from the current posi-
tion (p2gDst). The method evaluates the situation and
issues instructions for the robot to follow. These include
commands to turn the robot on or switch it to standby
(the output parameter botOn), to start or to stop the
cleaning process (botCleaning) and the destination
where the robot should go (angleInMin and dst).

Now, assume that the control program part has been
developed using formal methods such as B-Method [1],
so we are sure that the safety critical properties hold in
its implementation. What we are not sure is whether the
distances safeDstCl and safeDstMov are set optimal-
ly. They should be large enough to prevent the robot
from hurting people, but not too large, as it will cause
the robot to interrupt its operation too often. To estab-
lish the distances, simulation experiments can be used.

3.1 Jadex/JBdiEmo/jME as simulation
platform

We consider Jadex/JBdiEmo/jJME to be a suitable plat-
form for such simulation because of the following rea-
sons:

1.Support for quick construction of a virtual environ-
ment where the robot will operate, thanks to the edi-
tors of jMonkeyEngine SDK and ability to import
models already available online or created in differ-
ent applications. For example, most of the buildings
in JFireEEmSim?2 are freely available models and the
house under fire has been created in SketchUp
(ww.sketchup.com). NPC models were created in
MakeHuman (http://www.makehuman.org/) and their
animations in Blender (https://www.blender.org/).

2.Built-in physics simulation in jJME, provided by jBul-
let, a Java port of the Bullet engine. Bullet is used in
several simulation platforms, such as Gazebo
(http://gazebosim.org/) and V-REP (http://www.cop-
peliarobotics.com/). The jBullet port has been used
for simulation purposes as well, for example in [3]
for cells and surrounding fluid.

3.Possibility to populate the virtual environment with
characters with complex personality, thanks to the in-
tegration of Jadex and JBdiEmo. In addition, the
characters can be developed separately and integrated
to the environment afterwards.
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Both jME and Jadex have already been used for
simulation purposes. The Jadex case is described in [6]
and jME is the basis of several robotics simulation envi-
ronments, such as jmeSim [8] and MARS [18].

's Y
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(0..maxMsrbiDst) nne —ps
(0..maxMsrbiDst) ene —pm

(0.maxMsrbiDst) ese —pm updateAndEvaluate
(0..maxMsrblDst) s5€ —pm-
(0..maxMsrblDst) SSW —
(0..maxMsrblDst) wsw —p
(0..maxMsrbiDst) wnw —p

(0-maxMsrbiDst) nnw —p
S

= botOn (true, false)

—# botCleaning (true, false)
— anglelnMin (0..21599)
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Figure 5: Cleaning bot interface.

3.2 Simulation vs. GwP

In principal, an environment created with Jadex/JB-
diEmo/jME can be used in two ways:

1. For simulation experiments.
2. As a game with purpose.

The first case is de facto a game without player, with
properties and behavior of entities inhabiting the envi-
ronment given by their code and models only. So, dif-
ferent simulation experiments under equal conditions
can easily be performed.

In the second case, a human player is involved and
may interact with an entity representing the control
program. The GwP element is that the interaction pro-
vides data essential for evaluation or adjustment of the
control program, e.g. whether certain values of
safeDstCl and safeDstMov may endanger persons that
come close to the cleaning bot. This interaction can be
completely natural, for example the cleaning bot can be
situated in an area, which the player will visit either
way.

3.3 Cleaning bot in JFireEmSim2

While the Jadex/JBdiEmo/jME platform allows to build
a virtual environment relatively quickly, the more eco-
nomical option is to embed the control system to be
evaluated to an already existing game. This requires two
tasks to be performed:

1. Create an entity that will represent the con-
trolled system in the game.

2. Adjust the code of the game to integrate the
controller.
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To minimize the effort put into the first task we
should consider reusing the assets already available in
the game. For example, provided that the basic parame-
ters like dimensions, weight and speed of the cleaning
bot are similar to an average human, it can have a form
of an additional fireman in JFireEmSim2 and the posi-
tions to be cleaned can be represented as fire sites to be
extinguished (Figure 6).

Figure 6: The second fireman representing the robot ap-
proaching the fire sites, i.e. places to clean.

The controller can be integrated as it is shown in Fig-
ure 3 (classes with dark gray background). The control-
ler itself consists of classes CBotController,
CBotControllerCore and ProximSensors, which
have been generated from formal specification, created
and verified using B-Method. The updateAndEvaluate
method can be found in CBotController.

The connection to the game is implemented via the
class Robot. It serves the similar purpose as the class
Character for NPCs, i.e. it provides visual representa-
tion of the robot (as a fireman). It is also responsible for
executing the updateAndEvaluate method and per-
forming actions according to the values it returns. The
input parameters of updateAndEvaluate are computed
from actual positions of the robot, place to clean, player
and NPCs by the class RelativePosition.

4 Related Work

Several aspects presented here can be found in other
sources, but the combination of using a game engine for
the basic gameplay and simulation of the physical
world, emotional agents for characters, behavior and the
resulting game for evaluation of the control systems via
seemingly ordinary gameplay remains unique to this
work. Regarding jBdiEmo, to our knowledge, it is the
only existing emotion-implementing extension for Jadex.
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The idea of turning a computer game into a testing
ground for control systems is in great extent realized
with the real-time strategy game Starcraft. According to
the survey [15], most of these works are implemented
via the Brood War Application Programming Interface
(http://bwapi.github.io/), which allows replacing a hu-
man player with a computer program and competitions
are organized where bots play against other bots or
human players.

A toolchain similar to ours has been used in [9], to
implement a serious game that teaches players about
energy consumption. To create the game the authors of
[9] used jME, MakeHuman and Blender, too. The game
doesn’t include an agent system, but uses co-simulation
via the Functional Mock-up Interface (FMI) to integrate
thermal and physical models of a building and applianc-
es. FMI should also be considered for a future version
of the jJME/Jadex interface or an interface between con-
trol programs and games.

The GwP idea has been formulated in [2] and GwP
usually contain gameplay focused on solving specific
problems, such as protein folding in Foldit [10] or find-
ing program loop invariants in Xylem [14].

Other implementations of non-emotional or emo-
tional artificial agents in computer games exist as well
and a short overview and comparison to Jadex and
JBdiEmo can be found in [13].

5 Conclusion

The new Jadex/]ME interface, presented here as a part
of JFireEmSim2 game, allows to use both Jadex and
JME to their full potential when building virtual envi-
ronments for games or simulation experiments. The
experimental integration of the cleaning bot controller
also proved feasibility of the idea of computer games
utilization as testing environments with agent-based
NPCs and active participation of players. While
JFireEmSim2 in the state presented here provides only
basic realization of the idea, it can be developed and
experimented with in several different ways. One of
them is to use Jadex and jBdiEmo to implement more
complex gameplay and personalities of NPCs. The
gameplay should include active interaction between the
player and the robot, for example a task to adjust robot
parameters for maximum performance.

Another way is to enhance the possibilities of player
movements or perform experiments with selected
groups of human players. We also would like to return
to the importance of the idea with respect to formal
methods, which is touched only lightly here, in a sepa-
rate work. The JFireEmSim2 game is available by re-
quest from the authors.
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Abstract. With evermore complex system the monitor-
ing and fault detection is becoming a crucial part of con-
trol systems. They allow fast and effective fault diagno-
sis and can decrease the cost of system maintenance.
Modelling of processes plays a crucial part when design-
ing a monitoring system. In this paper an on-line ap-
proach for modelling of fuzzy model is presented (Evolv-
ing Fuzzy Model - eFuMo). As demonstrated in the paper,
the method can be used in the design of model based
fault detection system.

Introduction

Increasing demands of productivity and reliability call
for extending the ability of a common SCADA systems
with the monitoring and fault detection systems. There
are several approaches for designing the fault detection
system. In our paper the monitoring system is based
on a process model. The model is based on a evolving
fuzzy model method (eFuMo). The presented method
is able to build Takagi-Sugeno fuzzy model (TS) from
scratch, starting with one cluster and a local model. The
TS fuzzy models are a powerful practical engineering
tool for modelling and control of complex systems.
They expand and generalize the well-known concept of
gain scheduling. They utilize the idea of linearization
in a fuzzily defined region of the state space. Due to
the fuzzy regions (clusters), the nonlinear system is
decomposed into a multi-model structure consisting of
linear local models [1].

This enables the T-S fuzzy model to approximate
virtually any nonlinear system within a required accu-
racy, provided that enough regions are given [2].

The eFuMo method is an on-line learning method
that is also able to adapt models during the function-
ing of the system. Depending on the learning abilities,
the on-line fuzzy-identification methods can be divided
into: Adaptive methods (e.g., ANFIS [3], GANFIS [4],
rFCM [5], rGK [6]), where the initial structure of the
fuzzy model must be given. The number of space par-
titions/clusters does not change over time, only the pa-
rameters of the membership functions and local mod-
els are adapted; Incremental methods (e.g., RAN [7],
SONFIN [8], SCENN [9], NeuroFAST [10], DENFIS
[11], TS [12], FLEXFIS [13], PANFIS [14]), where
only adding mechanisms are implemented; Evolving
methods (e.g., SAFIS [15], SOFNN [16], GAP-RBF
[17], EFuNN [18, 19], D-FNN [20], GD-FNN [21],
ENFM [22], eTS+ [23], ENFM [22], FLEXFIS++
[24], AHLTNM [25], SOFMLS [26]) which, besides an
adding mechanism, implement removing and some of
them also merging and splitting mechanisms. More on
evolving methods can be found in [27] and [28], where
concepts and open issues regarding these methods are
presented.

The paper is organized in the following order. First,
the eFuMo learning method is described, next the mon-
itoring problem is given followed by results and conclu-
sions.

1 eFuMo Structure

The eFuMo method has two types of mechanisms for
identifying the fuzzy model: the adaptation algorithm
and the evolving mechanisms. The first is responsible
for parameter adaptation, such as cluster centers and lo-
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Figure 1: The eFuMo top scheme.

cal models’ parameters; the second is responsible for
structure update: adding, removing, merging and split-
ting of clusters. A central decision logic (CDL) decides
which type of mechanism will be used at current sam-
ple. The block scheme is presented on Figure 1. In
the following subsection, the adaptation and evolving
mechanisms will be presented and at the end the CDL
will be described.

1.1 Adaptation mechanisms

In order to build the TS fuzzy model clusters and local
linear models must be identified. Adaptation mecha-
nisms are responsible for identifying clusters’ and local
models’ parameters and for their adaptation. To parti-
tion input-output data space recursive clustering algo-
rithm is used and for identifying the local models’ pa-
rameters the fuzzy recursive least squares is used.

Space partitioning. For data space partitioning,
the cluster centers and fuzzy covariance matrix must be
calculated. The centers are adapted with the following
equation:

Vi(k+1) ZVi(k)“rAVi(k) (1)
R (36— wik)
Avi(k) = g @)

where 7 is fuzziness factor, v; is the center position
vector Xy is clustering vector, (; is membership degree
of the current clustering vector to the i-th cluster also
called the firing degree of the i-th cluster and s;(k + 1)
is the sum of past membership degrees / firing levels of
the i-th cluster:

S,'(k) = lcs,-(k— 1) + ,u,-(k)”. 3

where A, was introduced as a forgetting factor to en-
able the adaptation of centers. The membership degrees
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U; can be calculated as in equation 4 (c is the number
of existing clusters), either based on rFCM [5] (equa-
tion 5), rGK [6] (equation 6) or Mahalanobis distance
(equation 7).

—L— ifxp(k) #Evsi=1,..c

-1

~.0
I
7N
S
==
N———
=

1 ifo(k) =V;
0 ifxp(k)=vji#j
“)

To get the area of cluster influence the fuzzy covari-
ance matrix F; is calculated. The recursive equation for
F; is the following:

k1)l
s OF g P

Dy, (k) = (x(k) = vi(k)) (x(k) = vi(k))".  (8)

where 7. is the forgetting factor. To be able to calculate
the Gustafson-Kessel clustering distance (equa-
tion 6) the inverse and determinant of fuzzy covariance
matrix must be calculated. The recursive equation for
the inverse matrix is obtained by using the Woodbury
matrix identity lemma. The equation is following:

-1 _ 1 Si(k) — B
[Fi(k+1)] t= %m [[F,(k)] - C] ©)]
B = [Fi(k)] ' Dg [Fi(k)] "' (10)
_ S,'(k—l) ) o
C_YCWerg [F; (k)] d, (11)
dFi :Xf*V,'(k). (12)
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The determinant is obtained using determinant lemma
(equation 13):
det(A+uv’) = (1+v'A "u) det(A). (13)

The recursive equation for determinant calculation is:

Si\K — 4
det (Fi(k+1)) = (y(sk(k)l)> det (F,(k)) (1+A)
L w()" ¢ or 1 .
:%m(dﬁ[l?i(k)} di),  (15)

where p is the number of rows/colmuns of fuzzy co-
variance matrix. The detailed derivations of equations
are given in [6]. The eFuMo method implements the
method for stopping the cluster parameters adaptation
if the clusters firing level is below a certain user defined
threshold B, ,,. This prevents clusters, that are far from
current clustering vector, to converge to that area. The
clusters’ firing levels 4 that are below the threshold are
set to zero. The rest of the firing levels are then normal-
ized.

Local models’ parameters identification.

Each cluster has a linear local model, that is valid in that

area. The output of the local model is calculated as:
ymi (k) =07 [1 xe(k)"]" (16)

where x; (k) is the regression vector and 7 are the local

model parameters. The regression vector is usually the
input part of the clustering vector:

xr(k) =[x (k) y(k)]", (17)

where y is the process output. However unlike many ex-
isting on-line fuzzy identification methods the eFuMo
method allows the clustering vector to be different than
the regression vector.

The eFuMo has different fuzzy least squares based
identification methods included ([12], [22], [5] and
[29]). Usually best results are obtained using local
fuzzy weighted least squares presented in [12]:

xe(k) = [1 xe(0)"]7
T
- (o SR o
0i(k-+1) = 0;(8) + Pi(k) Bxe (k) (k) — X7 (K)0:(k))

where i is the cluster index, 0 is the vector of local
model’s parameters and f§ is the firing level of cluster

and the y is the process output. The firing levels are
calculated on the input space. Usually the methods use
Gaussian functions equation 19 or equation 20:

-~ (ka ‘tk)2

k) =e ™k k=12.p—1i=12,...c

p—1
Bi=T]mk
k=1

19)

D2
Dik

Bi= e2”m i=1,2,..c,
D% = (x5, (k) = vi,) Fi. ' (x5, (k) = v, )

where 1, is the overlapping factor usually setto 1, F; ,
is diagonal element k of fuzzy covariance matrix, xy,
and v;, are the k-th element of clustering vector and k-th
element of i-th cluster center vector, respectively. The
F;,, is the input fuzzy covariance matrix, Xy, is the clus-
tering vector containing only the input variables and v;,,
is the cluster center in an input space. The obtained fir-

ing levels are then normalized:

P is1a.
Zi:lﬁk o

One can also use the same equation for firing level cal-
culation as with clustering algorithm. However, with
Gussian functions the transitions between local models
(clusters) are more smooth.

(20)

Bi=

.C. 1)

When building the simulation model, the model pa-
rameters can be identified more accurately using the in-
strumental version of least squares [30]. The instrumen-
tal variable adaptation algorithm for equation 22 can be
written as:

xe(k) = [1 x(k)T]"
x (k) =1 x, (k)"]"
1 Xem (k)XeT (k)Pi(k)
Pi(k+1) = )T, (Pl l +ﬁl ( )P,(k)xem(k))
0i(k-+1) = 8:(K) + Pi(k)Bi, xe, (&) (() ¥ (0)6:(K))
(22)

where x,,, (k) is the regression vector where the delayed
process outputs were replaced with model outputs and
Bi,. is the membership degree of vector Xy, (k), which
is the clustering vector, where delayed process outputs
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: Clustering block @ :

Calculate
membership
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If neccecary,
perform beta cut
for Fi and Vi

v

Adapt cluster’s centers,
fuzzy covarance matrices
and sum of past mds

~

Update clusters support,
support from last change and
sum of past mds from last change

Local model parameters
adaptation block

Figure 2: The clustering algorithm.

were replaced with model outputs:

Xp(k)=[u(k—n) ..u(k) y(k—r) ... y(k—1)]
xg, (k) =[u(k—n) ..u(k) ym(k—r) ... ym(k—1)]
(23)

where y,, is the model output and y is the real output. In
both cases the dead zone for adaptation can be consid-
ered [31].

The adaptation procedure can be represented by the
diagrams as shown on figure 2 and figure 3. In figure
2 the clustering procedure is represented and in figure
3 the local model parameters identification algorithm is
presented.

1.2 Evolving mechanisms

To upgrade the fuzzy model structure evolving mecha-
nisms, such as adding and removing the clusters is im-
plemented in the eFuMo method.
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( Inputs: x,, X, y, 1 ]

* Local models @

- adaptation .
block Calculate input

space mds

~

If neccecary,
perform beta cut

v

Perform fuzzy least squares
algorithm to adapt local
models parameters

Return to CDL

Figure 3: The parameter adaptation algorithm.

Adding mechanism. This is one of the most im-
portant mechanisms. It adds new clusters to the fuzzy
model structure and improves the fuzzy model perfor-
mance. In the literature, there are several different con-
ditions of adding new clusters based on model out-
put error, distance of current sample to existing cluster
and e-completeness which is based on current samples
membership degree to existing clusters.

In [32] (DFKNN) a cluster adding is based on Eu-
clidian distance to the existing cluster centers and the
change of variance that the new sample brings to the
closest cluster. The distance and variance change must
be greater than the predefined threshold. A new cluster
is added if a certain number of sequential samples sat-
isfy this condition. In [11] (DENFIS) adding is based
on an Euclidian distance. If the distance of current
sample to closest cluster is grater than two times the
threshold a new cluster is added. In [20] (D-FNN) and
[21] (GD-FNN) adding is based on model error and dis-
tance of new sample vector to closest cluster. If both are
grater than a user defined threshold the cluster is added.
The threshold is decreasing with time. In [17] (GAP-
RBF) and [15] (SAFIS) a new cluster is added if the
model error and distance of the current sample to ex-
isting clusters is over a threshold. They calculate the
decrease in error if current sample would be taken for a
new cluster. If the decrease is large enough new cluster
is created. In [18, 19] (EFuNN) the adding is based on
sensitivity calculated based on normalized fuzzy differ-
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ence distances. The eTS method [12] adds a new cluster
when the potential of current sample is higher than a po-
tential of existing clusters and if it is distanced enough
from the nearest cluster. In [33] (NFCN), [22] (ENFM),
[8] (SONFIN), [9] (SCENN), [16] (SOFNN) adding is
based on e-completeness principle. In [13] (FLEXFIS)
the adding is based on distance and vicinity quotient.

In practice, the distance conditions work best.
Therefore, the eFuMo implements two conditions for
adding: the distance conditions and the consequent
samples conditions. Both conditions must be satisfied
in order for a new cluster to be added. The consequent
samples condition is to prevent a new cluster being cre-
ated based on outlier sample. This condition means that
several consecutive samples must satisfy the distance
condition before a new cluster is added. The condition
is explained in [32].

The distance adding condition is based on a normal-
ized distance. There is an option of choosing the com-
ponent distances or Mahanalobis distance. The normal-
ized component distances are calculated as:

xr. (k) —vi.
dij = W, j=lL.,pi=1,.,c (24)
n Ljj

where x; (k) is the j-th element of clustering vector,
vi; is the j-th component of i-th cluster center, p is the
length of clustering vector, c is the number of clusters,
Ji;; is the j-th diagonal element of i-th cluster’s fuzzy
covariance matrix and k, is the user defined constant,
usually set to 2. When using normalized Mahanalobis
distance the normalization vector is formed from diag-
onal elements of fuzzy matrix:

St = VFir Tz o \[filTs 29)

The normalized distance is then calculated as:

(0% () = vo) T (¢ (k) = vi))*
L= P f 5 26)

lnorm

d

Slm)rm

With the first condition, a cluster can be added is any
of the component distance equation 24 is larger than 1.
The same component distance must be larger than 1 for
all existing clusters. With the second condition a cluster
can be added if the distances equation 26 to all clusters
are larger than 1. Figures 4(a) show the possible adding
space for the component distance conditions and figure
4(b) for the Mahanalobis distance condition. Both fig-
ures show the possible adding space (orange) for two

One component to all clusters Mahalanobis distance to all clusters

0.8 0.8

04 04

A -t

0 0
0 0.2 04 0.6 0.8 1 0 02 04 0.6 0.8 1
X, X

(b) Mahalanobis adding
distance.

(a) Component adding
distance.

Figure 4: Different adding distance conditions.

dimensional space. When a cluster is added, the param-
eters of the cluster must be initialized. The center of
a new cluster is set at the position of current clustering
vector. The fuzzy covariance matrix is initialized as di-
agonal matrix where the distances to closest cluster are
considered. The diagonal elements are defined as:

2
&

2N In(eg)’ @7)

fnerj =

where &g is a user defined constant, normally set to
0.15. If the distance d;; is smaller than standard de-
viation (\/E), then this diagonal element is equal to
a diagonal element of the closest cluster’s fuzzy covari-

ance matrix ( fnewjj = fijj).

The first cluster is added at the position of the first
clustering vector. Its fuzzy covariance is initialized in
the similar manner considering the input-output space
boundary and expected number of clusters:

dimax; = max(x;) —min(x;), j=1,..,p  (28)

where dmax,. is an expected range of j-th element of
clustering vector. The influence zone of the j-th com-
ponent is then calculated as:

dmax j

dinfluencej = ¢’ Jj=1..p (29)

where ¢ is the expected number of clusters. The di-
agonal j-th element of fuzzy covariance matrix is then
calculated as:

d?

62 - influence; —1 (30)
J anln(gﬁ) J=L.uP
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The fuzzy covariance is built with sz as:

ol 0 0
0 o7 -~ 0

F=(. - . . (31
0 o o,

The parameters of new local model can be initialized
using weighted mean:

Z?:l w[j eij

- (32)
=1 w;;

Oiy1;, =

where i is the index of cluster and j is the parameter
index. Weights @;; can be equal to normalized firing
levels of clusters, or equal to normalized firing levels of
clusters combined with parameters variances:

1
W;; = ﬁiga (33)

'ji

where G}%i ~is the j-th diagonal element of least squares
JJ

covariance matrix of i-th cluster.

Removing mechanism. It is meant to remove old
clusters and clusters created based on outliers. In
eFuMo method, this mechanism is not so important as
the method incorporates the forgetting factors that en-
sure the adaptation of the structure to the new data.
However, it may happen that a cluster is created in a
partition of input-output space that doesn’t have much
samples and is not very important for the model accu-
racy. This mechanism ensures that these clusters are
removed from the model structure. In literature, differ-
ent ideas are presented. In [34] the cluster is removed
if in a certain time the cluster doesn’t receive any sup-
port sample. Cluster receives a support sample if it has
greater firing level than other clusters. This might be a
problem with industrial processes, where it might hap-
pen that the process is in one working point for a longer
period of time. In this case, other clusters, that describe
different working points, might be removed from the
structure. In [20], [21], [17], [15] in [16] (D-FNN, GD-
FNN, GAP-RBF, SAFIS in SOFNN) the removing is
based on model error. In [20] (D-FNN) the error re-
duction ratio is introduced. The amount of error, that a
certain cluster brings to the overall model error is calcu-
lated. If this is small, the cluster is considered as redun-
dant and is therefore deleted. Similar concept is used in
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[21] (GD-FNN), where sensitivity index is introduced.
In [15] (SAFIS) an equation is introduced to estimate
the error change if a certain cluster is removed from
the structure. If this change is small, the cluster is re-
moved. In [16] (SOFNN) removing is based on optimal
brain surgeon approach [35, 36]. In [37] (Neural gas)
the clusters are removed based on their age. All clusters
that are older than an user defined age are removed from
the structure. In [38, 39] (exTS) the removing is based
on cluster’s support and cluster’s age. The clusters are
removed based on support-age ratio. Similar conditions
are introduced in +-eTS [23], where also the utility con-
dition is added. This condition is based on the ratio of
sum of firing levels and age of cluster. The threshold
values are defined with standard deviation and mean
values of the ratios. In general, this is not adequate,
since there is usually small number of clusters; there-
fore, using standard deviation and mean value are not
really representative. In +-eTS also minimal existence
condition is introduced. With this condition, a newly
created cluster must gather a certain amount of support
samples in a certain time period after creation. If the
gathered support is lower than a predefined threshold,
the cluster is removed from the structure. In [18, 19]
(EFuNN) the removing is based on cluster’s age and
sum of cluster’s firing levels. In [32] (DFKNN) remov-
ing is based on minimal support and time period. If the
cluster has lower support than an user defined threshold
the cluster is deleted. The cluster is also removed if in
certain time period after cluster’s creation, no support
sample is assigned to it.

The proposed eFuMo method has two conditions for
removing: A minimal existence condition and support-
age ratio condition. The minimal existence condition
is the same as in [23]. It simply removes clusters that
in certain period after creation (kge1qy) don’t receive
enough support samples (Ns;). The time period (kgeiay)
and support threshold (Ns;,,) are user defined constant
usually set to 20 and 10, respectively. The support-age
ratio condition is based on clusters’ supports Ns; nor-
malized with clusters’ age (equation 35). Cluster with
the ratio lower than a percent € of mean ratio is deleted.
Age a; is defined as a number of samples from the clus-
ter’s creation k; and current sample k:

a; = k— k,’ (34)

N .
Sy, = 1. (35)
a;
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Both conditions for removing can be written as:

IF S,, < € mean(S,)
OR (Ns; < Ns;pp, AND k > ki + kgelay) (36)
THEN remove i-th cluster.

Splitting mechanism. It is in our case meant for
fine tuning the evolving fuzzy model. It can add clus-
ters in input-output space, where the output model er-
ror is higher than predefined threshold. The concept of
splitting was used in the on-line incremental learning
of Gaussian Mixture Models in [40], where the Cher-
noff bound is used and in [41], where fidelity measure
is used. It is argued in [42] that these methods are slow
and don’t produce good results. Therefore they pro-
pose an integrating a joint incremental on-line split-and-
merge scenario, that should overcome under- and over-
clustered partitions. The splitting is based on a BIC
value. The BIC is a combination of Gaussian density
function function and cluster overlapping. The clusters
that are split are found using trail and error procedure.
In [10] (NeuroFAST) clusters are split based on mean
squared error (MSE). The error is checked every P step.
The cluster that has the highest MSE and is at least P-
times activated is split.

The eFuMo’s splitting mechanism is based on rel-
ative model error, that clusters gather over time. The
error is updated every time the splitting mechanism is
called and the current sample doesn’t satisfy the dis-
tance adding condition. First the relative model error is

calculated:
_ (k) —y(®)]

e(k) 340,
. y

37)
where y is the real output and y,, is the model output.
The o, is calculated by CDL block and represents cur-
rent standard deviation of the process output. The error
is then divided among the existing clusters and added to
the previous error:

€sum; (k) = Csum; (k - 1) + ﬁie(k)7 (38)

where f3; is the firing level of i-th cluster. The splitting
mechanism checks the cluster with the highest error. If
its support from the last change in cluster number till
now is higher than a threshold (usually set to 20) and
its error normalized with N (number of samples used
to calculate the error) is larger than a threshold value,
the cluster is split. The error threshold is set by the
user, specifying the maximal and minimal error thresh-

old and the decay constant. The current threshold is
calculated as:

ern = max(emarexp(—N/T), emin), (39)

where e;,, is the current threshold, e, is the maximal
error threshold, e,,;, is the minimal error threshold, N
and T are the number of samples that are used for error
calculation and decay constant, respectively.

The positions of the split clusters are calculated us-
ing diagonal elements (vector s;, ) of the fuzzy covari-
ance matrix.

vii =v;+0.5s;
il L tnorm (40)
Vit =V;— O'SSinorm

where i is the index of the cluster that is split. The new
center positions can also be calculated using the sin-
gular value decomposition as in [43]. The fuzzy co-
variance matrix, support and sum of past membership
degrees are set to half of their original value for both
clusters. The time of cluster creation is for both clusters
initialized as the creation time of the original cluster.

Merging mechanism. There are two types of
merging algorithms implemented in eFuMo: supervised
and unsupervised. In literature different concept of
merging techniques can be found. In [32] (DFKNN),
the center positions are monitored. If the centers are
converging to the same area the clusters are merged.
The used similarity measure is based on samples mem-
bership degrees and is similar to the correlation between
clusters firing levels. It is presented in detail in [44]. In
[18] (EFuNN), the merging is done based on clusters’
firing levels correlation. The method merges neigh-
borhood clusters, where after merging the total radius
does not exceed the predefined maximal radius. In [22]
(ENFM),the clusters are merged if the membership de-
gree of the first cluster to the second and vice versa is
higher than a predefined threshold. In [16] (SOFNN)
clusters are merged if the cluster centers of the two clus-
ters are the same. The possibility of using similarity
measure from [45] is mentioned. In [46] (FLEXFIS+),
the merging based on membership function intersec-
tions is proposed and the overlapping index is calcu-
lated. If this index for the two clusters is higher than
a predefined threshold and the angles between the local
models’ parameters are small the clusters are merged.
The eFuMo unsupervised merging is based on most
commonly used principle of merging. It merges clusters
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that are close together. The similarity and the vicinity
of the two clusters are measured by the normalized dis-
tance:

= (vi—v)TE Y (vi—w), i,k=1,...,c i#k. (41)

1

ik
2sT Fl -1 “2)

dnorm,-k =

inorm L Sinorm
The distances are calculated only for clusters that have
higher support from last change in cluster number than
an user defined threshold (usually set to 20 for both val-
ues). The clusters are considered for merging if both
normalized distances dyorm,;, and dypm,,; are shorter than

the predefined threshold &g:

dnormy, < 1/ —In(ep) 43)

If this criterion is satisfied, the distance ratio is checked:

min (dnorm,-k ; dnormk,-)

max (dnormik y dm)rmk,- )

'1 - ‘ <Kipre (44

if the ratio is above the user defined threshold kg,,,,,
(usually 10 percent) clusters are merged.

The parameters of new cluster are initialized as a
weighted mean. The fuzzy covariance as proposed in
[22]:

1
Fow = ————
" (Ns;+ Ny )3
+(Ns; +2NsiNs; + NsyNs?)F+
+(NS[2NSk +NS,'NS%) (vi— Vk)(V,‘ — Vk)T)

((Ns? +2Ns?Ns; 4 Ns;Ns?)F;+

45)
The new center is calculated as:
Ns;v; 4+ Nspvi
= 46
Vnew Ns;+ Nsy, (46)

In the same manner a the new sum of past membership
degree is calculated. New support of the cluster 47 and
time of creation are calculated as weighted mean where
weights are sum of past membership degrees (s;, s):

Ns;s; + Nspsy,

47
- 7

Nspew =

The local linear model parameters are calculated as
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weighted mean:

;. 0;. + .6,
Opery, = ——L—"— j=1,.. 48
new o, + o, J R (48)

where weights @ are the cluster supports Ns combined
with a variance of the parameters.

The supervised merging considers the prediction
model error. The supervised merging has three different
measures to detect the clusters that could be merged to-
gether. It uses angles between local models’ parameters
(angle merging condition), correlation between clusters
firing levels (correlation merging condition) and dis-
tance ratio (distance ratio merging condition). Only
clusters that gathered higher support and sum of past
membership degrees than a predefined threshold can be
considered for supervised merging. The correlation co-
efficient is calculated based on monitoring of firing lev-
els and their products f;;(k) = Bij(k— 1) + Bi(k)B;(k),
Bii(k) = Bii(k — 1) + Bi(k)Bi(k) and is calculated as:

_ By
~ R0O.5R05
Bi”Bj;

Gij(k) (49)

If the coefficient C;j;(k) is above user-defined threshold
(usually set to 0.9) the clusters i and j are considered
for merging.

The distance ratio criterion for merging is similar
than with the unsupervised merging. The distance ratio
is calculated as:

di = \/(Vi —vi)T det(F,»)%Flfl (Vi — Vi)
[t = min(ddi)] - C
max(dik, dii)

The clusters are considered for merging if the distance
ratio K is lower than an user defined threshold (usually
0.05) and the correlation coefficient is at least half of
the threshold defined for correlation merging condition.

The angle merging criterion is based on local mod-
els’ angles. First the parameters are normalized. The al-
gorithm sweeps all local models’ parameters to find the
vector of the largest absolute value of parameters. Then
the parameters of local models are normalized with this
vector. The angles for the two clusters for all parame-
ters are calculated:

0j, = |arctan(6;, ) —arctan(6), )| (5D

where k is the parameter index. The clusters are consid-
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ered for merging if all angles oy, , k=1,..,r, where r is
the number of local model’s parameters, are below the
user-defined threshold (usually set to 2 degrees) and the
correlation coefficient is at least half of the threshold
defined for correlation merging condition.

After the eFuMo identifies the possible merging
pairs with the correlation, angle and distance ratio
merging conditions it then checks the local models for
the error:

X| = [1,ﬁ],...,ﬁp,1]T

= |91-TX1 — QJTX1|

)4
e = Z |6;, (x1, +20,, ,) — 6, (x1, +204, )|
— (52)

p
= Z ‘eir('xlr - 2Gur—l) - 6jr(xlr - 26”r—1)|
r=1

1 3
~ 102 o, ,:Zle’

where i is the mean value of a certain input variable
Oy,_, is its standard deviation, oy, is the standard devia-
tion of the process output, p — 1 is the number of inputs,
j and i are the cluster indexes 0; is the i-th cluster’s local
model parameter vector and ;, is the r-th parameter of
the i-th local model.

The pair that has the lowest error and the error is be-
low the threshold is merged. The center of the merged
cluster is positioned in the middle between maximum
and minimum border of both clusters:

d] =V;— Vj
/
vl V Slgn(dl )Sim)rm
/

Vj = Vj — Sign(dl )Sjm)rm (53)
vi—V,
d; = 3

View = Vj+d2

The fuzzy covariance matrix and support of a new
merged cluster is initialized as a sum of both clusters’
fuzzy covariance matrices and supports, local model pa-
rameters are initialized as a mean of both local models’
parameters and the creation time is initialized to the cre-
ation time of the oldest cluster. The sum of past mem-
bership degrees is initialized to the max sum of past
membership degrees of both clusters.
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Figure 5: Scheme of the CDL.

1.3 Central decision logic

The CDL is responsible for proper flow of the opera-
tions. It controls the calls to evolving mechanisms and
adaptation mechanisms. It also calculates the mean and
standard deviations of the inputs and output of the pro-
cess, that is identified with eFuMo. The scheme of the
CDL block is shown on figure 5 and the sub-blocks are
shown on figure 6.

The input to the eFuMo identification method are
clustering vector (Xy), regression vector (X;), output of
the process (y) and number of current sample (/). The
CDL block first checks the current sample number (i) to
the sample number when the last change in cluster num-
ber was made and the user defined time delay. If the
sum of these two values are smaller than a current sam-
ple number, the evolving mechanisms may be called.
Otherwise the CDL skips the call to evolving mecha-
nisms.

The CDL first calls the adding mechanism, then the
removing mechanism, follows the supervised merging
mechanism and unsupervised merging mechanism and
at the end the CDL calls the splitting mechanism. If one
of the mechanisms changes the cluster number other
evolving mechanisms that follow are not called and the
eFuMo continues with the adaptation algorithm.
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Figure 7: Scheme of the MBBR.

The CDL algorithm is also responsible for calculating
the variance and mean of the input variables and output.
The variance o2 is calculated on line by the following
equation:

or(k) =~ ((k—1)(c*(k— 1) +x(k—1)*) +x(k)*) —

a1

—k% (k= 1)%(k— 1) +x(k))?
(54)

where x is the variable and x is the mean of it, calculated
as: |

i(k):%((k—l)x(k—l)—i-x) (55)
If the splitting is enabled, the CDL also calls the error
update algorithm. The algorithm updates a cluster error
equation 38. This algorithm is only called if the current
data sample doesn’t satisfy the distance adding condi-
tion. The CDL also calculates the clusters’ firing levels
products used to calculate the correlation coefficient 49.

2 Monitoring Example

2.1 Monitoring system idea

The monitoring system that includes the evolving fuzzy
model was tested on measured data from a pilot waste-
water treatment plant, shown in figure 7. The pilot plant
consists of two anoxic reactors, two aerobic reactors
and an additional reactor, where the water is collected
before returning as an internal recycle or passing down
to the settler. To ensure the homogeneity, the waste wa-
ter is mixed by mixers in the anoxic reactors and by air
flow in the aerobic reactors. In this example the mon-
itoring of oxygen concentration in anoxic reactors will
be done. The monitoring system is based on Takagi-
Sugeno (TS) fuzzy model that estimates the relations
between the input and output variables. The oxygen
concentration is estimated from the air flow, the tem-
perature in the reactor and the previous measurement of

the oxygen concentration. First order local models are
used. The inputs were selected by a backward selec-
tion. The idea is to detect the error in the process output
based on the inputs. The outputs of the FDS are y,, s (k)
and alarm(k). The output alarm(k) indicates the pres-
ence of the fault in the measured signal (alarm(k) = 1:
fault detected). The output y, (k) is the process output
with the removed fault. If there is no fault detected the
output yy,; (k) is equal to the process output y(k). If the
fault is detected, the output yy, s (k) is calculated based
on a fuzzy model that describes the proper relations be-
tween the input signals and the monitored signal.

The FDS determines the fault based on the internal
fuzzy model of the signal relations. For monitored sig-
nal, three models are kept in the FDS’s memory: a full
evolving fuzzy model, an adaptive fuzzy model (param-
eters of clusters and local models are adapted) and a
fuzzy model with fixed parameters that holds the in-
formation about the last good known parameters. The
learning of the fuzzy models is delayed for 200 samples.
The delay was introduced for future research to cope
with slower faults. The data sample is used for learning
if there was no fault detected. For each sample and each
model the relative prediction error is calculated. The
calculated error (its absolute value) is assigned to the
model. The prediction error assigned to the fuzzy model
is combined with the simulation error, which is calcu-
lated periodically on every 200-th sample using the 200
samples in the buffer. The prediction error is also used
for learning the prediction-error fuzzy model. Namely,
each model that describes the signal relations is accom-
panied by the error model. The error model is used to
calculate the allowed difference between the estimated
and measured signals. For estimating the sensor output
during the failure, the model with the lowest assigned
error is used.

The adaptive and fixed model structure and parame-
ters can be replaced when a cluster is added or removed
from the evolving fuzzy model’s structure. Before the
number of cluster changes, the error of each model is
checked. If the evolving model has the smallest error,
the adaptive and fixed model structure is replaced by the
evolving model’s structure. In addition their error mod-
els are replaced. The simplified diagram of the proce-
dure is shown in figure 8.

The variances denoted as ¢_evolving, o_adaptive
and o_ fixed are calculated from the error model:

o =Y Bi/Fi (56)
i:)jlﬁ ,
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Figure 8: Scheme of the FDS for a subprocess.

where F;, is the last diagonal element of the error fuzzy
model’s cluster i. This element represents the variance
of the error. As seen in figure 8, the alarm is raised
if the difference between the estimated output and the
measured output is higher than the maximum allowed
difference. Note that the alarm is turned off when for at
least 30 consecutive samples the difference is below the
defined threshold for turning off the alarm. To ensure a
smooth transition from the estimated output to the mea-
sured output, when the alarm is turned off a filter was
implemented that calculated the output of the FDS as:

- ((30 - kalarm)Ymadel + kalarmy)
Ysoft = 30

; (57

where kg, 1S the number of samples from the sam-
ple when the condition for turning the alarm off was
reached. The maximum number of k.., is 30 and its
value is reset to O every time a new alarm is raised.

2.2 Detecting the false alarms due to manual
calibration

Manual tuning and offset repairs of the oxygen concen-
tration signal is performed every few months. This is
seen on the upper graph in figure9. The drift of the sen-
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Figure 9: Effect of sensor calibration.

sor was manually reduced by the operator, causing the
FDS to report an error. It can be seen that the shapes
of the estimated and measured outputs are practically
the same. However, due to an offset of the signal the
FDS detects the error. To automatically turn off such
alarms, an additional algorithm was implemented to the
FDS. This algorithm is turned on when a new alarm
is detected. With this procedure the algorithm starts to
calculate the variances of the estimated output, the mea-
sured output and the variance of their difference when
the alarm is raised. The idea behind this solution is that
the variance of the estimated and measured output (if
they are only shifted) should be higher than the variance
of their difference, under the assumption that the model
used for estimating the output is not biased and the pro-
cess output changes (there is an excitation present). The
variances are calculated recursively with equations 55
and 54. When the variance of the difference between
the estimated and measured outputs falls under the vari-
ance of both, the estimated and the measured outputs
the raised alarm is turned off. The algorithm starts to
check this condition after the alarm is present for some
time (in our case 300 samples). The algorithm is turned
off when, for at least a certain number of consecutive
samples (in our case 100), the variance of error is below
the model and process variance. The algorithm is also
turned off if its maximum functioning time is reached.

3 Results and Discussion

The presented idea was tested on real data. To esti-
mate the performance of the system during a sensor’s
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Figure 10: Oxygen-concentration fault detection.

malfunction a failure was simulated on a known part of
the data. Note that the duration of the simulated fault
was exaggerated in order to test the system. The sim-
ulated faults lasted for about 7000 samples (around 39
hours). Usually, the faults last from about a few min-
utes up to 6 hours. The settings of the evolving method
were obtained based on trail and error. The fault was
simulated between the samples 35000 and 43000. The
whole experiment is shown in figure 10. The first 8000
data points were used for the initial learning of the fuzzy
model. The learning was performed using the eFuMo
method. The alarm signal and the number of fuzzy
model clusters are shown in figure 11. Besides the sim-
ulated fault, the system also detected some faults that
were not added to the signals. These faults were caused
by sudden spikes in the monitored signals and therefore
the detection of the fault seems justified.

Even though the estimated signal is not entirely cov-
ering the measured signal, we believe that the estima-
tion accuracy is still good enough. The error between
the measured and estimated signal during the fault is
given in Table 1. This table also includes the NIDE
index, the minimum, maximum and mean absolute er-
ror, the signal range for the faulty samples, the mini-
mum, maximum and mean relative error, and the sam-
ples where the fault was simulated are given.

As can be seen on the upper graph in figure 9, the
manual tuning creates an offset of the measured signal,
resulting in the detection of a fault. At around sam-
ple 8400 a real fault occurs, which then quickly van-
ishes. Later on the measured signal is shifted. The FDS

1k
E L
8 Alarm concentration O,
<
0 I ) I ] I ) ) I )
0 1 2 3 4 x 10°
]
@
2
Z 65
o
4y
< 47
= eFuMo O, model
=
5 2r
Z
0 L 1 1 I L L 1 1
0 1 2 3 4 ¢
sample x10

Figure 11: Alarm signal and number of clusters over the
experiment.

Estimation Error Concentration O,

NDEI 0.488
min. abs. 2.83e-5 [g/m’]
max. abs. 1.347 [g/m?]
avg. abs. 0.189 [g/m’]
signal range H 2.72 [g/m3]
min. rel. 1.04e-5
max. rel. 0.495
avg. rel. 0.0695
faulty samples [10°] | 3543

Table 1: Estimation error during the simulated fault.

detects the alarm. Because the signal is shifted after
the fault, the alarm is still present. The alarm is finally
turned off at sample 11500, when the measured signal
comes into the allowed difference zone and stays there
long enough for the fuzzy model to adapt itself to the
signal shift. On the lower graph in figure 9, the false-
alarm detection was implemented. It can be seen that
the signal shift is successfully detected and the alarm is
turned off more quickly than without the implemented
false-alarm detection algorithm.

On figure 12, the course of variances are shown. The
variance of the difference (between the estimated and
measured signal) falls under the measured signal’s vari-
ance very quickly. This is partly because the initial fault
of the measured signal is included in the variance cal-
culation. The variance of the difference falls under the
variance of the estimated signal at sample 9475. With
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Figure 12: The course of variances.

this, the conditions for overriding the original alarm are
met. The last alarm based on the output differences is
raised at sample 9740. Therefore, the variance proce-
dure is switched off at sample 9840. The procedure suc-
cessfully detected the signal offset caused by the man-
ual calibration.

4 Conclusion

In this paper an evolving fuzzy model method for on-
line learning of fuzzy models was presented. The
method is useful when dealing with nonlinear time-
varying processes. The method was used in an exam-
ple of fault detection system. The presented results
show that the approach can be successfully used for
such tasks. The only issue of the method and all such
methods is in its tuning. There are a number of parame-
ters that need to be tuned. Their tuning highly depends
on a problem and require an expert to tune them. Fur-
ther research will be focused on lowering the number of
tuning parameters and on self tuning of the method.
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Abstract. Accurate anticipation of the remaining use-
ful life (RUL) of a machine is becoming mandatory for
efficient exploitation of the asset and avoiding the un-
planned downtimes. This should be achieved without
extra investments in additional sensors and processing
power. In this paper we present an approach to the RUL
prediction of a shot blasting machine by using record-
ings from inexpensive vibrational sensors. The key idea
consists in (i) employing generalised Jensen-Rényi diver-
gence (JRD) as a measure of change in the vibrational
pattern and (ii) associating JRD with the abrasive wear
in rotor blades. It is essential to note that these two
show monotonic relationship. Hereupon, a simple hid-
den Markov model with stochastic inputs and JRD as out-
put is proposed. The hidden states of the model are up-
dated on-line by means of Kalman filter. Prediction of the
remaining useful life is done by executing Monte Carlo
simulations on the updated model and evaluation of the
first passage time of the JRD. The approach is success-
fully validated experimentally by running the machine up
to failure, hence allowing for naturally evolving wear pro-
gression and breakdown.

Introduction

Stable and anticipative condition of process equipment,
high availability and reliability, along with product
quality are key factors that allow companies to stay
competitive on the market. However, wear, material
stress and environmental factors cause equipment to
fail. The problem occurs if that happens unexpectedly,
since the consequence can be partial or total break-
down of a production line, destroyed equipment and
even catastrophes.

Migrating towards more cost effective condition-
based and predictive maintenance (instead of sticking
to the outdated concepts of reactive and periodic main-
tenance) has become a way to raise the overall process

performance and cost efficiency. To accomplish this
goal, systems for on-line and non-destructive condition
monitoring (CM) have to be employed to timely alert
about the onset and location of fault in the early stage
[1]. Indeed, the degradation of an asset usually goes
through a distinct incipient phase with some noticeable
indicators, which provide advanced warning about on-
set of failure. However, what the operators and main-
tenance people indeed want to know is when to stop
the machine and take accommodation actions. Reliable
estimate of the remaining useful life (RUL) becomes
indispensable.

In spite of significant advances in condition moni-
toring in the last decade in terms of methodology and
key enabling technologies, yet no massive use in indus-
trial sector has been witnessed to date [2]. There are
several reasons for that, including (i) (still) relatively
high cost of the design and commissioning, especially
when domain specific solutions have to be adopted and
(ii) the fact that traditional approaches require addi-
tional instrumentation (e.g. for rotational speed) to be
implemented hence rising the cost.

Compared to CM, predicting RUL is by far more
difficult problem. Only limited success has been
achieved in special cases like in aeronautics and defence
systems. The problem is notoriously demanding for
several reasons: (i) data about overall useful life from
similar items of equipment are seldom available, (ii)
knowledge about degradation, i.e. wear mechanisms is
incomplete and (iii) comprehensive knowledge of oper-
ating history, disturbances and past maintenance actions
is usually unavailable.

The objective of the design approach presented be-
low is to comply with the three main requirements: (i)
to come up with signatures sufficiently robust to varia-
tions in the operating conditions; (ii) to set up the alarm
threshold the required prior knowledge should be min-
imal (meaning that all the required information should
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be extracted from data in fault-free operation) and (iii)
to perform condition monitoring (CM) using minimal
number of sensors thus making the method both broadly
applicable and financially viable.

In this paper we propose an approach to the RUL
prognosis based solely on vibrational records. The idea
is to exploit the relationship between the degradation
phenomena in the material, the remaining life and char-
acteristic information patterns in measured signals. The
latter are obtained by statistical signal processing of
signals from vibrational sensors in a way to accom-
plish monotonous dependance with the level of ma-
chine degradation. Evaluation of the vibrational fea-
tures is based on statistical analysis of the envelope of
the generated vibration [3]. State of health of the ma-
chine is determined from change in the vibrational sig-
nature by calculating the "distance" between initial and
current signatures. That is achieved by evaluating the
generalised Jensen-Rényi divergence of the vibrational
features. Since the degradation is stochastic process,
we will exploit hidden Markov models to describe the
degradation phenomena. The states of the models are
updated on-line and then used to simulate propagation
of the future degradation and hence evaluate the proba-
bility density function of the remaining useful life.

The concept of RUL estimation above is applied to
a shot blasting machine.

The rest of the paper is organised as follows. Section
2 introduces the problem related to the degradation of
the machines during operation. Simple process model
for RUL prediction, complemented with the health in-
dex, is presented in Section 3. Experimental results are
highlighted in Section 4. The paper ends up with con-
cluding remarks.

1 Shot Blasting Machine

Shot blasting machines are widely used in the process of
surface cleaning where contaminants from the surface
of castings are removed in order to prepare the metal
parts for further finishing like, for example, painting,
coating or mechanical treatment.

In shot blasting machines (Figure 1) small shots of
abrasive material are fed to the turbine blades where the
shots form a stream flowing along the blade length. De-
pending on the actual arrangement of the separating ro-
tor and the sleeve, the flowing stream will be roughly
uniform on the blades’ width and length. As soon as
the stream of shots leaves the blades, its direction is
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controlled by setting the wheel, whilst its shape changes
both in width and length, thus forming a range of shot
flow that hits the surface of object under treatment.

Figure 1: The shot blasting machine and illustration of the
principle of operation.

The problem addressed in this paper concerns abra-
sive wear of the rotor blades. Abrasive grains transverse
the blade from center to the periphery and their kinetic
energy increases due to centrifugal forces of the rotat-
ing blade. Hence the abrasive grains scrap the surface of
the blade thus forming "micro-chips", i.e. small pieces
of material removed from the blade surface. With in-
creasing number of the operating cycles the wear in-
creases, gradually leading to the damaged blade, which
can eventually break and cause downtime.

The outlook of a new blade at the beginning of the
process and near failure is given in Figure 2. The prob-
lem is that it is not possible to accurately judge the level
of wear on the basis of the number of cycles. Therefore
it is of utmost interest for the operators to have an indi-
cator on the level of wear in non-intrusive manner, i.e.
without interrupting the blasting process.

Inference on the level of damage is done on the basis
of signal analysis from vibrational sensor mounted on
the housing of the machine close to the rotor bearing.
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Figure 2: Turbine blade at the beginning of the operation
(left) and at the end of the useful life (right).

2 Vibrational features and
health index

2.1 Feature extraction from vibrational signal

Faults in the rotational machines affect the inner pat-
terns of vibrational signals referred to as features [3].
By tracking the way these features evolve over time, it
is possible to perform sufficiently accurate RUL predic-
tion.

Wear in a turbine blade of the machine gradually
results in increased imbalance of the rotor system. Vi-
brations resulting thereof can be viewed as the result of
excitation, caused by rotor movement, on the machine
eigen-structure. The resulting spectrum contains char-
acteristic components at the frequencies m - npjqqes - fror
where m € 1,2,..., npjaqes 18 the number of blades and
Jror 1s rotational speed. By applying the narrow-band
filtering around the characteristic frequency we get a
narrow-band stochastic signal whose energy (or enve-
lope) is Rice distributed.

Sampling of vibrational signal is performed at high
frequency during short measurement sessions with an
interval of 2 hours between two consecutive sessions.
Changes in the probability distribution function (pdf)
are characterised by calculating the "distance" between
the current pdf and the reference one obtained when the
machine is in nominal (healthy) state. Among several
possible metrics that can be used to describe this dis-
tance, we suggest the so-called f-divergence measures,
more precisely the generalised Jensen-Rényi (JR) diver-
gence [4]. The rationale is simple. Instead of compar-
ing two distributions, we compare two ensembles of dis-
tributions, one from fault-free reference condition and
the other from current condition. The strength of this
approach lies in the fact that comparing only two distri-
butions is subjected to considerable fluctuations, which
make final decision making difficult.

2.2 Jensen-Rényi divergence

The generalised Jensen-Rényi divergence (JRD), de-
noted by JR}, serves to quantify the dissimilarity
among n pdfs &, ..., #,. It reads:

JRG (P, Pn) = Hy (ZWn%) =Y wiHy ()
i=1 i=

ey
where Y w; = 1 and Hy, is the Rényi entropy:
1
Ho(P) = =5}, p*(). @)
— -
x€g
with a € [0, 1].

The selection of weights w; in (1) is in principle ar-
bitrary. If w; are selected uniformly i.e. w; = 1/n, the
divergence reaches maximal value [5]. JR divergence
quantifies shared information among n random vari-
ables. If they are identical, i.e. & = % =...= P,
the divergence is zero.
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Figure 3: (a) Pdfs three random signals, and (b) pairwise JR
divergence as a function of a.

The usability of the JR divergence concept can be
described with a simple example. Figure 3(a) shows
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three pdfs of Rician family. By considering the pairwise
JR divergence with uniform weights, the relation (1) be-
comes:

JRY (P, P) = Hy (;(%Jr%)> 3)
— 3 (Ha (1) + Ha (7).

where &7 and &7, are pdfs of interest. As shown in
Figure 3(b), the JR divergence corresponds to the dis-
similarity between corresponding pdfs.

Figure 3(b) additionally shows the effect of the val-
ues of the parameter &. Low value of o ~ 0 emphasizes
dissimilarity among pdfs in the lower part of the range
of random variable (approximately x € (6,8)) where
pdfs do not differ much, hence low divergence values.
In the middle region (x ~ 4, a ~ 0.2) the pdfs differ the
most, hence the highest values of JR divergence. Fi-
nally, o € (0.6,1) captures the region of the bulk prob-
ability masses and the divergence drops in a relatively
linear manner.

2.3 The role of weights w;

To allow tracking the changes in pdfs, the exponential
weights w; are suggested in this paper. The weights w;
are calculated using the exponential function of the fol-
lowing form:

wi=C-e 'l @)
where A is sensitivity parameter, n is the number of pdfs
(1), i=1,2,...,n and C is normalising constant. One
can easily see that (4) reduces to the uniform weighting
for A — 0 and n — oo.

The influence of weights w; on JR divergence can
be illustrated by a simple simulated example. The sim-
ulation consists of 21 Gaussian pdfs with one heaving
significantly different p as shown in Figure 4(a). The
JR divergence is calculated as: JRY (P, P, ..., Z%),
i=1...21.

The rate of change in JR divergence is condi-
tioned with the selection of weights as shown in Fig-
ure 4b. The most notable increase is observed if uni-
form weighting is applied, i.e. w; = 1/n [5], while ex-
ponential weighting delays the impact.

2.4 Health index

The concept of health index is widely used in system
condition monitoring and serves to describe the aggre-
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Figure 4: The evolution of JR divergence after measurement
sessions. Note that all pdfs are equal except the
pdf #11. (a) Pdf's of the simulated signals
associated to the measurement sessions 1,...,21
(b) JR divergence. Up to i < 11 there is no
dissimilarity in the distribution,
hence JRy (2, 2,,..., 7)) =0.

gated level of health either of a component or machine
as a whole. In the case of shot blasting machines the
health H is perfect when the machine is new, hence
H = 0. With evolving abrasive processes on the blades,
more and more surface material is removed, which re-
sults in increased vibrations. The Jensen-Rényi diver-
gence is viewed as an appropriate metric that reflects
the change in vibrational pattern caused by the level of
wear in turbine blades. To find the relationship, life-
long experiments have been run in which machine oper-
ation was periodically interrupted by operators who per-
formed invasive measurement of the blades volume. All
the time during operation, the vibrations were regularly
measured. The most important result of the experiment
is the finding that between JRD and the extent of dam-
age (equivalent to removed volume of blade material)



there exists a monotone relationship. This is indicated
in Figure 5. Consequently, one can adopt the health in-
dex to be equal to the normalised JRD, i.e. Hy = jgg’;
where JRD* stands for JRD when the machine turbine
is considered worn out.

Note that health index H does not rise monoton-
ically all the time, but in the period approximately
[30,100] it slightly decreases. Such a behaviour looks
illogical given the fact that the machine should get more
and more worn with new operating cycles. The expla-
nation lies in the fact that at the begining of the opera-
tion, the machine is not perfectly balanced. If we take
into account that abrasive processes are not the same on
all the blades, then asymmetry in abrasion slightly cor-
rects the position of the center of gravity, hence result-
ing in lower vibrations and apparently improved condi-
tion. Such a situation changes as soon as abrasion pro-
gresses. Then asymmetrical wear in the blades results
in increased imbalance and consequently raised vibra-
tions.

3 Stochastic Model of Abrasive
Wear

3.1 Abrasive wear

The key mechanism of deterioration of condition of the
turbine blades is abrasive wear [6]. Each time a shot
particle enters the turbine, it travels along the blade’s
length. Along that path it removes a small layer of the
blade material of volume 8V according to the Archard’s
law

OV =k-8A 0L, (5)

where k is the wear coefficient, 0A is the contact area
and OL is the length of the path traversed by the shot
particle on blade’s surface.

In the ideal case, when all the blades were identi-
cal, the mass removed from each blade would be the
same. Thus the center of gravity would stay at the ro-
tational axis, which means negligible vibrations. How-
ever, due to irregularities in the particle size, angle of
entry and variations of the blade’s microstructure, there
are minute variations in the mass removed from each
blade. As a result, the generated vibrations tend to in-
clude amplitude modulations that depend on the num-
ber of blades and the rotational speed. Therefore, the
intensity of these sidebands can be directly correlated
with the removed volume of the blade material due to
abrasive wear. Since there is no other source of vibra-
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tions, one can safely assume that any particular change
in the vibration’s signature in the lower frequency band
(<2 kHz) is due to mass loss and is therefore directly
related to the blades’ condition.

3.2 Hidden Markov model

The Archard’s law (5) describes mass loss due to the
blade interaction with single shot particle. During nor-
mal operation a number of particles travel along the
blade’s surface. During the interval of time [t;_1,#] the
loss of volume can be written as:

AV = k- Ay - Ly, (6)

where Ay is the cumulative contact area of the shot parti-
cles and L is the cumulative traversed distance. These
two quantities are results of stochastic processes and,
consequently, also AV} is stochastic process. Therefore,
the total volume loss at k + 1 would be:

Vi1 = Vi +AV;. @)

Due to surface changes, the contact area and the tra-
versed length are expected to change over time. There-
fore, based on (7), we can assume that the volume loss
AVy is a process defined by the stochastic variable de-
fined on the set of non-negative real numbers. To con-
sistently model such a process, several options are at
disposal as for example, gamma or Weibull distribu-
tion. The problem is that in such a case recursive up-
dates can be done only by numerical techniques. A
way around is to assume that the increments AV, fluctu-
ate around some mean value . The size of fluctuation
can be described by a normally distributed white noise
wy ~ A (0,0) such that 6, < 1. From here it follows
that

AVk - AVk_l = W#J( — Wp,k—l

and consequently one can write
AV = AVi_1 +wavi

where way  ~ JV(O,ZO'&)

Hence we get a state-space model with states V;, and
AV}.. The problem now is that none of the states is avail-
able through on-line sensor reading. This can be sorted
out by replacing the volume V; by health index H,
which is calculated on-line from acquired vibrational
records.
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(a) Initial condition

(b) Mid of experiment

(c) End of experiment
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Figure 5: The relation between fault progression and evolution of health index (JR divergence): (a) at the beginning of the
experiment, (b) in the middle of the experiment and (c) at the end of the experiment.

Hence the resulting state space model reads as fol-
lows

Vier | |11 Vi 0
{AVHI] a [0 J [AVk] - {WAv,k] ®
—_——— e —

Xt 1 A Xk Wi

The measurement equation that relates system states
and computable health index H; reads

_ V (k)
Hk_w[AVJ+nk ©)
C

where n; ~ #(0,62) is white noise uncorrelated
with wy.

3.3 Kalman fiter

The states of the discrete model (8) can be effectively
estimated using the Kalman filter approach [7, 8]. The
unknown states are updated at each measurement ses-
sion resulting in the moments of the posterior distribu-
tion of system states x; ~ A" (X, Pyi) as follows

1. Initialisation step: set the estimates Xgo =
Xo, Pop. Q= ww!, R = o2 from data obtained through
life-long experiments on similar machines.
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2. Prediction step

Xi—1 = Ay
Pyi1 =AP_ ;A" +Q

3. Update step: calculate the system output vector y
based on calculated JRD and then update the moments
of state probability distribution function

K = Py C" (CPyy_,C" +R)™!
Xk = Xe—1 + K (v — Cyp—1)
Py = (I - KiC)Pyi

4. When the next measurement session appears set
k=k+ 1 and go to step 2.

3.4 RUL predictor

Having an updated model at a given measurement ses-
sion k one can simulate the possible future trajectories
of the state space model (8) by Monte Carlo approach.
Using realisations of random processes of noise terms
WAkt Mits, § > 0 s is possible to calculate the cor-
responding trajectories of the state vector xj ¢ and the
predicted health index Hy.;. Based on that one can eas-
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ily calculate the distribution of first passage time, i.e.
the time s* at which the health index H crosses the up-
per bound H*.

4 Results of experiments

The RUL estimation algorithm was evaluated on a shot
blasting turbine in real operating environment. The
blades were subjected to 400 operational hours spread
over a period of 4.5 months. Vibration signals were
acquired during 10 seconds long measurement sessions
every two hours while the machine was in full opera-
tion. In that period, three visual inspections were per-
formed after 10 hours of operation, at the 120%™ hour
and at the end of the experiment. Vibrations were mea-
sured on the bearing housing nearest to the turbine with
sampling frequency of 10 kHz.

4.1 Evolution of the health index

The health index was calculated as JR divergence ac-
cording to (1) with unifirm weights w;. First 20 hours
of operation were used as a reference point. The evolu-
tion of the health index is shown in Figure 5.

As shown in Figure 5, in the initial phase, the health
index values were near zero. This is an indication that
the energy distribution of the newly observed vibra-
tion is very similar to the initial *fault-free’ distribution,
hence the minimal JR divergence.

The first significant increase of the JR diver-
gence occurred around the 30" hour of operation. Af-
ter the initial increase the JR divergence gradually de-
creased. As said, this effect can be attributed to the run-
in phase of the turbine blades.

The onset of fault is visible at the 80™ hour of opera-
tion. At this point the degradation of the blade condition
commenced. This is clearly indicated by the increase in
the calculated JR divergence. The observed degrada-
tion was confirmed by the visual inspection performed
at 120" hour, as shown in Figure 5. The degradation
trend is kept almost constant until the last fifth of the
run i.e., around the 130" hour. The calculated health
index surpassed the threshold at the 180" hour. The
operation was halted at the 190™ hour with the blade
condition corresponding to the estimated health index,
as shown in Figure 5.

4.2 RUL prediction

The evolution of the calculated health index is evalu-
ated according to the Archard’s law, as described in
Section 4.1. Based on results of Kalman filtering, the
trajectories of future states, and consequently health in-
dex, are calculated from a set of noise realisations.

The RUL prediction based on the first 100 measure-
ments is shown in Figure 6. At each time moment, the
Kalman filter provides estimates of the posterior prob-
ability distribution of the state vector x;., and the out-
put yi.s. To come to the distribution of the actual RUL
we perform Monte Carlo simulations of the output tra-
jectoris. The distribution of the RUL can be evaluated
from the histogram of first passage times for each sim-
ulation run. As shown in Figure 6, the proposed un-
scented Kalman filter (UKF) provides left skewed RUL
estimates. The 30 confidence interval is sufficiently
narrow and corresponds to the actual evolution of the
health index.

For proper assessment of the model’s accuracy, the
RUL estimates should be plotted versus a theoretically
expected RUL. Typically, the theoretical RUL is ex-
pected to be a linear function with gradient -1. This
is shown in Figure 7. Note that during the first 2/3
of the operational life the RUL prediction is not reli-
able. However, in the last third of the life, predictions
become rather accurate meaning that roughly 2 months
before the blades are fully worn the operators have reli-
able information, which could be used to plan the main-
tenance actions at a convenient occasion in a way that
do not disturb regular production (for example, during
a weekend or night shift).
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Figure 6: RUL prediction at the 100™ measurement
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5 Conclusion

The proposed feature based on JR divergence is shown
to be sufficiently sensitive to perform accurate condition
monitoring of shot blasting machines. Furthermore, it
is shown that the evolution of the JR divergence can be
directly related to the removed mass from the turbine’s
blades due to abrasive wear. As a result, the evolution
profile can be described through Archard’s law of abra-
sive wear. Based on this result, accurate RUL prediction
is be achieved by estimating the models’s states using
computationally simple Kalman filter and Monte Carlo
simulations over noise realisations.
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Abstract. Evolution algorithms are optimization meth-
ods that mimic a process of the natural evolution. Their
stochastic properties result in a huge advantage over
other optimization methods, especially regarding solving
complex optimization problems. In this paper, several
types of evolutionary algorithms are tested regarding a
dynamic nonlinear multivariable system modelling and
control design. We have defined three problems: the first
one is the so-called grey box identification problem
where the characteristic of the system's valve is under
investigation, the second one is a black box identification
where the goal is a dynamic system’s model develop-
ment using system's measurements data, while the third
one is a system's controller design. The efficacy of solving
presented problems was compared to the usage of the
following optimization methods: genetic algorithms,
differential evolution, evolutionary strategies, genetic
programming, and a developed approach called AMEBA
algorithm. All methods have proven to be very useful for
grey box identification and design of a system'’s control-
ler, but AMEBA algorithm has also been successfully
used in a black box identification, where it generated a
corresponding dynamic mathematical model.

Introduction

In general, the evolutionary algorithms can be divided
into two major groups: parametrical and structural algo-
rithms. Parametrical algorithms evolve parameters,
while structural algorithms evolve structures or mapping
functions. For example, if we would have to design a
controller for a dynamic system, parametric algorithm
would demand to define parameters of the chosen con-
troller structure (very frequently a PID controller is used).

In contrast to parametrical algorithms, structural al-
gorithms do not require predefined form of the control-
ler, as they can evolve the whole controller through their
evolutionary process.

The most popular parametrical algorithms are genet-
ic algorithms (GA) [1][2], evolutionary strategies (ES)
[3], differential evolution (DE) [4] and others [5].

Most established structural algorithm is genetic pro-
graming (GP) that has multiple implementations from
the three-based implementation [6] to the grammatically
based implementation [7] and the evolutionary pro-
gramming that is directed into the evolvement of finite
state machines [8].

Evolutionary algorithms can be used also in the
complex field of the design of controllers of dynamic
systems, e.g. multivariable, non-linear, time-variant [9].

In this paper, the evolution of different models and
control strategies are designed and compared with the
usage of different evolutionary algorithms. From the
parametrical group the efficacy of GA, ES and DE is
illustrated, while from the structural group an algorithm
of tree based genetic programming and the Agent Mod-
elled Evolutionary Based Algorithm (AMEBA) are used
[10],[11]. Relative advantages and disadvantages have
been estimated regarding modelling and control design
of non-linear multivariable dynamic system of three
coupled thanks.

The paper is organized in the following way. In the
first section a short description of the three coupled
tanks system is given. In the second section a structure
of the system’s model and the corresponding controller
are specified. In the third and fourth sections the model-
ling and the control design results which were generated
using different evolutionary algorithms are presented
and compared. The result section is followed by the
description of AMEBA system toolbox that was used to
generate the results of AMEBA method [12]. At the
end, the conclusions and some ideas for the future work
are given.
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1 Three Coupled Tanks System

System of three coupled thanks is illustrated in Figure 1.
It consists of three identical cylindrical assembled water
tanks with cross area S, which are interconnected with
the pipes and two valves V| and V,, while the valve at
the output pipe is V. Actuators of this system are two
water pumps that supply the first and the third tank with
water flows @, (t) and Dy,(t). Water levels in each
tank h;(t), hy(t), and hs(t) are measured with the corre-
sponding sensors. Level difference between the first and
the second tank generates water flow ®;(t) through the
valve V, and level difference between the second and
the third tank generates flow ®4(t) through the valve V,.
The output flow ®;,,(t) depends only on the water level
h;(t) and valve V; properties.

B lt) P‘\

e

hy()| Fiiii

/s (1)

Figure 1: System of three coupled tanks.

System of three coupled thanks represents a laboratory
device but for the testing we have used its model [13].

1.1 Model structure

During the phase of designing a model of certain dy-
namic system it is usually desired to include as much
knowledge of the system as possible. In such a way, we
have more chances of building a suitable model. Theo-
retical modelling approach enables model building on
the basis of the equilibrium equations which determine
system’s basic behaviour. For further model improve-
ment, additional nonlinear functions are needed which
describe different specific parts of the system. In the
first phase the system’s model can be presented with
three equilibrium equations which are described with
equations (1).

Dpn 1 () — B3(t) =S hy(t)
D5(t) — D4 (t) = S - hy(t) (1)
Dy (t) + Dy, 5 (t) — P (t) = S+ hy(t)
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Input flow rates are determined by the water pumps
which are controlled with the voltage signals u; and u,.
Water flows from the first to the second tank and from
the second to the third tank are given with the equations

).
D, (t) = kyfhy(t) — hy(2)

Dy (t) = ko ha(t) — h3(t)

These water flows depend on the water levels in the
tanks and the characteristics of the valves. These char-
acteristics are expected to be of the square root type.
From the experimental data it was established that static
characteristic of the valve V3 is not square root function
and so we have tried to estimate corresponding descrip-
tion by the so-called indirect identification method or
‘grey box identification’ [14]. Grey box identification is
a process in which we firstly gather measurements of
the system’s behaviour, secondly we build a mathemati-
cal model and include all the data that we have into it.
Thirdly we try to estimate the missing parameters or
functions to the constructed model. Block diagram of
the chosen structure is illustrated in Figure 2.
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Figure 2: Block diagram of the three coupled tanks
system structure.

Estimation of the characteristic of the valve Vj is de-
fined optimization problem as the rest of the model had
been constructed using the equilibrium equations and
measured characteristics of the other parts. Optimization
process was minimizing the difference between re-
sponses of the model and measurements of the system
by adapting valve’s characteristic. The fitness function
used in this optimization process is presented by equa-
tion (3).

J=ifm@—mwm 3)

Fitness function is equal to the absolute sum of differ-
ence between responses of the model and corresponding
measurements.
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Measurements obtained for the identification process
consist of eight responses to the different input or exci-
tation signals. Six of them were used in the identifica-
tion process and two for the validation of the model.
One pair of the excitation signals and corresponding
responses is illustrated in Figure 3 and Figure 4.

T
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Figure 3: Input signals u,(t) and u,(t).

AT

|| B

Level [m]

C
Time [s]

L I ' L L L
2000 4000 500 10050 72000 V4000 18000

Figure 4: Responses of the system to chosen input
signals.

From the presented responses, the cross couplings are
visible (each input influences both systems’ outputs
h;(t) and h,(t)). These cross couplings also prove that
the system is a multivariable one.

1.2 Controller design

Block diagram of system’s close loop operation is pre-
sented in Figure 5.

her () @(0) us(t) Pun®) > hy(t)
Controll P Process

et (1) et ontroller Up(t — Dura(t) ' > (O

% ] > hy(t)

Figure 5: Closed-loop system operation

Close loop system should maintain water levels in
the first and in the third tank at the corresponding refer-
ence values h¢ and h,,. Fitness function that is used in
the optimization process of the controller design is pre-
sented in equation (4).

hwmﬁmm+mww+

“)
(1= wepe) [ 1 (O + s (01 de
Fitness function represents a sum of the integrals of
errors € and € (that represents difference between
actual water levels hy and hs and referenced values hyer
and hyep) and integrals of the pumps activity u; and U,.
Both contributions are weighted with the weight Wgy.
The control system was tested with the usage of the
reference signals that are presented in Figure 6.
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Figure 6: Reference signals.

Controller must be able to control the systems water
levels in a way that is demanded by the step shaped
changes of the reference signals.

2 Modelling Results

Modelling results are divided into two groups. The first
group consists of the results obtained by the paramet-
rical evolutionary algorithms and the second group by
the structural evolutionary algorithms.

2.1 Parametrical evolutionary algorithms

Parametrical evolutionary algorithms can optimize only
parameters, so we have constructed a polynomial math-
ematical function with four parameters a;, 8,, a3, and ay
which should describe as good as possible the relation
between the water level h;(t) and output water flow
Dizn(1).

D, (1) = a;h3(t) + ah3(0) + azhs () +a,  (5)
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We have tested and compared three parametrical
methods GA, ES, DE. Optimization process was defined
for all methods identically in order to get comparable
results. Solutions have been evolved during 1000 gener-
ations and with the generation size of 30 individuals.
Results are presented in two ways. The first way is the
comparison of the quality of the model that was gener-
ated by each method and the second is the comparison
of the convergence of the used methods. Quality of
generated solutions is presented in Table 1.

Error identification Error validation

Met. [%] [%]
DE 1.77 3.27
ES 1.79 3.58
GA 1.88 4.57

Table 1: Evaluation of modelling results of parametrical
algorithms.

Error column represents a relative average deviation
from the identification signals of the system and valida-
tion column represents relative average deviation from
the validation signals. All results are quite similar,
which means that there is high probability that we have
found a global minimum of the proposed valve function.
Best algorithms are DE and ES that have managed to
generate 1% better result. Example of the system’s re-
sponses of the best model generated by the DE method
is presented in Figure 7.
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Figure 7: Comparison of measurements with the re-

sponse of the model generated by the DE
method.

We have compared also the convergence of the algo-
rithms and the results which represent the average con-
vergence of 10 optimization runs for each method are
presented in Figure 8.
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Figure 8: Average convergence of parametrical methods

Statistical analysis of the methods’ convergences shows
efficiency of each algorithm during the search of opti-
mal solution. DE has the fastest convergence and it
generates the best results.

2.2 Structural evolutionary algorithms

In addition to parametrical optimization also two struc-
tural algorithms, namely GP method based on trees and
AMEBA were tested. For the AMEBA algorithm addi-
tional test has been conducted. Test, where the model of
the whole system has been built (not just model of the
valve V3) with the black box identification method as
the AMEBA algorithm can be used also for multi-input
multi-output systems.

Structural algorithms are capable of building system’s
structure automatically. Settings of the evolution were
the same for both methods which enable the comparison
of the results. For the GP, we have used addition, sub-
traction, multiplication, division, power and constant
types of nodes and for the AMEBA algorithm we have
used the same nodes’ types as for the GP with the use of
additional dynamic nodes like delay, integral, deriva-
tive, low pass filter and high pass filter. Results are
evaluated in Table 2.

Algorithm Error ident. [%] Error valid. [%]
GP 1.62 3.12
AMEBA valve 3.57 4.65
AMEBA full model 5.63 7.23

Table 2: Evaluation of modelling results when using
structural algorithms.

GP algorithm has generated the best solution and its tree
representation is presented in Figure 9.
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Figure 9: Solution generated with the GP method.
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Simplified solution of GP is presented in equation (6).
This is a polynomial function with two parts, the first
has rational number in the exponent and the other is a
linear one.

frs () = 2.086 h(1): + 5.023 h(t) ©6)

Result generated by the AMEBA algorithm is not as
good as the result obtained by GP and it is presented in
Figure 10.
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Figure 10: Graph representation of model of the valve
generated with AMEBA algorithm.

In Table 3 a legend is presented that shows colours of
different types of nodes assembling AMEBA algorithm
solutions.

Color Node Color Node
Input Amplification
Output Exponent
Low pass filter Delay

High pass filter Derivative
Multiply Integral
Divide Add

Table 3: Color-legend of different types of nodes.

Valve function that was generated by the AMEBA
algorithm is presented in equation (7).

®;,,(t) = —0.5-0.54(—0.8(h;(t)))"%8 7

The result of the valve function generated with the
AMEBA algorithm is a nonlinear function. AMEBA
algorithm has successfully generated also a model of the
whole system with the process of black box identifica-
tion. We have used the same measurements for generat-
ing this model that were in use for the identification of
the valve. Model is represented in Figure 11. Model
generated with AMEBA algorithm is complex, full of
nodes of all types and feedback loops that represent
system dynamic properties.
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Figure 11: Graph representation of system’s model
generated with the use of AMEBA algorithm.

3 Results of the Controller
Design

Results of designing control algorithm are also divided
into two groups: into a parametrical and a structural

group.

3.1 Parametrical evolutionary algorithms

Parametric methods usage demands a parametrically
defined problem so we constructed a controller that is
assembled with four proportional-integral (PI) control-
lers with 8 parameters to be optimized.

The proposed controller is a multivariable one with
two inputs (differences between desired and actual wa-
ter levels) and two outputs to drive water pumps. Con-
troller’s parameters to be optimized are described with
equations (8).

SNE 26(4) - 12/2016
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u(t) = Kpe(t) + K;f e(t)dt

u, () pll p12 ‘?1(5) K11 i12 ey (t)
[llz(f)] [KpZI p22] [E‘z(f) Kiz; |?2] f [ez(f)
el(z)l [m rer () — hy(t)

*—’?(5) ha e (£) — ha(t)

All 8 parameters are represented in two matrices K, and
Ki. Results calculated with the parametrical methods are
presented in Table 4.

Algorithm Error Energy used
DE 2.04% 35.9%
GA 2.04% 36.5%
ES 248 % 35.3%

Table 4: Evaluation of controller optimization results
calculated with parametrical methods.

Results of all algorithms are very similar but the DE
method has ones again proven to be the best as it calcu-
lated the controller with the lowest error and minimum
estimated usage of energy.

3.2 Structural evolutionary algorithm

Structural evolutionary algorithms don’t need the con-
troller’s structure to be defined in advance in contrast to
parametrical methods. This group is capable to evolve
the structure as well as all the parameters automatically.
Results of two methods, GP an AMEBA, are presented
in Table 5.

Algorithm Error Energy used
AMEBA 1.5% 34.1%
GP 9.3% 355%

Table 5: Results of controllers generated by structural
evolutionary methods.

The solution which was generated by the GP method is
presented by equation (9).

u (1) = e ()220 ey (t)  wp() = uy (£) )

GP method didn’t generate a suitable solution as the
controller is not capable to follow corresponding refer-
ence signals. The solution generated by the AMEBA
algorithm is presented in Figure 12.
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Figure 12: Graph representation of controller generated
by the AMEBA algorithm.

Controller that was generated by AMEBA algorithm is
illustrated by equation (10). AMEBA algorithm generat-
ed a controller with the best performance.

ur (k) = Xa(k)
ua(k) = 0,74(+e1 4+ 0, 11{Xo(k) = Xo(k) = 0,95(—0,87)(e2)))
Xo(k) =eq (10)

Xi(k) = 0,34 f1LLP(Xo(k))
Xo(k) = —0,2(—ey + 0,40 fILLP(Xo(k — 1)) + 0,08X, (k — 1))

4 Toolbox development

AMEBA algorithm is being developed also as a soft-
ware package with user friendly graphical interface. The
core development is being built in Java programming
environment that can be used also with Matlab, which
allows a very efficient support in simulation of dynamic
systems via Simulink. Graphical interface is also devel-
oped in Matlab due to its good graphical support.

Toolbox enables settings of the simulation environment
with the inclusion of Simulink model as it is shown in
Figure 13.

r sl i
B AMEBA toolbox =) e s
File Tools ¥

Node [ Agenl[ Reproduction | General| Simulation
|~ Moder setectio
This fie must include s-Function block. (S-Function can be
generated from Tools menu and Generate s-function option)
Acc Fies\template. mdl \ Browse |
— Evolution run |
Number of generations Max gen
Value of finess function 98454
|
[Cpause ] [ cancer |

Figure 13: Settings of simulation environment.
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The agent of AMEBA algorithm is implemented as
S-function so it can be included into the model as a
standard block. Toolbox enables control and monitoring
of the optimization process where it displays current
generation number and the value of the fitness function
of the best agent.

Toolbox enables settings of population properties like
size of population, size of reproductive population that
determines how many best agents will be given oppor-
tunity to reproduce, number of elite agents, and other
settings that determine the end of optimization process
like maximum number of generations and minimum
change in fitness function value (Figure 14).

=) Lol

File Tools » J

r
B AMEBA toolbax

Wde’ Agem‘ Repmduc!mn. General | Simulation
Population setlings
Size of population 10
Size of reproductive population: 5

Number of elite offsprings: 1

Evolution settings
Max number of generations. 10

Tolerance of finess function 1

Fitness function settings.

Affect of cell size on fitness fun.. 0.001

Figure 14: General setting.

The number of inputs and outputs of an agent can be
defined together with the maximum number of nodes
that can be generated at the agent’s creation (Figure 15).
=) Lol )

File Tools El

Node| Agent | Reproduction | General | Simulation

Agent settings

B AMEBA toolbox

Number of inputs: 1
Mumber of outputs: 1

Maximum number of inital organels: 10

Figure 15: Agent settings.

Different types of nodes can be selected from which the
algorithm will chose and build agents. Each node has its
own settings that determine initial value of the nodes
parameter and steepness of change in case node mutates
(Figure 16).

) o

File Tools =

B AMEBA toolbox

Node | Agent | Reproduction | General | Simulation|

Selected nodes Unselected nodes
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_- . Exponential
Doty integra
Sum Derivate
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@ Comparison @

Nodes seftings: Amplifire

Inttial range of parameters: (10 10]

Range of parameters change: 1-2]

Figure 16: Node settings.

Reproduction mechanisms can be set with their parame-
ter of probability. As agents are evaluated and selected
for reproduction the reproduction mechanism is ran-
domly selected and the probability parameter deter-
mines their possibility of being selected (Figure 17).

)

File Teols kl

B AMEBA toolbox

[ Node | Agent| Reproduction | General | Simulation|

Selected reproductions Unselected reproductions

Elite - -
Change nodes parameter H

o o E

Remove node

Remove multiple nodes

Change edges source = =
Reproduction settings: Elite

Probability parameter: 10

Figure 17: Reproduction settings.

Additional functionalities enable better usability of the
method such as saving and importing of all setting into
file for later use. With this option, also the initial popu-
lation can be imported which enables the inclusion of
certain knowledge of the solution into the optimization
problem. It is also possible to convert agent into math-
ematical equation to observe its structure. It can also
generate Matlab S-function file for the easier implemen-
tation in Simulink (Figure 18).
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] AMEBA toolbox [ AMEBA toclbox

Tools File
Saveas Juction | General | Simulation Nod{ [ Genetl e phorE e Simulation

Import options Generate analitical solution
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Figure 18: Additions functionalities of Toolbox.
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5 Conclusions

The system of three coupled thanks was selected to
present the efficacy of three different approaches of the
usage of the evolutionary algorithms methods: the grey
box identification, the black box identification and the
controller design.

Parametrical evolutionary algorithms generated
good results for both modelling and control of the sys-
tem. Also, structural methods manage to generate good
solutions for both types of problems. In general, the
most important advantage of the structural algorithms in
comparison to the parametrical methods is the absence
of the need to define a suitable structure. This property
is especially important when dealing with more com-
plex systems with multiple inputs and outputs. With the
usage of AMEBA algorithm, we have managed to gen-
erate also a complete model of the system and we gen-
erated a system controller with the best performance.

Future work on AMEBA algorithm development
will be focused on optimization process as we are going
to explore the impact of various effects on the quality of
the solution and on the convergence rate of optimization
process like the effect of size of the population size,
suppression of the agents with large number of nodes,
using multiple environments at once and similar, of
course in comparison with other optimization approach-
es. Special attention will be devoted to the so called
smart optimization where additional knowledge from
chosen area can be taken into account to improve
searching efficacy. The AMEBA method is a work in
progress and the method will be available as an open
source project.
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Abstract. Simulation techniques are useful tools for
study and research of new welding technologies, and for
the rapid development of new control algorithms and
control units such as power source circuits, and welding
current or voltage controllers. The objective in this re-
search is to combine the simulation of Gas Metal Arc
Welding (GMAW) process models with the simulation
models of inverter based power machines. The GMAW
process is considered as an electrical circuit and the
mathematical model is based on physical descriptions of
several parts of GMAW process, as are the electric circuit
of power supply, the arc dynamics, and the electrode
melting process. To establish the validity of the proposed
GMAW model, a simple welding application was simulat-
ed and welding parameters were derived from experi-
mental conditions. Next, the simulation model of full-
bridge DC-DC converter is presented and the discrete Pl
controller for welding current feedback control is pro-
posed. Both models, the GMAW model and the inverter
power supply model, are combined and simulated to-
gether. Finaly, the simulation study of firing the
thyristors, which enables steady and pulsed direct
current welding with a single fully controlled bridge
converter is shown.

Introduction

Conventional approaches to automation of welding have
been reasonably successful, but there are still significant
opportunities for additional development. Successful
implementation of multivariable weld process control
involves sensing, modelling, and control.

Process modelling provides a means of
incorporating principal and empirical information into a
control strategy. Models may be used off-line to
evaluate and tune a controller in a simulation. They may
also be used to develop transfer functions of a process
for use in formal controller design, or to provide maps
between input and output parameters. Process models
are important bridge between what is known and what is
desired.

Several research studies, for example [1]-[4],
categorize the GMAW process as an electrical circuit. A
mathematical model of the GMAW process is normally
developed first. A description of the electric arc is then
presented, and all equations are combined into a general
model that describes the GMAW process. Simulation
methods are used to illustrate the behaviour of the
GMAW process. During these simulations the welding
power source's dynamic behaviour is often simplified.
For most GMAW applications the desired welding
conditions are such that time constant of the self-
regulating process is shorter than the oscillation rate [2].
With the aim of maintaining a high quality of welding
results, the output welding current and voltage must be
controlled during the welding process. Furthermore, a
real time control system is an important element of
modern GMAW welding machine [5], [6].

Modern GMAW equipment is the combination of a
sophisticated power electronic device and high
performance microprocessor-based control systems. The
development process of inverter-based welding power
source with the corresponding control system is a
complex and expensive process, that requires extensive
human and material resources [7]. When using
simulation the quality of design process can be
improved and the design cost can be significantly
reduced.
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Therefore, with the aim of improving the design
process, an attempt was made to combine the simulation
model of GMAW process with the simulation models of
welding power sources [8], [9]. The simulation results
are very useful for the rapid development of new control
algorithms and the designing of new power sources.

1 GMAW Process Dynamic
Model

A fundamental significance of GMAW process is that it
incorporates automatic feeding of a consumable
electrode that is protected by an externally supplied
shielding gas as is presented in Figure 1. A constant
voltage power supply is fed to the electrode and the
workpiece. To get the the desired weld quality, wire
feed speed v, torch travel speed v, open circuit voltage
u, and contact tip to workpiece distance A can be
adjusted. Here, 4 is the distance of the center of mass of
the droplet above the workpiece. The mathematical
model development of a GMAW process is performed
by taking into consideration the model of the electrical
circuit, the welding wire melting rate, the model of the
dynamics of the pendent drop, and the phenomena of
the drop transfer mode.

The sum of the voltages around a GMAW circuit, as
presented in Figure 1, is

o di .
u=R-L+La+Rl-L+uarc (1

where U is open circuit voltage of the power source, R is
resistance of the power source, L is inductance of the
power source, i is welding current, R is electrode stick-
out resistance, and Uy is arc voltage. Electrode stick-
out resistance is dependent on resistivity of the electrode
stick p, cross-sectional area of the electrode wire A, and
electrode stick-out length |. It is assumed that u, R, L, p,
and A are constant parameters and i, |, Uy are
dependent variables.

The electrode resistance R depends on total the
length of the electrode stick-out length and drop length
[=1st+l4. The dynamics of |5 depend on the feeding speed
of electrode V, the melting speed Vi, and on the vertical
velocity of the contact tip V.. The contact tip to
workpiece distance (CTWD) is indicated by H, and by
ignoring the length of the drop (I = 0 and | = |) the
length of the arc his:

h=H-1 )
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and, the dynamic of electrode stick-out is given by:

di

%zve—vm+vc (3)
With respect to (2) and (3), the arc length speed is:

dh

2= Um T Ve~ Ve 4)

the dynamics of the melting speed Vi, and arc voltage
Uarc need to be described in greater detail.

Vr/_
! e
+ —_—

Figure 1: Schematic diagram of GMAW process and
electrical circuit of the self-regulating arc
process. (1) Power source; (2) wire feed unit; (3)
shielding gas; (4) welding gun; (5) workpiece; (6)
welding arc and material transfer process.

The total arc voltage Uy, is made up of three separate
parts: the anode and cathode drop voltage Uy, the drop
voltage in the arc column, which is a function of the
electric field strength E and the arc length h, and the
drop voltage, that depends on current i and arc
resistance Ry In our model we suppose that Uy is
constant. Considering this, the simplest model of the
electrical arc is a voltage equation:

Ugre = Ugge + E-h+ 1" Ryype Q)

When the current flows through the electrode and the
arc the electrode is heated by the current flowing
through it. This heat depends on the resistance of the
welding wire Several studies have described the
physical background of a welding wire melting
phenomenon. In [9], the research results from a study of
anode and cathode melting rates are presented and in
[10], the characteristic of melting rate as a function of
current, type of gas, and other parameters is reported. In
these and other related works [11], [12] the expression
for the total melting velocity Vy, is proposed as:

vm=k1l+k212l (6)
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where K; and K, are empirical constants for given
wire materials and sizes. An equivalent state-space
representation is presented below.

Xy =%-<u1—§-x1-(x3—x2)>—ua+C—E-x2
- (Rarc +R) "Xy
Xp =y xy + ke xf (X3 — X)) —up —ug M
X3 = U3
y=X1

where the states are: x; =1 is the welding current,
X, = h is the length of the arc, x; = H is the CTWD,
and imputs are u; = u is open circuit voltage of the
power source, U, = v, is the feeding speed of electrode,
and u; = v, is the vertical velocity of the contact tip.
Further parts of GMAW process dynamics, for
example the welding drop dynamics, or drop
detachment process are also important, but in this model
are neglected. On the other hand, in GMAW not only
the spray transfer conditions are widely employed, but
also the short-circuiting arc's conditions with a
relatively small current. This type of material transfer is
within the mainstream of high-speed welding regarding
thin sheet or overhead position welding of line pipes.
Short-circuiting welding is a complicated process in
which short-circuiting and arc generations are repeated
intermittently. Transfer of molten droplet of mass m
involves many complex parameters (more while using
CO02, and other shielding gases). Many researchers have
worked on the modeling of the GMAW process. A fifth
order nonlinear model of GMAW process has been used
by most of the researchers for the control process [1], [3]-

[6].

2 Welding Power Sources

A precise control of the arc welding process with its
complexity of heat input, material transfer and arc
behaviour could be achieved when we use a modern
transistor controlled inverter-based power sources. To
achieve controlled droplet transfer it is necessary to
switch the current level from about 15A to 500A within
less than 200 us for a pulse time of 1 ms and a pulse
frequency of 200 Hz. Today the asymmetrical half-
bridge-forward-converter became the favourite topology
of an inverter power source. IGBTs or MOSFETSs are
mostly used as power switches dependent on supply
voltage and output power range.

2.1 Inverter based power sources

The inverter-based welding power supply consists of a
rectifier, an inverter switch circuit, a high-frequency
ferrite transformer, high-frequency rectifier, and an
inductor as is presented in Figure 2.

Inverter Switch Circuit

Power ° ]| 1 L 1 < [ ] —
Soppy ™ —P— = e MM
Rectifier 50 Hz Filter High Frequency peciifier 20-50 kHz | | Induction Filter
Transformer

PWM Controller
Feedback of
Welding Current
andlor Voltage

Figure 2: Power supply architecture of modern-inverter
based welding machine.

The switch circuits are controlled by microprocessor-
based PWM controller units. The schematic of a
simulation model of a full-bridge DC-DC converter is
shown in Figure 3.
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; Seting
L ATA2 A2 A1 Discrete P| values
! Svitching gate controller of
driving pulses PWM Duty Feedback
values

Control unit for Inverter of GMAW power source

Figure 3: Power supply architecture of modern-inverter
based welding machine.

The conventional DC-DC converter operates using a
Pulse Width Modulation (PWM) current controller. The
DC-DC converter operates at constant switching
frequency, which is usually limited to 20 - 50 kHz. The
amplitude of the welding current depends on the change
of the phase shift between transistors S1, S2, S3, and
S4. The PWM signals are generated using a simple
circuit and are used for driving four transistors by
changing the duty cycle. The duty cycles are usually
controlled using feedback controller (voltage, current, or
both). In [13] and [14], the implementation studies of
proportional integral derivative (PID) are presented.

2.2 Thyristor based power sources

The synergic pulsed MIG/MAG welding with width-
controlled sine-wave current pulses is mostly realised
with thyristor-based power sources.
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Such current-pulse waveform could be obtained if a
power source is controlled by thyristors integrated,
when the pulse frequency is constant and the current-
pulse power is controlled by the delay time of the thyris-
tor ignition [15], [16], [17].

The thyristor-based welding power supply consists
of a rectifier, an inverter switch circuit, a high-
frequency ferrite transformer, high-frequency rectifier,
and an inductor as is presented in Figure 4.

Trifazni DY
transformator

MIG/MAG
varilni proces

[ i
Napajanje m
3~ 400V, 50 Hz - ‘ ‘ g:

Figure 4: Power supply architecture of modern-inverter

Trifazni polni

tiristorski mostié Indukcijski filter

based welding machine.

The thyristor-based power sorces produce harmonics
in the AC power supply network. In the case of pulsed
direct current welding, it is possible, with a proper
method of firing the thyristors, to generate both steady
direct as well as pulsed direct current with a single
fully controlled bridge controller. Using an active filter
during pulse welding we could reduce harmonics ef-
fectively.

3 Simulation Examples and
Results

3.1 Simulation of GMAW Proces

An automatic welding application was assumed. The
parameters derived from experimental conditions are
shown in Table 1.

A constant welding speed was assumed. The weld-
ing torch was positioned 16 mm (H) from the work
distance. The selected welding wire feed rate Ve = 50
mm/s and the open circuit voltage U= 24 V were set.

The first simulation was performed to find the weld-
ing current response when the CTWD was changed
from 16 mm to 12 mm (at time 2.5 s) and back (at time
7.5 s). In addition, the electrode feeding speed V. was
changed from 50 cm/min to 75 cm/min at time t =5 s.

Figure 5 shows the changes in the welding voltage
and current time responses, and the changes of the arc
length.
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Parameter Descr. of the parameter Value
R Power source resistance 0.07 Q
L Power source inductance 0.02 mH
Specific electrical resistance
P of the electrode 0.1€/m
A Cross—sectlo.nal area of the 1.02 10° m?
electrode wire
E Electric field strength 675 V/m
Ugsc Arc voltage constant 11.55V
Rarc Arc resistance 0.03Q
Ve Feeding speed of electrode 0.5 m/min
k1 Empirical constant 0.626 m/(As)
Ko Empirical constant 7.55-107 (A%)™
H Contact tip to workpiece 016 m

distance (CTWD)

Table 1: GMAW process simulation parameters.

The welding current rose and fell with the changes of H
and Ve, as expected. It can be seen from the first plot in
Figure 2 that the arc length h (dotted curve) decreased
after the H changed from 16 to 12 mm and then in-
creased back to the previous length. Accordingly, the
electrode length | changed from 11.25 mm to 7.5 mm,
which meant that the electrode melted at a higher speed
when the current increased. In the second plot of Figure
2 the electrode feeding speed was increased from 50
mm/s do 70 mm/s. This led a reduction of the arc re-
sistance and an increasing of welding current.

o
¥
.
]
a5
H
-
«

‘Suspy vellge { — }and Slectruds conlsclvolage (- )
A s c .

N Wuiding caneil

)

o

1

Figure 5: Simulated results of contact to workpiece volt-

age waveform (third plot) and welding current
waveform (fourth plot). Simulation response of
the GMAW model when the CTWD was changed
from 16 mm to 12 mm (first plot) and the elec-
trode feeding speed ve was changed from 0.5
m/min to 0.7 m/min (second plot).
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3.2 Simulation of Dynamic Behaviour of a
Full-Bridge DC-DC converter

Simulation of welding source was performed in the
program Matlab / Simulink using blocks of the Sim-
PowerSimulation library. A full-bridge circuit is simu-
lated as the topology of the main inverter circuit. The
load of the inverter depended on GMAW simulation
model and was continuously changing. In Table 2 the
design specification of the DC-DC converter and the
circuit parameters are described, respectively.

Parameter Descr. of the parameter Value
f Switching frequency 40 kHz
C Capacitance 1 uF
Pn Transformer nominal power 5 kW
Ny:Ny: Ny, Transformer turns ratio 35:1:1
S1-Ss  Ideal switch, IGBT
Ron Switch internal resistance 140 mQ
Rs Snubber resistance 1MQ
Csd Snubber capacitance 4.7 nF
Ts Control sample time 0.1ms
T, Pl controller Integral constant 2ms
Kp Pl controller proportional gain 0.2 %/A

Table 2: DC-DC converter and other circuit parameters.

The simulation results from the welding using current
control feedback and the PWM full-bridge DC-DC
converter are shown in Figure 6.

Figure 6: Simulation results of the welding process with
current control feedback and PWM full-bridge

DC-DC converter-based welding power source.
The upper plot shows the change of the CTWD
from 16 mm to 18 mm. The forth plot presents
the welding current transient response, and on
the fifth plot the time response of the primary

current is shown.

Constant welding speed was supposed. The welding
torch was positioned at 16 mm (H) from work distance
(CTWD) and after 5 ms H was increased to 18 mm, as
is presented in the first graph of Figure 5. The welding
wire feed-rate Ve was set at 70 mm/s.

After 1 ms the welding current's set point was in-
creased to 100 A, after 3 ms to 200 A, and finally after 7
ms to 150 A. The fourth plot in Figure 5 presents the
current control system transient response, which was
stable with a small overshoot and was sufficiently fast.
On the fifth plot, the time response of the primary cur-
rent is shown.

For a better presentation of the generated PWM sig-
nals the same simulation results were plotted within a
time window from about 3 to 4 ms, and marked with an
arrow in the fourth graph in Figure 7.
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Figure 7: Simulation results of generated PWM signals,
which depend on the duty cycle controlled with
simple Pl controller. The second and third plots
show the PWM signals for driving the full-bridge
DC-DC converter switches. The fourth and fifth
plots show the corresponding changes of prima-
ry current and secondary - welding current.

In the first plot of Figure 6, the PWM frequency genera-
tor is compared with current controller output (duty
cycle). In second and third plots the PWM signals for
driving the full-bridge DC-DC converter switches are
presented. The periods of pulses Al and A2 changes
depended on the duty cycle determined by the discrete
PI controller. The maximum simulation step-size was
0.1 ps and the discrete PI controller sample time was
100 ps.

3.3 Simulation of Dynamic Behaviour of a
Thyristor Based Weldin Power Source

The power of the welding power source with a three-
phase transformer in a delta-star connection was set at
50 kVA. We selected turns ratio between 4.5 and 6. In
transformer block, we can change all essential parame-
ters, such as resistance and inductance of the primary
and secondary windings, and the loss resistance in the
core. The thyristor bridge converter was chosen as it
reduces the reactive power with firing angle o beyond
60 deg (o> 60 deg).
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Figure 8: The simulation scheme of a three-phase welding source with thyristor full bridge circuits in Matlab/Simulink. The
scope window shows the time graphs of signals within a time window of 100 ms.

For firing angles less than 60 deg, the DC voltage of
the converter is always positive, and the freewheel di-
ode does not come into operation. As the firing angle
advances beyond this point, the load current starts to
freewheel through the diode, thus cutting off the input
line current and preventing the DC voltage from swing-
ing into the negative direction. This reduces the amount
of reactive power drawn from the mains, thus improving
its power factor [15]. Figure 8 shows the simulation
scheme in the program Matlab/Simulink and simulated
voltage and current waveforms in a time window of 100
ms. The simulation was carried out with a firing angle
of 0 deg.

o
SE PAP AEE 28-S

Figure 9: Voltage and current waveforms and variation of
the firing angle by pulse frequency f, = 100 Hz
and pulse width t, = 6.6 ms.
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Figure 9 shows the output voltage, current and firing
angle a for the pulse frequency f, of 100 Hz. The firing
angle o lies between a = 0 deg and o = 60 deg. The
pulse width tp can be varied as well. Figure 10 shows an
example of a wider pulse.

[
SA PAPAER DA

Figure 10: Voltage and current waveforms and variation

of the firing angle by pulse frequency f, = 50 Hz
and pulse width t, = 3.3 ms.

Pulsed welding with different pulse frequencies gener-
ates different harmonics on the AC side. The harmonic
are accompanied by two adjacent frequencies on the AC
side [15]. The Fourier analysis of the AC current can
further verify this. For example, welding with a pulse
frequency of 150 Hz produces harmonics of 100 and
200 Hz in the alternating current. Figure 11 show the
Fourier analysis of the AC current during the simulation
of the pulsed current welding process.
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Figure 11: Fourier spectrum of the AC current during
pulsed current welding with pulse frequency fp
=50 Hz and pulse width tP = 3.3 ms by changing
the firing angle from 0 deg to 60 deg.

4 Conclusion

A simulation application has been presented for simulat-
ing the GMAW process, inverter-based welding
sources, and thyritsor-based welding sources. The math-
ematical model is based on physical descriptions of
several parts of the GMAW process, such as the electric
circuits of the power supply, the arc dynamics, the elec-
trode melting process, etc.

The simulation of inverter power source for welding
power supply has been proposed and tested together
with the GMAW simulation model. The simulation
results showed that the conventional full-bridge DC-DC
converter with appropriate current feedback controller
makes the output welding current follow the set refer-
ences.

The proposed models and simulations, which are
combined together to simulate the power source circuits
using simulations of the GMAW process, are suitable
for the development of new power source circuits, i.e.
resonant converters. By establishing appropriate models
of the GMAW process and the full-bridge DC-DC con-
verter model, simulation is an effective tool for investi-
gating new welding technologies, for example the
Pulsed GMAW process, or Surface Tension Transfer
welding process (STT). Simulation results could be
very useful for the rapid development of new control
algorithms and for the designing of new inverter control
units.

References

(1]

[4]

(5]

(6]

(7]

[10

—_

(11]

[12]

Moore KL, Naidu DS, Yender R, Tyler J. “Arc Welding
Control: Part 1 — Modeling and Analysis”, Nonlinear
Analysis: Theory, Methods & Applications, vol. 30, pp.
3101-3111, 1997.

Moore KL, Naidu DS, Ozcelik S. Modeling, Sensing and
Control of Gas Metal Arc Welding. Oxford, UK: Else-
vier Science Ltd., 2003.

Golob M, Koves A, Puklavec A, Torvornik B. “Model-
ling, simulation and fuzzy control of the GMAW pro-
cess”, in Conf. Proceedings of the 15th International
Federation of Automatic Control (IFAC) - Triennial
World Congress on Automatic Control, Barcelona,
Spain, 2002, vol. 13, pp. 253-258.

Thomsen JS. “Control of Pulsed Gas Metal Arc Weld-
ing”, International Journal of Modelling, |dentification
and Control, vol. 1, no. 2, pp. 115-125, 2006.

Zhang J, Walcott BL. “Adaptive Interval Model Control
of Arc Welding Process”, IEEE Trans. On Control Sys-
tems Technology, vol. 14, pp. 1127 - 1134, Nov. 2006.

Bera MK, Bandyopadhyay B, Paul AK, Robust nonline-
ar control of GMAW systems-a higher order sliding
mode approach. |EEE International Conference on In-
dustrial Technology (ICIT), 2013, 175-180.

Ngo MD, Duy VH, Phuong NT, Kim HK, Kim SB. “De-
velopment of digital gas metal arc welding system”,
Journal of Materials Processing Technology, vol. 198,
no. 1-3, pp. 384-391, 2007.

Golob M, Torvornik B, “Modelling, simulation and con-
trol of gas metal arc welding”, in Proceedings of the 7th
Congress on Modelling and Smulation EUROSI M, Pra-
gue, Czech Republic, 2010, pp. 347-352.

Golob M. Integrated Models of a Gas Metal ARC Weld-
ing Process and Inverter based Power Supply for Process
Control Simulation Studies. ELEKTRONIKA IR EL-
EKTROTECHNIKA. 2014; 20(7): 3-6.

Lesnewich A. “Control of the Melting Rate and Metal
Transfer in Gas Shielded Metal Arc Welding - Part 17,
Welding Journal, vol. 37, pp. 343s-354s, 1958.

Tusek J, Suban M. “Dependence of Melting Rate in
MIG/MAG Welding on the Type of Shielding Gas
Used”, Journal of Materials Processing Technology, vol.
119, pp. 185-192, 2001.

Halmey E. “Wire melting rate, droplet temperature and
effective anode potential”, in Proceedings of the Interna-
tional Conference on Arc Physics and Weld Pool Behav-
iou, London, England, 1979, pp. 49-57.

SNE 26(4) — 12/2016




Golob

Modeling and Simulation of GMA Welding Process and Welding Power Sources

[13] Krejcar O, Spicka I, Frischer R. “Implementation of
Full-Featured PID Regulator in Microcontrollers”, Elec-
tronics and Electrical Engineering, vol. 113, no. 7, pp.
77-82,2011.

[14] Petrovas A, Lisauskas S, Rinkeviciene R. “Digital Au-
tomatic Control System with PID Controller”, Electron-
icsand Electrical Engineering, vol. 110, no. 4, pp. 13—
16, 2011.

[15] Thamodharan M, Beck HP. in Wolf A.: Steady and
Pulsed Direct Current Welding with a Single Converter.

Supplement to the Weldig Journal, March 1999. 75s-79s.

SNE 26(4) — 12/2016

[16]

[17]

Langus D, Kralj V. in Grum J: Optimisation of welding
parameters in pulsed MIG/MAG welding width-
controlled sine-wave current pulses. Part 1: Determina-
tion of a general synergetic equation and a normalised
parametric diagram with a defined parametric welding
range. Int. j. mater. prod. technol., 2007, letn. 29, §t.
1/2/3/4, str. 244-254

Langus D, Kralj V. in Grum J: Optimisation of welding
parameters in pulsed MIG/MAG welding width-
controlled sine-wave current pulses. Part 2: Determina-
tion of an optimum material transfer through the arc and

a control method. Int. j. mater. prod. technol., 2007, letn.
29, §t. 1/2/3/4, str. 255-271.



SNE TECHNICAL NOTE

Inverse Simulation Methods Applied to
Investigations of Actuator Nonlinearities
INn Ship Steering

David J. Murray-Smith

Emeritus Professor and Honorary Senior Research Fellow, School of Engineering, Rankine Building, University of
Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom; David.Murray-Smith@Glasgow.ac.uk

Simulation Notes Europe SNE 26(4), 2016, 245 — 256
DOI: 10.11128/sne.26.tn. 10356

Received: October 25, 2016

Accepted: December 5, 2016 (Special Issue Review)

Abstract. Actuators associated with control surfaces in
aircraft, ships and underwater vehicles often introduce
problems in terms of the control characteristics of the
vehicle if significant saturation and rate limiting effects
are present. Rate limits, in particular, have been linked to
a number of well-publicised safety and handling-qualities
issues for aircraft. Such limits also present difficulties in
ship steering and ship autopilot systems. This paper
describes an investigation of the effects of actuator non-
linearities involving a ship steering control application.
The method of approach involves the use of inverse
simulation to detect the onset of limiting. The paper
shows that inverse simulation methods allow direct
prediction of situations in which rudder saturation and
rate limiting have significant effects in terms of the ma-
noeuvrability of the vessel. It is also shown that a two-
stage inverse-simulation method allows direct assess-
ment of the difference between desired and achievable
manoeuvres.

Introduction

Inverse dynamic models allow time histories of input
variables to be found that permit a given set of output
time- history requirements to be achieved. This has
relevance for many dynamic problems, especially where
actuator performance and limits are important. Inverse
models have proved to be particularly useful for investi-
gations involving systems in which a human operator
has a central role.

Although analytical approaches to model inversion
are of great value, they can present difficulties with
many forms of nonlinear model. In recent years, exten-
sive use has been made of simulation techniques for
finding inverse solutions rather than depending entirely
on analytical methods of inversion. Examples of appli-
cations of this kind include aircraft handling qualities
investigations and agility studies, both for fixed-wing
aircraft and helicopters (see, e.g., [1], [2]). In such cases
the inverse solution provides vital information about the
relative difficulty of performing different manoeuvres
and about control margins available as actuator ampli-
tude or rate limits are approached. In recent years much
progress has also been made in using inverse simulation
methods in control system design applications (see, e.g.,

(31, [4D.

1 Models of Actuators and Ship
Steering Dynamics

Detailed, physically-based, models of actuators of
various kinds are available in the literature and, whether
the actuators are hydraulic, -electro-hydraulic or
electrical in form, the actuator systems have well-
defined amplitude and rate limits. Along with the
inherent dynamic characteristics of the actuator, these
limits are important in determining overall performance
of the vehicle or other system within which the actuator
is an essential component. For example, actuator
performance is of vital importance in aircraft flight
control, as discussed in detail by Fielding and Flux [5].
A chronological bibliography of saturating actuators has
been prepared by Bernstein and Michel [6] and this
includes information from papers and reports involving
the use of actuators in many different application areas.
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In the case of actuators used for steering in marine
vehicles a number of simplified actuator models have
been proposed (see, e.g. [7]). Some of these relate
directly to earlier work of van Amerongen [8] who, in
the context of research on ship steering control systems,
proposed the use of a simplified block diagram of the
form shown in Figure 1.

This block diagram structure is also used for
aeronautical engineering studies of actuator limiting in
fixed-wing aircraft and helicopter flight control systems
and can be modified quite readily to describe actuators
which have second-order characteristics when operating
linearly. In this case the block labelled G, would no
longer be a simple gain factor but would have first-order
lag characteristics. In principle, accelaration limits as
well as rate limits could be incorporated into this type of
block diagram structure but this has not been considered
in the present investigation. The structure shown in
Figure 1, thus represents a general form of model which
is capable of describing the linear and nonlinear
characteristics of a wide range of actuators in a simple
fashion and is appropriate for applications involving
marine vehicles or aircraft.

Within the block diagram of Figure 1 the saturation
limit block has a simple form and, when the input G,d.
lies in the range between the upper and lower saturation
limits ( dey and d¢ ), it behaves as a linear gain element,
having unity gain,. However, when the input Ga0, > d.y
the output value is limited at J.y and, correspondingly,
when G,d. < d. the output is limited at d.;. For many
cases of practical importance this limiting behaviour is
symmetrical for positive and negative inputs and d.y = -
O.L. The rate limit block has an identical form, having
unity gain when the output of the block (the rate of
change (8(t)) of the actuator ouput position d(t)) has
values that lie within the specified upper and lower
actuator rate limits. The rate limit block gives a
constant output equal to the positive or negative rate
limit when &(t) has a value beyond the specified upper
and lower actuator rate limits.

The type of actuator model outlined above can be
used with many different forms of ship model. One
nonlinear form of model, which is commonly-used to
represent the manoeuvring characteristics of course-
stable ships in yaw, is an extended form of Nomoto’s
first-order model [7], [9] which relates heading
variables to the rudder angle.

SNE 26(4) — 12/2016

Although it is based on physical principles, the
model involves a number of damping coefficients that
must be estimated from data obtained experimentally. It
has been shown to be a satisfactory representation for a
range of operating conditions [7-9].

Actuator

Command
Input
o, o+ S S
= Ay g Rate
—> ¢ ™ Limit —bGr-uL, ,t——pj [S
. imi

Figure 1: Simplified block diagram of actuator system
with amplitude and rate limiting.

The basic model is given by:

T + Hy () = Ka(t) )

where the variable i is the yaw angle (heading) of the
vessel, 8 is the rudder angle, T is an inertia constant and
the function Hy, which is a function of the rate of
change of heading (1)) is given by:

Hy@)) = nyyp + ny(¥)* (2)

where n,and n; are positive damping constants, known
as Norrbin coefficients. For the specific case of the
RO.V. Zeefakkel, which is a 45 m long training ship
belonging to the Royal Netherland Naval College, the
parameters n;and n; have been estimated for a number
of different forward speeds [8]. Combining Eqns (1) and
(2) gives:

§ =m + dyip + d3()° 3)

where m = %, d, = % and d; = % Values of these
parameters vary significantly for typical speed values
over the range of interest for this vessel, as shown in
Table 1.

In this application, the rudder and its associated
actuator are modelled using the first-order lag type of
description with input saturation and rate limits, as
shown in Figure 1. In the linear mode of operation an
actuator time constant of 3 s is given by a value of the
gain factor G, of 0.333.

If the required rudder deflection J. is the variable
subjected to limiting, the gain factor G, in Figure 1 is
unity. For the purposes of this investigation the
saturation limit for the rudder is typically of the order of
+35 deg, while the two different rate limit values used in
the illustrative examples that follow are +7 deg/s and
+10 deg/s.
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Forward
speed T K m = Z d; o
(U m/s) K
2.6 33.0 | 0.19 173.68 3.3330 3.7037
5 31.0 | 0.50 62.00 2.0000 0.8000

Table 1: Parameter values used for the model of R.O.V.
Zeefakkel [8].

2 Inverse Simulation Methods

Inverse simulation techniques may be divided
conventiently into methods that are based on discretised
models and are essentially iterative in nature and
techniques that are based on continuous system
simulation principles. Although the emphasis within this
paper is on use of one of the second group of methods,
both types of approach are reviewed here since some
continuous system simulation approaches have origins

in iterative methods involving discretised models.

2.1 Iterative methods of inverse simulation
based on discrete models

Several inverse simulation techniques were developed
initially for aircraft handling qualities and agility inves-
tigations, as mentioned above. The technique that is
most widely used was developed first by Hess, Gao and
Wang [10] and involves repeated solution of a forward
simulation model of the vehicle to allow determination,
in an iterative fashion, of inputs that allow the output to
follow a specified manoeuvre. This has been termed an
‘integration-based’ approach. Very similar techniques
were developed independently by Thomson and Bradley
and their colleagues (see, e.g., [11], [1], [2]). This type
of iterative technique is based on the use of gradient
methods but search-based optimization methods have
also been applied, with success, in a range of applica-
tions (see e.g. [12]). Another method, which can be
traced back to original work in the aircraft flight me-
chanics field, involves use of a so-called ‘differentia-
tion’ method in which a continuous system model of the
given system is transformed into a discrete-time de-
scription through the use of a finite difference approxi-
mation. This approach was developed by Thomson and
his colleagues (see, e.g. [13], [14]) in the context of
helicopter applications and by Kato and Sugiura [15] for
fixed-wing aircraft problems.

Other iterative techniques were also developed for
similar applications, including optimization-based ap-
proaches by Celi [16] and by Lee and Kim [17]. The
paper by Thomson and Bradley [2] provides a useful
overview of a number of these iterative techniques, as
developed initially for acronautical applications. Inverse
simulation techniques based on discrete forms of model
have also been used for the design of model-based out-
put-tracking control systems and a paper by Lu, Mur-
ray-Smith and McGookin [3] describes the use of in-
verse simulation in the design of feed-forward control
systems based on a Lynx helicopter model and also for
combined steering control and roll stabilisation in a
container ship application.

2.2 The continuous system simulation
approach

Although the iterative type of approach has been used
with considerable success in a number of aeronautical
applications, a second (and entirely different) approach
to the development of inverse simulation methods has
evolved which is based on the use of continuous system
simulation principles and avoids the need for iterative
solutions.

One approach is based upon the numerical solution
of differential algebraic equations (DAEs) (see, e.g.
[18], [19]), using DAE solvers. However, it appears
that, at present, numerical issues have limited the appli-
cation of this method to cases involving relatively sim-
ple low-order models.

Two other approaches to inverse simulation using
continuous system simulation principles are currently
available. One of these involves the use of feedback
methods (see, e.g., [20], [21]) while the second is based
upon an approximate method of differentiation (see,
e.g., [22]). From experience gained with other applica-
tions, it is known that in the approximate differentiation
approach any changes in the structure of the forward
model require restructuring of the inverse simulation
model and this can be time consuming. In contrast, in
the feedback method, changes within the model can be
incorporated without changes in the feedback structure
(other than possible adjustments of some feedback loop
gains). For this reason the feedback approach has been
chosen for the work described in this paper.
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2.3 Principles of the feedback approach

Some of the earliest developments in inverse simulation
involving the use of feedback principles can be found in
work carried out at the DLR aeronautical research insti-
tute at Braunschweig in Germany, as outlined by Hamel
(see e.g. [23]), and discussed in more detail by Gray and
von Griinhagen [24] and by Buchholz and von Griinha-
gen [25]. These methods have more recently been used
in a number of applications involving aircraft, process
systems and underwater vehicle models (see e.g. [20-
21], [26-28])).

A similar type of approach, which is linked specifi-
cally to control system design, has been developed by
Tagawa and Fukui [29]. Their overall approach is
termed ‘inverse dynamics compensation via simulation
of feedback control systems’ (IDCS) and the dervation
of an inverse simulation through the use of feedback is a
central element of this control design methodology.
They have used the IDCS method in control system
design applications involving servo-hydraulic actuators
and robotics, as described in recent papers [30], [4].

The feedback approach to inverse simulation can
best be understood by considering the case of a linear
model. The block diagram of Figure 2 involves a sin-
gle-input single-output linear model G(S) and a feed-
back loop having a cascaded block with transfer func-
tion K(S). The transfer function relating the variable
W(s) to a reference input V(s) is given by:

wes) _ 1

V(s) ﬁs)m(s)

(4)

If the term 1/K(S) is very small compared with the mag-
nitude of G(S), over the range of frequencies of interest,
the transfer function may be approximated by:

we 1
V(Es) | G(s)

)

Thus, if K(s) is large, the transfer function W(S)/V(s) is a
close approximation to the inverse model.

Although a linear single-input single-output system
model is used here, the same principles apply to the case
of nonlinear models and to multi-input multi-output
model structures. While the use of simple high-gain
feedback provides acceptable solutions in many cases, it
should be noted that the principle of feedback-based
model inversion applies also to other feedback struc-
tures and the approach is not limited to proportional
control methods or to linear models.
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Model input, from
inverse simulation, w(r)
——————————
Reference,
vt}

Giain Model
K =] G

Y

Figure 2: Block diagram for inverse simulation using
feedback principles for a given linear or
nonlinear model G. For a high value of the gain
K, the variable w is a close approximation to
the model input required to produce an
output that matches a given time history v(t).

In its origins, the feedback-based approach can be
linked back to the use of feedback principles for divi-
sion and inverse function generation operations in elec-
tronic analog computers. Recent work has shown that
the approach has very wide applicability [20] and that it
allows analysis of the dependence of inverse solutions
on parameters of the forward model (without parameter
perturbation) through the use of sensitivity models [26].
This can have advantages, especially in the linear case,
in terms of the additional physical insight provided
when compared with parameter perturbation methods
for sensitivity investigation.

One potential problem in applying the feedback-
based approach to problems involving actuator satura-
tion and rate limits concerns difficulties arising from
possible limit cycle effects. Hard nonlinearities of the
type that arise in actuators can give rise to limit cycle
phenomena within any feedback loop. For single-input
single-output feedback systems, describing function
analysis methods (see, e.g. [5], [ 31]) can be used to
predict the existence of limit cycles for feedback sys-
tems which involve one dominant nonlinearity and,
otherwise, can be described adequately by linear dy-
namic elements within the feedback loop. The condi-
tions associated with the onset of limit cycle oscillations
depend critically on the order of that linearised model
and on the form of the nonlinearity. In general, the high-
er the order of the linear model the more likely it is that
limit cycle phenomena will be encountered when satura-
tion or rate limiting effects are present within the feed-
back loop. Also, nonlinear elements which have describ-
ing functions which have a complex form (with imagi-
nary as well as real components) are more likely to give
rise to limit cycle oscillations, as discussed by Fielding
and Flux [5].
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This means that problems of limit cycles are likely
to be encountered in attempting to apply the feedback
approach to inverse simulation in the case of applica-
tions involving significant rate limits. Therefore, in
such cases, some modifications to the standard feedback
approach may be necessary or entirely different methods
of inverse simulation may have to be applied that do not

involve the use of feedback.

3 Inverse Simulation Applied to
the Ship Model

The first approach considered involves the application
of the simple feedback method of inverse simulation, as
outlined in Section 2.3 and discussed in greater detail
elsewhere (see, e.g. [20], [26], [27]).

3.1 Feedback applied to the ship model with
the actuator sub-model included.

Figure 3 is a block diagram which shows the structure
of the feedback system which is applied around the ship
model, including the actuator sub-model which, in the
general case, incorporates saturation and rate limits. The
signal used to represent the desired response of the
vessel is generated using a reference model. In general
terms this must involve a defined output that is
consistent with the dynamics of the vessel, with smooth
derivatives in order to give realistically smooth actuator
control demand movements. In this application the
reference input is generated using a third-order
reference model which provides appropriate inputs,
either in terms of the desired rate of change of heading
or the desired heading. In the case involving the desired
heading, the structure and parameter values of this
reference model are chosen to give a reference signal
which rises smoothly from zero to a specified final
value of heading over a period of about 30 s. This,
together with the corresponding heading-rate reference
input, represents appropriate steering dynamics for a
vessel of the type being considered. The heading-rate
signal from the reference model is used as the reference
input in Figure 3.

Feedback was provided by the heading-rate signal
which was compared with the heading-rate reference to
produce the heading-rate error which was then
amplified by the gain K.

W (actuator input
from the inverse

simulation)
—>
Ref + + HR
ef.
A »
Model K " > Vv "

) ] L <—|

Figure 3: Block diagram of the feedback system used for
inverse simulation with the actuator
sub-model incorporated within the feedback
loop. Here the block A represents the actuator
and V represents the vehicle. The variable HR
is the vehicle heading rate. The reference
model generates the time history of the
desired manoeuvre in terms of the required
heading-rate time history. The block shown as
having a gain factor L is a subsidiary feedback
loop and, in the case of the application
considered here, involves angular acceleration
feedback.

As shown in Figure 3, an additional feedback pathway
with a gain factor L was provided from the heading
acceleration signal within ship model as this was found
to be beneficial and provided additional damping.
Appropriate values for the gain factors K and L in
Figure 3 were determined using basic feedback theory,
with some further trial-and-error optimization. A
suitable value for the gain factor K in the heading-rate
feedback loop was found to be 10x10° while an
appropriate value for the gain factor L in the subsidiary
loop involving feedback of the angular acceleration was
found to be 10x10*. Results from the inverse simulation
studies were found to be relatively insensitive to the
precise values used in these feedback loops, provided
the two gain factors remained large.

Figures 4-9 show results obtained from the feedback
system for a case involving a forward speed of 5 m/s
and a demanded heading change of 8 deg. The reference
signal is the heading-rate signal obtained from the
reference model (Figure 4), corresponding to the
heading change shown in Figure 5. The saturation limit
in this case is £35 deg and the rate limits are £10 deg/s.
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Reference heading rate (deg/s)
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Figure 4: Reference input applied to the feedback

system for the case of the ship model with

forward speed of 5 m/s and a demanded

heading change of 8 deg.

The results in Figures 6 and 7 show that, for the chosen
manoeuvre and forward speed condition, the rudder did
not approach its angular saturation limit of £35 deg or
its angular rate limit of £10 deg/s. When applied as
input to the forward simulation model, the rudder
deflection found from inverse simulation (as shown in
Figure 6) produced a heading-rate response which
matched almost exactly the required heading rate with
heading-rate errors less than £12x10™ deg/s over the 50
second response time considered (as shown in Figure 8).
This corresponds to a maximum heading error (as
shown in Figure 9) of approximately 5.5x107 deg.
Errors in heading angle and heading rate would of
course be slightly different for other values of gain
factors in the feedback pathways and, in particular,
would increase if the gain in the heading-rate feedback
loop were reduced significantly. This level of agreement
is typical of results found using the feedback method
outlined in Section 2, for cases where actuators operate
within their limits.

However, if the forward speed of the ship is reduced
to 2.6 m/s, the situation changes. At this lower forward
speed the manoeuvre is more demanding than that
considered in the previous example. Figures 10 and 11
show results for the same 8 deg demanded course
change and, it can be seen that the required rudder rate
goes well beyond the limit of 10 deg/s, although the
rudder deflection does not reach the saturation level of
35 deg.
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. Figure 5: Heading change corresponding to the
heading-rate reference signal of Figure 4.
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Figure 6: Rudder angle time history found using the

inverse simulation process for the ship model

with forward speed of 5 m/s.
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Figure 7: Rudder angular velocity time history found
using the inverse simulation process for the
ship model with forward speed of 5 m/s.
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Heading rate error (deg/s)
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Figure 8: The difference between the heading-rate

1”0'3.

reference input and the heading-rate found
from a forward simulation using the rudder
deflection time history of Figure 6.

Heading error (deg)

Figure 9: The error in heading corresponding to the re-

25
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sults shown in Figure 8.

20

Rudder angle (deg)

Figure 10: Rudder angle time history found for forward

5 10 15 20 25 30 35 40 45 50
Time (s)

speed of 2.6 m/s. Other conditions for this
simulation are the same as for the previous
results.

25

- n
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0 5 10 15 20 26 30 3 40 45 50
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Figure 11: Rudder angular-rate time history found for
forward speed of 2.6 m/s. Other conditions for
this simulation are the same as for the
previous results.

If the demanded heading change is now made larger for
the forward speed of 5 m/s, the saturation and rate limits
both become important. Figures 12 and 13 show results
for a forward speed of 5 m/s and a desired manoeuvre
involving a final course change of 40 deg. Clearly the
actuator position (rudder angle) now exceeds the 35 deg
saturation limit and the angular velocity also exceeeds
the 10 deg/s rate limit. This procedure gives a clear
indication of situations where demanded manoeuvres
exceed the hard limits of the actuator and could cause
problems in terms of the control characteristics of the
vessel. Thus, if the purpose of the investigation is to
establish whether or not a specific manoeuvre gives rise
to saturation or rate limiting, the inverse simulation
model involving a linear actuator sub-model can
provide useful information.

40

35
30
|

25

Rudder angle (deg)
7]

0 5 10 15 20 25 30 36 40 45 50
Time (s)

Figure 12: Rudder angle time history found for forward
speed of 5 m/s for a demanded manoeuvre
corresponding to a 40 deg heading change.
Other conditions for this inverse simulation
are the same as for the previous results.
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Figure 13: Rudder angular-rate time history found for
forward speed of 5 m/s s for a demanded
manoeuvre corresponding to a 40 deg
heading change.

It can also be concluded that, for less demanding inputs,
such as the 8 deg manoeuvre considered in Figures 4-9,
inverse simulation methods do provide a direct and clear
indication of the margins of control available. In terms
of the saturation limit this margin is found from the
difference between the maximum rudder deflection and
the saturation limit. For the rate limit, the corresponding
margin is found by comparing rudder angular velocity
values over the complete time history with the rate limit
value. In Figure 6 the maximum rudder deflection is
about 7.5 deg compared with the saturation limit of 35
deg and there is therefore a large margin of control
(27.5 deg of rudder deflection) before the helmsman or
autopilot system would encounter problems. Similarly
the results of Figure 7 show that the rate of change of
rudder angular deflection of about 8 deg/s is below the
critical level of 10 deg/s and this suggests that the
manoeuvre could be made slightly more demanding
before difficulties due to rate limits would be
encountered.

The availability of information of this kind is clearly
useful in assesing the maneuvrability of a specific
vehicle or in considering specific design changes (such
as within the actuator and rudder system).

If saturation and rate limits are included within the
actuator model, the feedback structure used for inverse
simulation changes its behaviour significantly in
manoeuvres for which actuator limits are exceeded.
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For example, Figure 14 shows the rudder deflection
generated from the inverse simulation for a manoeuvre
involving a 30 deg change of heading with a forward
speed of 2.6 m/s and with a saturation limit of £35 deg
and rate limit of £7 deg/s. This time history has a very
different character from those considered previously and
shows a transient which displays limit cycle type
oscillations. Although this is not a stable limit cycle
phenomenon, investigation based on describing function
methods suggests that this transient is an artefact of the
feedback methodology and arises as a result of the
inclusion of the actuator rate limit. It should be noted
that the use of heading feedback rather than heading-
rate feedback tends to make this limit cycle behaviour
even more pronounced.

In applications where investigation of the effect of
actuator limits on the overall dynamic characteristics of
the complete vehicle is important, some way must be
found of incorporating the nonlinear actuator sub-model
within the inverse simulation procedure. In view of the
limit cycle problems encountered when the nonlinear
actuator sub-model is included within the inverse
simulation (as reported above) the simple feedback
approach is clearly inappropriate. One possible strategy
is outlined in the next section and involves a
combination of inverse simulation and conventional
forward simulation in a two-stage procedure [28].

40

Rudder angle (deg)

% 5 10 15 20 25 30 35 40 45 50
Time (s)

Figure 14: Results in terms of rudder angle obtained by
inverse simulation using the feedback
approach for the case of the ship model with
forward speed of 2.6 m/s and a demanded
heading change of 30 deg with a rudder
saturation limit of 35 deg and rudder rate
limit of =7 deg/s.
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3.2 A two-stage feedback method

Figure 15 is a block diagram illustrating a two-stage
method which allows the feedback approach to be used
but which avoids the limit cycle problems encountered
with the traditional method in which the nonlinear
actuator model is included within the feedback loop. As
before, feedback is applied around the ship model to
allow a rudder input to be found that produces a heading
rate that best matches the reference heading rate. The
actuator sub-model is included within the feedback
loop, but without the saturation and rate limits. In the
first stage of the procedure, inverse simulation based on
the feedback structure is used to find an input to this
linear actuator model to achieve the desired response if
no limits were present. The effect of including the
saturation and rate limits is then investigated in the
second stage by applying this idealised actuator input
found from inverse simulation to a forward simulation
of the ship involving the full nonlinear actuator sub-
model.
Required
actuator

input
signals

Inverse simulation of vehicle
implemented using feedback method >
with linear actuator sub-model included

Desired
manoeuvre

Control surface

: Quitput
¥ deflections,

variables

Nonlinear Simulation
:> simulation of b maodel
of vehicle

actuvators

Figure 15: Block diagram of the two-stage procedure
for inverse simulation using the feedback
method.

Results obtained using this approach are shown in
Figure 16 for a case involving a 30 deg heading change
for a forward speed of 2.6 m/s with a rudder deflection
limit of 35 deg, as before, and a rate limit of +7 deg/s.
The time-history of the rudder response indicates clearly
that the rudder moves at the positive rate limit of 7 deg/s
for an initial period of about 4 to 5 s, by which time the
rudder angle is close to the saturation limit of 35 deg.
The rudder then starts to move in the opposite direction
and almost immediately reaches the negative rate limit
of -7 deg/s. This rate is maintained for a further period
of about 6 s, after which the rudder response enters a
linear mode of operation, with the rudder angle
approaching zero in the final 5 s of the response.

40

Rudder angle (deg)

5 10 15 20 25 30 35 40 45 50
Time (s)

Figure 16: Results in terms of rudder angle obtained by
inverse simulation using the two-stage ap-
proach for the case of the ship model with
forward speed of 2.6 m/s and a demanded
heading change of 30 deg with a rudder satu-
ration limit of =35 deg and rudder rate limit
of £7 deg/s.

Since the primary feedback loop used for the inverse
simulation involves comparison of the rate of change of
the heading of the vessel with the corresponding
quantity from the reference model, it is appropriate to
examine the heading-rate error when the rudder
deflection time history is used as input to a forward
model of the vessel. This is shown in Figure 17 for the
50 s test under consideration. The largest error (about
1.2 deg/s) occurs after about 5s, at the end of the initial
period of rudder actuator rate limiting. As would be
expected, the heading error found from this forward
simulation builds up steadily over the complete time
history and reaches almost 35 deg after 50 seconds, as
shown in Figure 18.

0

-0.2

-0.4

-0.6

-0.8

Heading rate error (deg/s)

0 5 10 15 20 25 30 35 40 45 50
Time (s)

Figure 17: Heading rate error from forward simulation
(second stage of the two-stage inverse simu-
lation procedure) using the rudder deflection
time history of Figure 16.
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Figure 18: Heading error from forward simulation (sec-
ond stage of the two-stage inverse simulation
procedure) using the rudder deflection time

history of Figure 16.

4 Discussion and Conclusions

It can be concluded, from this application, that inverse
simulation methods based on feedback principles can
provide useful information about the margins of control
available before limiting effects in actuators lead to a
downgrading of system performance. This is potentially
very important in systems involving manual control
where actuator input saturation and rate limits can give
rise to undesirable oscillatory phenomena such as the
pilot-induced oscillations that have been observed in
aircraft flight testing. Knowledge of conditions
associated with the onset of actuator saturation and rate
limiting is also important for the design of automatic
control systems, as has been discussed previously in the
context of ship control (see, e.g. [7]) and aircraft flight
control (see, e.g., [5]).

simulation techniques are particularly
important in all of the above areas because they allow
information to be gathered directly about how the input
that is needed to perform a specific manoeuvre is
affected by the operating condition and parameters of
the model.

In order to investigate the effects of actuator
saturation and rate limiting on the overall model output,
a two-stage inverse-simulation approach has been
shown to be useful. This avoids artefacts of the
feedback approach which can lead to undesirable limit
cycle oscillations. Indeed, it could even be argued that
the feedback method of inverse simulation ceases to be

Inverse

valid when hard limiting occurs since the feedback loop
then becomes transiently inactive.
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However, in most practical situations involving hard
limiting of actuators, we are concerned primarily with
detecting conditions when limiting occurs and with
finding ways of avoiding these, rather than obtaining a
complete time-history of the outputs from the inverse
simulation model.

It should be noted that the conventional single-stage
feedback method of inverse simulation still has practical
value for cases in which rate limiting does not occur.
This allows inverse simulation to be used as a general-
purpose design tool and can assist the designer in
investigating the performance of different planned
configurations at an early stage in the design process.
For example, it can provide answers to questions about
the capability of the vehicle under investigation, with
known power and control limits, to perform a specified
manoeuvre. If it is found that the manoeuvre cannot be
carried out inverse simulation may help the designer to
make configurational changes, such as a change of
actuator characteristics or rudder area that then allow
the design requirements to be satisfied.

In general terms, it can be concluded from this
application that looking directly at inputs required to
perform specific manoeuvres can provide insight that is
significantly different from that available using
conventional forward simulation tools. The fact that
inverse simulation allows the sensitivity of the required
input to changes of model parameters to be investigated
directly is an important benefit in terms of the design
process.

In terms of the specific results obtained in this
application, further adjustment of the gain factors in the
feedback pathways could be considered and could
further improve the accuracy of the inverse simulation
results. However, as always, a compromise has to be
found between accuracy and computational speed and
convenience.

It should be noted that the design of a feedback
system for inverse simulation is significantly different
from the design of a feedback control system involving
a plant model of equivalent complexity. Issues of the
robustness of the feedback system in terms of its
response to external disturbances, measurement noise
and parametric uncertainties, do not have to be
considered. This means that less-robust design methods
that might be considered inappropriate for control
system applications, such as high gain solutions or
eigenstructure design methods, can often prove useful in
the development of inverse simulations.
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Abstract. Optimal utilization of complex processes
involves real-time operational optimization and schedul-
ing, especially in cases where the production line con-
sists of both continuous and batch operated unit pro-
cesses. This kind of real-time optimization requires pro-
cess models which can be computed significantly faster
than real-time. lIterative balance calculation is typically
far too slow for these cases. This paper presents a meth-
od for converting an iterative balance model to a directly
calculating model suitable for on-line process optimiza-
tion. The approach is demonstrated with the first unit
process in the copper smelting line, the flash smelting
furnace (FSF). The method consisted of formulating an
equation group based on the constrained FSF HSC-Sim
model and solving the unknown parameters and static
states with use of a symbolic calculation software. The
solution was implemented as a function whose calcula-
tion time fulfilled the requirements for scheduling use.

Introduction

The general digitalization of society and advances in
computational power have brought on a pronounced
digitalization wave in process industry. Utilization of the
advantages of digitalization can improve efficiency and
the ability to stay competitive in increasing global com-
petition in many conventional industrial processes. The
design of industrial processes is often based on long term
empirical and theoretical knowledge which has been
incorporated into thoroughly built mathematical models.

These models often include iterative balance calcu-
lations to fulfill empirical and physical process con-
straints. These models are well suited for steady state
process design and often used when offering, planning
and constructing new process lines, however, they are
often computationally too cumbersome for use in real-
time solutions demanding short execution time.

Optimal utilization of processes should ideally in-
clude real-time operational optimization and scheduling
where results can be presented to operators and/or pro-
cess control quickly. Due to the time requirements and
computational complexity of the optimization schemes,
the underlying process models must be capable of pro-
ducing results significantly faster than real-time. Thus,
models requiring iterative calculations are typically too
cumbersome to incorporate into the optimization. The
high demand on execution time can often be compen-
sated by lowering demands on model precision for the
real-time operational optimization. Examples of de-
manding real-time optimization utilized in process de-
sign can be found in [1,2,3,4].

Good examples of thoroughly built steady state
models can be found in metallurgy. Most metallurgical
processes are old and have large societal impact which
has allowed extensive development work to model pro-
cess behavior over many decades. These processes
comprise complex physical and chemical reactions and
modelling has been both theoretical and empirical. To
fulfill the basic requirement of mass and energy conser-
vation and empirical observations iterative calculation is
often employed. Lately also dynamic models purely
based on fundamental physical laws have been success-
fully derived, e.g. [5] for the melting process in electric
arc furnace.
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These types of models are built on differential equa-
tions and needs careful parameter determination. They
are normally solved with integration algorithms which,
depending on model complexity, can be too slow for
real-time operational optimization and scheduling.

The incentive for this study is the need for opera-
tional optimization of a copper smelting line. Optimal
operation of a copper smelting line is challenging for
the operators as the operation is divided into many
complex individual sub processes. Plant wide optimiza-
tion is required to maximize production and resource
efficiency. Additionally, more challenging ores have to
be used to retain economic competitiveness worldwide
which increases the need for process optimization. Im-
proved operation of copper smelting can provide im-
proved utilization of different input materials and recy-
clants. Copper smelters present a challenging optimiza-
tion problem where the harsh environment can prevent
obtaining mineral and operational information, data is
highly uncertain or measurements may be severely
delayed. A full scale optimization of the complete pro-
cess line will include a considerable amount of variables
and require the consideration of large time horizons.
Further, many of the underlying models are nonlinear.
Thus, sub processes and the related models should be
relatively lightweight in terms of their computational
requirements. In principle, the development of optimiza-
tion for a copper smelting line operation consists of
modelling of unit processes and designing of optimiza-
tion / scheduling for the combined unit process models.

Static input-output process models can be derived
with use of mass and energy balances supplemented
with sometimes uncertain process reaction knowledge
completed with empirical knowledge. In principle, this
empirical knowledge can be written as constraints in
equation form. These equations can be completed with
mass and energy balances to form a complete equation
group determining process reactions. By solving the
equation group, the unknown parameters and thereby
the static process state can be solved under the given
constraints. In practice this approach is challenging as
the equations are often complex and manual solutions
may be error prone and exceptionally time consuming.

Development of aids for this challenge started in the
beginning of the 1970s under the scientific area of sym-
bolic computation. Software programs for manual com-
putation are called computer algebra systems (CAS) and
are at present highly developed and even implemented
in hand held calculators.
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These systems include Mathematica [6] and Maple
[7], the latter has been implemented in Matlab [8] as the
Symbolic Math Toolbox. In later Matlab versions, the
toolbox is based on the MuPAD symbolic engine origi-
nally developed at the University of Paderborn. Matlab
offers a convenient way of shifting from symbolic cal-
culus to numerical computation.

Utilization of symbolic computation for solving un-
known variables of restricted mass balance equations
seems to be a rare approach or rarely reported. A similar
method was used in [9,10] in the same research group
but the authors have not found similar work by others.
Symbolic computation is, however, commonly utilized
when forming first principle models [11,12,13]. Its use
is especially convenient for model design with e.g.
Lagrangian mechanics [14].

For optimization of the operation of the copper
smelting line computationally lightweight models of all
unit processes are required. This paper presents a meth-
od for converting an iterative balance model to a direct-
ly calculated model suitable for process operation opti-
mization. The method is demonstrated with the first unit
process in the copper smelting line, the flash smelting
furnace (FSF).

1 Examples of Industrial
Process Optiomization and
Scheduling

Process optimization in general can be viewed as requir-
ing predictive models capable of evaluating the evolu-
tion of the process under different process variables and
operational schemes. In many cases linear models or
finite response models are used to facilitate the fast
calculation of predictions. Optimization determines the
variables which minimize or maximize some objective
function while fulfilling process constraints. The sim-
plest objective is often the maximization of throughput.
More advanced objectives may include considerations
of energy use or different quality variables. When more
exact predictions are required or linearization is not
applicable for some other reason, nonlinear process
models are used. Solutions will then require complicat-
ed optimization algorithms for the determination of
optimal process variables and operation. In general,
these algorithms require iterative calculation to find
optimal values.
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Scheduling problems determine which process units
are used when and for which process tasks. Almost all
scheduling problems consider batch processes and thus
require integer variables introducing additional com-
plexity to the optimization problem. Further complexity
is introduced when the processes, such as copper pro-
duction, include the combination of batch and continu-
ous sub processes. Scheduling problem formulations
can be roughly divided into discrete time or continuous
time problems. In either implementation the number of
variables is often in the hundreds and even multiple
thousands of constraints are required. The most com-
mon method is to define the scheduling problem as a
mixed integer linear program (MILP) which can typical-
ly be solved in seconds. In addition to production rates
and task timings logistical concerns related to transfer of
materials and maintenance are often incorporated into
the formulation.

Scheduling has been in common use in many indus-
trial applications, especially related to chemical pro-
cesses, for decades. Some implementations of industrial
scheduling and optimization include the scheduling of a
pulp and paper machine reported in [15]. Here an opti-
mal production schedule was defined and energy pro-
duction and prices were considered in the objective.
Steel production has often been considered in schedul-
ing problems. One implementation was reported in [16]
where the production of different product recipes was
considered and the problem solved with decomposition.
The optimization and scheduling of copper production
has seldom been reported. One implementation was
introduced in [17] where throughput is maximized while
also enabling the consideration of different maintenance
tasks. More recently, [18] reported an implementation
of a greedy algorithm to plan the production of a copper
plant. The authors introduced a nonlinear optimization
of copper production in [19] where a simulation based
approach was used.

Different optimization algorithms are available in
many commercial products. MILP solvers are included
in most computational software. In [17], the problem
included 750 variables, of which 84 were binary integer
variables, and 984 constraints with a solution time of
under one second. MILP solvers roughly work by relax-
ing the integer constraints, find an optimal solution and
if this does not fulfill the integer constraints perform a
branch-and-bounding of the problem and find new op-
timal solutions for the new problems. Nonlinear solvers
also require iterative search methods.

For example, Matlab includes the interior point and
sequential quadratic programming algorithms for use
with constrained nonlinear problems. In [19], an itera-
tive simulation was used to predict the evolution of the
process. Solutions were produced in about 60 seconds.
Required iteration amounts are in the hundreds or thou-
sands. This illustrates the need for lightweight models to
enable real-time optimization.

2 Copper Production Line

Copper smelting plants convert the input materials,
concentrates, which consist of mainly copper and iron
sulphides, to almost pure copper through multiple oxidi-
zation stages. This begins from the mixing of a suitable
concentrate mix with a copper content of 20-30 %
which, after drying, is fed to the FSF. The mix reacts
with the oxygen-enriched air feed and separates to matte
(~60-65 % Cu) and slag. Silica flux is added to the FSF
feed during operation to achieve suitable conditions for
separation of matte and slag. The oxidization reactions
generate heat though in some cases additional heating
may be required.

Matte and slag are removed intermittently from the
FSF, matte is moved to the converters, and slag is pro-
cessed further in the slag treatment plant. After treat-
ment, both FSF and converter slag can be recycled back
to the FSF. Pierce-Smith converters (PSC) use a sub-
merged feed of oxygen enriched air. Converters are
operated in batches where first, in multiple slag-making
stages, FSF matte is added between air blows. Here,
most of the iron compounds will react and move to slag.
Second, after removal of slag, in one longer copper-
making stage the remaining sulphur is removed from
copper compounds. Temperature is controlled with the
addition of recycled material, e.g. scrap metal. The
ensuing blister copper (~99 % Cu) is moved to anode
furnaces where oxygen is removed from the blister
copper and the copper is cast to anodes and finally
transported to refinery for electrolytic purification to
cathode copper. Figure 1 shows a full copper production
line including both smelting and refining. A detailed
description of the smelting process can be found for
example in [20].

The FSF matte copper content can be viewed as one
of the main decision variables in smelting as the higher
copper content in matte (matte grade) is, the higher the
copper content in the slag both in FSF and PSC and less
blowing time in PSC.
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Figure 1:Flow sheet of copper process at Boliden Harjavalta [22].

Additionally, in FSF modelling matte grade is often
used as a variable in distribution of other valuable met-
als, such as silver (Ag), cadmium (Cd), cobalt (Co),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), to both
matte and slag. Production bottlenecks include the pro-
duction rate of FSF and the required converter tasks and
availability of converters. Transportation of material
from the FSF to converters is handled with cranes and
may present limits for production rates. SO2 gases are
produced in all production stages and the capacity of the
gas treatment plant must be considered when determin-
ing the production rates and timings of different produc-
tion tasks.

3 Model Conversion

The method for converting an iterative balance model to
a directly calculating model is here demonstrated with a
model of the flash smelting furnace, modelled in HSC-
Sim [21]. HSC-Sim is a calculation module of HSC
Chemistry software developed by Outotec. The name
refers to the automatically utilized thermochemical
database which contains enthalpy (H), entropy (S) and
heat capacity (Cp) data for an extensive amount of
chemical compounds.
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The HSC-Sim module enables application of HSC
Chemistry to a whole process made up of process units
and streams. The HSC-Sim module consists of a graph-
ical flowsheet and spreadsheet type process unit models.
The custom-made variable list enables creation of dif-
ferent types of process models in chemistry, metallurgy,
mineralogy, economics, etc. Each process unit is actual-
ly one Excel file. In the Distribution units the com-
pounds are divided into elements and calculation is done
with element distribution coefficients. Based on process
knowledge some coefficients are defined as fixed. Coef-
ficients for assisting elements in compound formation
are calculated based on molar need and supply and
called float. Surplus elements are divided with coeffi-
cients called rest. Units can be used together or sepa-
rately and the calculations can be Excel- or DLL-based.

HSC Sim pyro models are mathematical process
models based on mass- and energy balances and empiri-
cal knowledge controlling the equilibrium state. These
models are successfully used in strategic planning of
metal processing. The drawback of these models is the
iterative calculation needed for reaching the equilibrium
state. This iterative calculation is too slow for use in on-
line process optimization of the whole smelter line.
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3.1 Legacy model

The flash smelting furnace process has been modelled in
HSC-Sim as a static division process with empirical
knowledge controlling parts of the division coefficients.
The implementation is a spreadsheet-like division calcu-
lation with iterative calculation to fulfill constraints
derived from empirical and physical knowledge.

The model consists of three main spreadsheets; In-
put, Distributions and Output, each containing between
146 and 424 rows and 68 columns. The Input sheet is
sparsely filled with element mass flows and describes
how input compounds in different streams are broken up
to elements according to chemical molar consistency.
The Distributions sheet is sparsely filled with distribu-
tion coefficients dividing element mass flow into com-
pounds for different output streams partly according to
chemical reactions. The Output sheet is filled with cor-
responding element mass flows that build up the output
compounds in different output streams. In addition to
the three main spread sheets, a Controls sheet includes
27 empirical process observations that must be fulfilled
in the stationary state.

In principle, the distribution from input compounds
to output compound is built up around how the main
elements copper (Cu) and iron (Fe) is distributed be-
tween compounds in the output streams. The chemical
reactions require assisting element as oxygen (O) and
silicon (Si) which are brought in as floating elements.
Sulphur (S) is partly handled as a main element and
partly as an assisting element. As a result, the model
consists of some fixed distribution coefficients, many
coefficients which are iteratively adjusted to fulfill the
empirical observations and numerous coefficients calcu-
lated as float according to corresponding chemical reac-
tions or as rest for surplus elements. The model is thus a
system of four spread-sheets with a large number of
interconnected cells. An iterative routine is used to solve
the distribution coefficients and thereby the element and
compound streams in the stationary state.

The calculation is very useful for off-line strategic
planning of metal processing. The calculation is, how-
ever, too slow for real-time process optimization.

3.2 Method for derivation of fast

calculating model
In general, the objective for the study was to find a
method for converting iterative output controlled bal-
ance models to directly calculating models suitable for
process scheduling. The basic idea was to form a sym-

bolic equation group based on the flash smelting furnace
HSC-Sim model and to solve this group analytically
with symbolic computation to achieve causal outputs as
direct functions of inputs. The solution is possible due
to empirical knowledge included in the Controls sheet
of the FSF HSC-Sim model.

Thus, the task was to write a fully parametrized
equation group based on the FSF HSC-Sim model
where the equations are based on the equations of em-
pirical knowledge in the Controls sheet. The model is in
this analytic approach simplified. The input elements
include only the main elements; copper (Cu), iron (Fe),
nitrogen (N), oxygen (O), sulphur (S), silicon (Si) and
other content (Ot). The distribution of the elements
between the output streams, which are settler gas, settler
fume, settler dust, slag and matte, is fully in line with
the FSF HSC-Sim model. The eight equations determin-
ing empirical knowledge regarding the main elements
was chosen as base for the equations. To enable an ana-
lytic solution with the symbolic software the equation
group has to be exactly determined.

The equation group formulation starts with defining
all basic variables as symbolic variables. This example
included 7 element mass flows, 23 distribution coeffi-
cients for element distribution to output streams and 41
distribution coefficients for element distribution into
compounds in the different output streams. The main
formulation work is to define the relationship between
these variables with emphasis on the formulation of the
float and rest variables. Here, this part required about 75
definitions. After these definitions, the output com-
pounds can be formulated. Afterwards, the final equa-
tions based on the empirical knowledge in the Controls
sheets can be written. To ease the derivation of the ana-
lytic solution of the software the nonlinearities in the
empirical knowledge were linearized. The same varia-
bles as the manipulated variables in the iterative solu-
tion of HSC-Sim model were chosen as variables for the
calculation to solve. They were; distribution coefficient
for Fe to matte, distribution coefficient for Fe in slag to
FeS, distribution coefficient for Cu to slag, distribution
coefficient for Fe in matte to Fe304, Ot to matte, Si
input stream, O input stream and distribution coefficient
for Fe in slag to Fe304.

This study utilizes the Symbolic Math Toolbox in
the Matlab software. With the relationships concerning
use of oxygen still undefined, the solver managed to
achieve a fully symbolical solution in around five
minutes with a laptop.
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When oxygen is taken into account, the solver has
been forced to settle for a numeric approximation,
which still includes all the variables in an appropriate
manner. The length of the analytic solutions is over
25000 characters. The solutions are at this stage provid-
ed with the values of the fixed variables. The last task of
the program is to produce usable functions of the long
analytic solutions.

4 Model Validation and
Discussion

Model validation is performed to ensure usability of the
model in real-time process optimization and scheduling.
As copper content in matte is a good measure of the
process state, the validation is performed at varying
matte copper percentage.

4.1 Similarity to legacy model

Figure 2 shows a comparison between the analytical
direct solution results, with the blue line, and iteratively
calculated HSC-Sim results, red line, as function of
matte copper percentage.

The cause for the differences is the fact that the ana-
Iytically solved model is a simplified model of the pro-
cess including only the main elements. E.g. both silicon
and oxygen is consumed by other minor compounds
which are not included in the model. The difference is
mainly a shift of magnitude which can easily be com-
pensated by a term proportional to the total concentrate
flow. With this compensation the analytically solved
model is adequate for the on-line utilization.

4.2 Calculation time

As the optimization and scheduling algorithm calls the
model hundreds of times per second the calculation time
has to be short. A test function call from Matlab showed
that the execution time is only some milliseconds for
calls of two to eight variables, which is sufficient for the
on-line utilization. The calculation time for the iterative
solution of the HSC-Sim model is a few seconds.

5 Model Utilization

The directly calculating model of the flash smelting
furnace process will be utilized in scheduling of a cop-
per production line to optimize production and costs.
When solving the equation group, the solvable variables
can be freely chosen. There are two evident ways of
model formulation that can be utilized.

Figure 2:
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A comparison between analytical solution results with blue line and iteratively calculated
HSC-Sim results with red line.
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Figure 3: Direct input output model utilized in
scheduling.

5.1 Direct input output

A natural solution would be to form a direct input out-
put model to mimic the real smelting process. Figure 3
represents a scheduling structure that utilizes the input
output model. As scheduling is a high level task whose
interests are in production rate and oxidation level in
first stage smelting, a lower level control structure has
to deal with the unit control of the flash smelting fur-
nace. This is shown as feedback control of the open
loop model. In practice, this could be a sub optimization
task for the scheduling routine.

5.2 Closed analytic solution

To enhance the direct scheduling interests, the required
control variables can directly be chosen as solvable
variables in the equation group. The static model allows
us to utilize a closed analytic solution whose scheduling
structure is clear and shown in Figure 4. This direct
solution will not need the sub optimization. Feedback
from the off-line measurements compensates for model
inaccuracy.

5.3 Model based schedule calculation

To demonstrate the usage of the directly calculating
model an example schedule is derived where special
attention is paid to the calculation time.

A similar routine will be called at high frequency
when the model is utilized in the real-time operational
and scheduling optimization. The routine is called at the
moment when the nonlinear optimization algorithm
executes a new iterative schedule. The example is in
line with the utilization of the closed analytic solution
presented in Figure 4.

Concentrate .
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Silica FSF [ -
Off-line
Measurements
asg, asf, asd, gs, am, gsg_SO2
Cu_m
gSi Modelled
q0 FSF »
Concentrate (qCu, gFe, gS, qOt)
Cu_m setpoint
Production setpoint | Cu Smelting Line
Scheduling Down Stream Information
Down Stream Scheduling >

Figure 4: Closed analytic solution utilized in scheduling

The flash smelting furnace is here regarded as a static
smelting process feeding parts of the formed com-
pounds to matte. Matte volume in the bottom of the
furnace is assumed to be fully mixed i.e. we have a
static material distribution process followed by a fully
mixed stock. The example comprises variable time
moments which can be chosen by the optimization algo-
rithm and where the algorithm can suggest changes in
production rate and copper content of feed to matte.
Additionally, the algorithm schedules tapping of matte
for further delivery to Pierce-Smith converters. The
example routine utilizes the closed analytic solution and
simply track element flows to matte and respective
stock situations starting from an initial state. As the
stock is assumed to be fully mixed the copper percent-
age can be directly calculated as copper mass of total
mass in storage. Figure 5 shows a plausible schedule of
an optimization algorithm including two steps in con-
centrate feed rate, one step in copper content of feed to
matte and one matte tapping.
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Figure 5: A plausible schedule of an optimization
algorithm.

When changing the concentrate feed rate, the internal
element mix has been kept constant. Figure 6 shows the
outcome of the example routine. First the routine has
directly calculated the required silica and oxygen for the
different static smelting process steps according to the
closed analytic solution. Second the routine has calcu-
lated the stepwise changing element streams to matte
and kept track of the total mass in matte and the copper
amount in matte to be able to track the copper percent-
age in matte. The copper matte percentage is exact in
the figure at the time moments. In reality the change
between the time moments in copper matte percentage
is similar to a first order step response due to the inte-
grator effect of the matte volume in the bottom of the
furnace. Due to the immediate tapping the total matte
mass is not exact in the period before the tapping mo-
ment. This inexactness in plotted figures is not a prob-
lem as the optimization algorithm only need the values
at the algorithm chosen moments. The necessity of
including the matte volume in the schedule calculation
is revealed when comparing the copper content of feed
to matte to the actual copper matte percentage in the
matte volume i.e. the copper matte percentage of the
tapped copper delivered to the next unit process in the
smelter line.
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Figure 6: Outcome of example routine including both
needed process feeds and matte state.

The calculation time for the example routine executed in
Matlab is about 15 ms in a laptop computer. The routine
included two function calls which prolonged the execu-
tion time but these function calls can be integrated to
one when optimizing speed. The execution time is esti-
mated to be short enough for real-time operational and
scheduling optimization. FSF models with execution
time in few seconds are earlier implemented successful-
ly in controlling the FSF unit process [23], but the exe-
cution time demand changes significantly when the
whole smelter line operation is to be optimized.

6 Conclusions

The objective of this study was to develop a method for
converting iterative output controlled balance models to
directly calculating models for process optimization and
scheduling.
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This method was used in the case of a flash smelting
furnace, previously modelled in HSC-Sim. The fast
calculating model is to be used in optimization of the
total production line operation.

The method consisted of formulating an equation group
based on the constrained FSF HSC-Sim model and
solving the unknown parameters and static states with
use of a symbolic calculation software. The study was
successful even if it requires careful formulation work
and the solution matched the solution of the original
model. The equation group should be fully determined
to enable a solution. The solution was implemented as a
direct calculation function whose calculation time ful-
filled the requirements for scheduling use.

The advantage with the approach is that even though the
length of the generated functions disables model
maintenance in function form, functions can easily be
recalculated after updates in the HSC-Sim model are
done. The modelling method has shown to be a power-
ful general way of converting complex iteratively solv-
able models to fast directly calculating models for utili-
zation in real-time operational and scheduling optimiza-
tion.

The presented demonstration model did not include an
energy balance and thereby the amount of nitrogen (N)
feed is kept constant even if the nitrogen feed is in prac-
tice the means to affect process temperature. The legacy
model is built on the assumption that temperature is on
normal level which enables a mass balance without
temperature dependency. The energy balance will be
included in future work.

This paper is an extended version of a paper presented
at the 9th EUROSIM Congress on Modelling and Simu-
lation [24].
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Abstract. Lighting conditions in buildings and efficient
use of solar energy are a subject of considerate attention
in order to provide sufficient living comfort and to re-
duce the energy use. For this reason numerous methods
and techniques, practical and theoretical, have been
developed. In this paper a theoretical approach to mod-
elling of the indoor lighting conditions is proposed,
based on fuzzy black-box modelling. The presented
model is able to estimate indoor illuminance levels as its
outputs, by using measured external conditions as its
inputs. The model can be used to study the influence of
both controllable and uncontrollable variables to the
indoor lighting conditions, such as weather, time of the
year, blinds position, electric lighting and others. Fur-
thermore, using the above model studies on control
design can be performed in order to obtain algorithms
for maximal use of the solar energy and to minimize the
energy consumption. The study has shown that a fuzzy
illuminance model can estimate the indoor illuminance
levels comparable to the measured data. Small error
measures show that similar modelling approach can be
used in order to integrate the proposed model into other
environments and can further be used for simulations
on indoor lighting comfort, control design or model-
based control.

Introduction

Indoor lighting conditions and the efficient use of solar
energy have become very important in recent decades,
both in terms of overall living comfort [1, 2] and ener-
gy-efficient buildings [3, 4, 5, 6].

A summary of the research carried out to date in the
area of buildings' energy efficiency, buildings' energy
performance and buildings' processes modelling can be
found in the excellent review paper by Foucquier et al.
[7]. Furthermore, sufficient daylight conditions have
been proven to have a beneficial effect on human health
[8]. Numerous approaches to controlling indoor-
illuminance conditions have been proposed, most of
which attempt to either achieve constant indoor-
illuminance levels, so as to provide sufficient living
comfort, or to maximize the use of solar energy, while
still providing acceptable lighting conditions [9, 10, 11,
12, 13]. Together with the modelling of light flux, in-
door light intensities and surface illuminances, which
usually represent the basis for control design techniques,
have also been the subject of much attention. Further-
more, many methods exist that are able to provide ap-
proximate illuminance-level prediction in a certain
position in a room, given its geometry, global orienta-
tion, the position of the sun, the surface characteristics
and/or the weather conditions/measurements [14, 15,
16]. Moreover, a study performed by Lindelof [17]
proposes a fast daylight model, able to obtain indoor
illuminances as a linear combination of the external
global and diffuse radiations, validated using the Radi-
ance model, which can be used as a replacement for the
real system of embedded controllers. Similarly, availa-
ble software tools, i.e., Radiance, Daysim, Skyvision
([18, 19, 20]) and many others, are also able to calculate
more-or-less accurate illuminance levels for a given
position in a room; however, significant knowledge of
the modelled system (complete geometric and photo-
metric characteristics of the room, inventory, windows,
blinds, lights, etc.) and the software itself are needed, in
order to ensure accurate results. A lot of the existing
approaches rely on known mathematical daylighting
concepts and thus try to describe the physical relations
between the input and output variables.
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If the measurements of the real environmental condi-
tions are available, a black-box approach to the calcula-
tion of the indoor illuminance can be introduced as one
of the modelling possibilities. Black-box models have
proved to be a useful tool for the modelling of processes
whose characteristics, relations and dynamics are not
exactly known or are harder to model with conventional
approaches.

The objective of this study is to propose a black-box
approach to indoor-illuminance estimation by using a
fuzzy inference model. The proposed methodology
results in the development of a model that describes the
relations between its inputs: horizontal unobstructed
illuminance (external illuminance), global and diffuse
solar radiations, the positions of the blinds and the status
of the lights; and its output: the estimated indoor illumi-
nance. The method is, from the input/output point of
view, similar to some existing methods, i.e., Lindelof
[17]; however, the methodological approach between the
proposed and the existing methods is entirely different.

One of the main advantages of the proposed method
is the simple design and parameterisation of the model,
which does not require any knowledge about the mod-
elled system, since the model's parameters, which define
the input/output relations, inherit the room's characteris-
tics, implicitly defined in the obtained measurements.
Meaning that the room's characteristics, such as: geome-
try, indoor surfaces' reflectances, blinds' reflectances,
quantity, sizes and positions of the windows, lights and
furniture; and also the position of the indoor illuminance
sensor, reflect in the measured indoor illuminance.
Moreover, a change in either the room characteristics or
the position of the sensor, if sufficiently large, also
affects the measured value. After the model is parame-
terized (trained) and validated using the particular in-
put/output measurements of interest, simulated or oth-
erwise acquired input data can be used, replacing the
actual measurements. The inputs defining the blinds'
positions and the lights' status either need to be prede-
termined, adjusted manually or by means of the control-
ler. Since the method uses measurements instead of
physical characteristics in order to define the relations
of the model, programming skills and the effort to man-
ually design the room interior are not needed.

The proposed structure of the fuzzy models is very
simple (5 inputs, 1 output, 3 Gaussian membership
functions per input and 3 fuzzy rules) and the fuzzifica-
tion/defuzzification procedures are simple vector multi-
plications.
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The simplicity of the model is reflected in the fact
that it is a fast model, with short evaluation times, which
facilitates its inclusion in other applications or control
algorithms. Finally, even though the model's structure is
simple, the validation results have very accurate estima-
tions in comparison with the measurements.

Although the proposed methodology has advantages,
the fuzzy approach also has some drawbacks, which
need to be considered when adopting the concept. In
contrast to methods based on the physical modelling of
the daylighting processes and pre-programmed algo-
rithms, which normally require only the input part of the
data in order to obtain the output, the fuzzy approach
requires both the input and the output part of the data in
order to parameterize the model using an automated
training procedure. After the model is parameterized,
only the input data is required. Moreover, since the
model is based on measured data, which defines the
room's characteristics, the calculation of the indoor
illuminance under different conditions (e.g., different
geometry, reflectances, sensor positions, etc.) needs a
re-training of the model with new measurements. From
this point of view, other tools like Radiance outperform
the proposed method, since they are able to calculate a
more-or-less accurate indoor illuminance for an arbitrar-
ily positioned surface [23, 24].

The purpose of the study is not to propose a specific
model that would represent a general solution for all
possible situations (like Radiance, for instance), but to
propose a simple methodology for how to obtain a mod-
el for a particular environment, where the model is
characterized as fast, accurate and easy to obtain, with-
out excessive knowledge of the particular problem.
Furthermore, since the in-depth studies on, e.g., building
automation, control design, energy conservation, living
comfort, etc., are practically impossible to perform on
real systems, due to varying weather conditions and
poor repeatability, the use of a relatively simple illumi-
nance model of sufficient accuracy in combination with
the simulation procedures allows fast and repeatable
testing of the designed algorithms or the model-based
control of real processes.

1 Indoor Environment

The following section gives a description of the indoor
environment, whose measurements are used as a basis
for the fuzzy black-box model's development and the
parameterisation.
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The indoor environment consists of a room with di-
mensions of 749 m x 493 m x 3.88 m (I x w x h), a
floor area of 38.80 m* and a volume of 163.40 m’, with
one outside wall that has a window, facing south-west
(rotated approximately 30° counter clockwise from the
east-west direction), where the outside wall is the long-
est wall. The room is located on the 4™ of 5 floors in a
building with no external obstacles that would obscure
the light flow through the window (lat: 46.045737, lon:
14.494851). The area of the window is 11.4 m% with
installed venetian blinds. The transmission of visible
light through the window is 80 %. The room character-
istics in terms of the photometry are the following: grey
floor (35 % reflectance), white ceiling (80 % reflec-
tance), white walls and beige furniture (average 65 %
reflectance). Figure 1 shows the floor plan of the partic-
ular room, with the marked positions of the sensors
(indoor and external illuminance, global and diffuse
solar radiation - placed on the roof of the building,
blinds' position), the window and the blinds.

The studied indoor environment is equipped with an
automation, supervisory control and data-acquisition
system (SCADA), which is composed of three distinct
parts: the sensor array, the process and supervision
level, and the data-acquisition level. The system
measures the necessary values, such as the global and
diffuse solar radiation, the external illuminance, the
position of the blinds (and other values not relevant to
this study) and controls the indoor-illuminance levels
(and other values not relevant to this study) using the
motorized venetian blinds and the electric lighting. The
sensor for external illuminance (Thermokon LI65 out-
door light sensor) is mounted vertically on the facade
beside the window and is capable of measuring the
illuminance in the range from 0 to 20,000 lux. The sen-
sors for the global and diffuse solar radiation (Kipp &
Zonen CM7B pyranometer and albedometer) are
mounted 2 floors higher, horizontally on the roof of the
building and are measuring the solar radiation in the
range 305 to 1,800 nm from 0 to 1,400 W/m>. The in-
door illuminance sensor (Thermokon LI04) is placed
horizontally on the workbench/desk (at a height of ap-
proximately 0.9 m) and is capable of measuring the
illuminance in the range from 0 to 2,000 lux. A com-
plete description of the automation system and the ap-
plied control algorithms can be obtained from the paper
by Kosir et al. [13].

Blind:
position
sensor

Figure 1: Floor plan of the modelled room, with the
marked positions of the sensors (indoor and
external illuminance, global and diffuse solar
radiation (placed on the roof of the building),
blinds' position), the window area and the
blinds.

The global and diffuse solar radiation are measured in
W/m?, the external illuminance in lux, while the blinds'
position can take values between 1 and 5 (1 - 0° slat
angle (vertical), 2 - 30° slat angle, 3 - 60° slat angle, 4 -
90° slat angle (horizontal) or 5 - blinds completely re-
tracted) and the lights' status can be either 0 (OFF) or 1
(ON).

2 Fuzzy Model

The concept of the black-box theory relies on under-
standing something entirely in terms of its function,
without knowing the background or the mechanisms
that enable this functionality. From this point of view,
machine-learning techniques, among which are also
fuzzy-inference systems, as one of the black-box ap-
proaches, can be considered as a mechanism of this
black box for the input-to-output mapping of the data
space. Meaning, if an appropriate structure of the sys-
tem is designed, an arbitrary nonlinear function between
the system's inputs and outputs can be described by the
fuzzy mechanism. Since the black-box approach has no
physical background to the particular process, the func-
tion describing the input-to-output space can be as close
to the real physical relation as the learning data can
describe it. Such a system can, therefore, be definitely
valid only in the vicinity of the mapped data space.
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This could be considered as one of the drawbacks of
the black-box approach, as if the learning-data input-
output relation is missing, the later incidence of such an
input could lead, but not necessarily, to incorrect output
estimations and should be experimentally validated.
However, if sufficient data is available, the black-box
approach has certain advantages over conventional
modelling approaches. As mentioned before, when the
structure of the black box is specified, its relations are
determined only according to the input and output data,
which eases the modelling for those who are, or are not,
familiar with the process. Physical relations, process
characteristics and other properties that could be hard to
describe mathematically are replaced by the proper
selection of the fuzzy structure (which can be obtained
experimentally) and only limited knowledge (usually
the order of the process) of the physical process is need-
ed to build the process model. In this manner, the proper
structure and parameterisation (pre-programmed auto-
mated learning procedures) of the fuzzy mechanism
ensures that the model's parameters, which define the
input/output relations, inherit the room's characteristics,
implicitly defined in the obtained measurements.

2.1 Structure of the model

The proposed black-box illuminance model is based on
a Takagi-Sugeno (TS) fuzzy-inference system (FIS)
[25] that was trained using real environment measure-
ments as the inputs and outputs. The model, in TS form,
approximates a nonlinear system by smoothly interpo-
lating affine local models [25]. Each local model con-
tributes to the global model in a fuzzy subset of the
space characterized by a membership function. The
affine TS model can be used to approximate any arbi-
trary function with any desired degree of accuracy [26,
27, 28]. The generality can be proven with the Stone-
Weierstrass theorem [29], which suggests that any con-
tinuous function can be approximated by a fuzzy-basis
function expansion [30].

Since the light-flow dynamics can be, from the
room-illuminance point of view, considered as infinitely
fast or instantancous, the black-box model is regarded
as a static model from the modelling perspective. This
means that a change in either the global or the diffuse
light, the blinds' position or the lights' status has an
immediate effect on the change in the observed illumi-
nance, with no transitional dynamics, meaning that the
value of the current illuminance is completely inde-
pendent of the previous illuminance sample.
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The fuzzy model uses the external illuminance mul-
tiplied by the position of the blinds, the global and dif-
fuse solar radiation, the lights' status and the blinds'
position as the inputs and the indoor illuminance as the
output. The reason for using the multiplied external
illuminance and blinds position as the input is that better
estimation results can be achieved, in comparison to the
results with only external illuminance as the input,
which is a consequence of a prior virtual increase in the
external illumination (multiplied by a factor from 1 to
5), dependent on the position of the blinds. The multi-
plication, therefore, implies that more light is entering
the office when the position of the blinds is higher
(higher slat angle) or if the blinds are completely re-
tracted.

This implication allows better estimations of the in-
door illuminance by the fuzzy model, since the particu-
lar input already partially describes the relation between
the external illuminance and the blinds' position. How-
ever, the relation between the external illuminance, the
blinds position and the indoor illuminance is not linear,
as implied by the multiplication, but nonlinear, which is
later defined by the corresponding fuzzy membership
functions and the antecedent rules. The use of the global
and diffuse radiation as two of the inputs (besides the
external illuminance, the blinds' position and the lights'
status) is optional and leads to better estimation results,
in comparison with the results that have the global and
diffuse radiation measurements omitted.

The reason for using the blinds' position as one of
the inputs, despite the fact that it has already been used
in the multiplication with external illuminance, is that
even better estimation results can be achieved in com-
parison with the results that have this input omitted,
which could be a consequence of the nonlinearity of the
process caused by the blinds' reflectance, which is thus
represented more accurately. Figure 2 shows a schemat-
ic representation of the model.

Inputs

External illuminance
X Black box

illuminance model
Lights status (on/off)

| _| Fuzzysystem |_
Takagi-Sugeno
Blinds position (1 - 5)

Figure 2: Schematic representation of the fuzzy black-box

Blinds position

/

Output
Indoor illuminance
estimation

Global solar radiation

Diffuse solar radiation

.

illuminance model.
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2.2 llluminance reconstruction

This section explains an optional method for simple
external illuminance reconstruction, which is necessary
when the illuminance sensor has a limit (in this case
20,000 lux). If sensors with higher limits (100,000 lux
or higher) are used to obtain the measurements, the
external illuminance reconstruction is not needed and
the measured external illuminance can be used as an
input to the fuzzy model directly.

Knowing that during sunny summer days the exter-
nal illuminance can go above 100,000 lux, the missing
(saturated) data needs to be reconstructed in order to
achieve better estimations of the calculated value. As
the fuzzy model also uses the global and diffuse solar
radiations (among others) as its inputs, it is able to suf-
ficiently well predict the indoor illuminance levels, even
when the external illuminance goes above the sensor's
limit (20,000 lux) and its value is not reconstructed;
however, estimations during peak daylight are less accu-
rate. The reconstructed signal is far from being equal to
the actual illuminance levels; however, according to the
validation results presented, an approximate estimation
of the external illuminance suffices. Since the daily
illuminance trend follows approximately the same
shape, it can be approximately reconstructed according
to the total saturation time of the external illuminance
sensor, as given in the equation 1:

tsat = tena — Ustart 1

qreconstruct (tstart : tend)

=15

. 2 .
x 104\/(_(llnspace(_tsatr tsat)) + tsatz)(llnspace(_tsatv tsat) + tsat)
Ztsat

qin = i T Greconstructed

where tgqt and teng represent the beginning and the end
of the sensor saturation in hours, ty represents the over-
all length of the saturation in hours, Qrecongruct represents
the reconstructed illuminance signal to be added to the
measured illuminance signal in lux, Q represents the
external illuminance signal in lux and the command
linspace(a,b) represents a vector of linearly spaced
values between a and b.

Figure 3 shows the comparison between the meas-
ured and the reconstructed external illuminance, as
obtained by equation 1 for a part of the training data (5
days in early August), where the sensor reaches its up-
per limit.

x 10

|
|
7r | q
|
|
|

External illuminance [lux]

Day
Figure 3: Comparison between the measured and the

reconstructed external illuminance for 5 days in
early August.

As can be seen in figure 3 the measured external illumi-
nance is saturated at 20,000 lux for several hours around
midday, while the reconstructed illuminance reaches up
to almost 90,000 lux, which seems reasonable for sunny
summer days. Equation 1 and the corresponding results
are obtained experimentally, without any physical back-
ground and are not validated nor taken from any other
source, but merely a rough estimation of what the exter-
nal illuminance should be like. If the illuminance sensor
has a limit that is high enough, such an estimation is not
needed.

2.3 Parameterisation of the model

The parameterisation of the fuzzy model, also known as
the training, was carried out for 1 month of different
measurements with a sample time of 15 s. The data was
chosen in a manner that covered all four seasons and as
many real-world situations as possible, i.e., sunny,
cloudy, foggy weather, different sun azimuths and ele-
vations, quick illuminance changes due to partial cloud-
iness or incoming thunderstorms, operation of lights,
shading, etc. Shorter or longer periods of measurement
data can be used to train the model; however, using less
training data results in a less versatile and robust model,
which is sufficiently accurate only for similar condi-
tions. On the other hand, using more training data re-
sults in a more versatile and robust model; however,
extended data only increases the model's performance
by a smaller amount. The fuzzy model uses three data
clusters for each input and the Gaussian membership
functions.
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An adaptive, neuro-fuzzy, hybrid learning algorithm
(ANFIS), as implemented in the Matlab environment,
was used for the model training.

Figure 4 shows a part (5 days in early August) of the
input data (otherwise 30 days) that was used for the
model training, including the external illuminance, the
global and diffuse solar radiation, the blinds' position
and the lights' status.

4

x 10
9 T T T T
I Measured
8 [ — — — Reconstructed |
; :
7r | \
® !
2 6f L
8 |
g .
g 5F ) n
E ! | | ‘ t
2 4l | i \ i
T | | ! |
£ h (" 0! )"
[ | "
50 ! n! ! ! |
. | ! l " )
0 1 2 Day 3 4 5
1000 T T
Global solar rad.
800 — Diffuse solar rad. ||
-«
£
2 600f
c
S
& 400
o
]
o
200
0 S\
0 1 2 pay 3 4 5
Lights status
&= — Blinds position
o 2 51 ] { H ]
5. | ﬁ
%5
]
a2 3f
g5
=~
o ol
N T I |
0 . .

Figure 4: A part (5 days in early August) of the input data
for the model training, including the
reconstructed external illuminance (upper
panel), the global and diffuse solar radiation
(middle panel), the lights' status and the blinds'
position (lower panel).

As is clear from figure 4, for the selected days, the
global and diffuse radiation take values between 0 and
900 W/m?, the external illuminance between 0 and more
than 20,000 lux (reconstructed above 20,000 lux as
shown in figure 3), the blinds' position can be in the
range from 1 to 5 and the lights' status can be either 0 or
1, as already described.
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3 Results

Using real measurements, the model was trained using
an ANFIS training algorithm. Figure 5 shows the shape
and distribution of the trained-model membership func-
tions for each input. The membership functions, which
characterize the input-output space, define the effect of
a given input value on the computed output value. Since
the presented model has five different inputs and three
data clusters, each input has three membership functions
with different centres and kurtosis.
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Figure 5: Shape and distribution of the fuzzy membership
functions on all five inputs for all three data
clusters as obtained by the ANFIS training
algorithm.

Figure 5 shows the shape and the distribution of the
membership functions, which contribute to the value of
the output, i.e., the indoor illuminance level, which is
obtained using the following equations:

outy = [qiuSpiinasCliun-1, ngobClgzob—p qdifCldif—lr
SlightsCllights—lr ShlindsClplinas—1] X
[0.0002238,—0.2234,2.091,453.3,182.4]7
373.1 2)

out, = [qillsblindsClill—Z:leobdglob—z:QdifCldif—2:

SlightsCllights—Zr ShlindsClplinas—2] X
[0.002637,0.3512,1.361,—99.01, —16.13]7
168.1 3)

outz = [ClilzsblindsCliu—s,ngobClgzob-s,CldifCldif-s,

SlightsCllights—Sr ShlindsClpiina—3] X
[0.01307,—0.8077,1.146,128.5,—1.442]" +
19.17 4)
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where ¢} represents the external illuminance, Syings
represents the blinds' position, Qgo, and Qg represents
the global and diffuse solar radiation, Sjgns represents
the lights' status and cly, (X - correspondent input, n -
cluster number) represents the degree of membership
(from 0 to 1) of the given input to the corresponding
cluster. Finally, the indoor illuminance g, is obtained
using the following equation:

Qin = Gour1 T Qout2 T Qouts ®)

The membership functions shown in figure 5 and the
fuzzy rules described by equations 2 to 5 define the so-
called mapping of the input-output data space. General-
ly, each input contributes to the combined output ac-
cording to the corresponding membership functions, its
centre position and kurtosis and the equations 2 to 5.

Figure 6 shows the validation of the model by com-
paring the measured and model-estimated indoor illu-
minances for 12 different days (days 1-3: June, days 4-
6: September, days 7-9: December, days 10-12: March),
covering different solar positions and climatic condi-
tions. The model was validated using the data from
different days than were used for the model training.

As can be seen in the first graph of figure 6 the in-
door illuminance levels obtained with the fuzzy model
in general correspond to the measured illuminance lev-
els. The indoor illuminance measurements during the
periods of daylight are approximately limited to a range
from 400 to 1,600 lux and are a consequence of the
external illuminance conditions, the position of the
blinds and the status of the lights. Lower indoor-
illuminance values occur during the morning and early
afternoon, while these values are higher later in the day,
which is a direct consequence of the room's orientation
(direct sunlight to the window area appears in the late
afternoon, around 6pm). The illuminances at night, both
measured and estimated, are around 10 lux, and not
close to 0 lux as expected, which could be a conse-
quence of the skyglow (light pollution) and the neigh-
bouring street lighting.

The second graph of figure 6 shows that external il-
lumination measurements reach over 20,000 lux (near
80,000 lux estimated) in the first 6 validation days' data
(June and September), which is reasonable for this peri-
od of the year. However, shorter intervals of sensor
saturation appear in days 4 to 6 (September), due to the
shorter intervals of daylight, which is also reflected in
lower estimated peak illuminances (up to 40,000 lux).
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Figure 6: llluminance model validation; first graph shows
the comparison of the measured (black line) and
model simulated (grey line) indoor illuminances
for 12 different days (days 1-3: June, days 4-6:
September, days 7-9: December, days 10-12:
March); second graph shows the measured
external illuminances with reconstruction; third
graph shows the position of the blinds and the
lights' status, respectively; fourth graph shows
the illuminance estimation error (dashed vertical
lines show the mean absolute error interval).
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Furthermore, individual occurrences of illuminance
below 20,000 lux suggest partial cloudiness or incoming
thunderstorms (i.e., day 1). The last 6 validation days'
data (December and March) mainly exhibit illuminances
below 20,000 lux, typical for the winter and spring
seasons. Days 6, 11 and 12 suggest sunny weather with
partial cloudiness (day 12), while days 8 to 10 suggest a
full overcast or all-day fog, which is typical for this time
of the year.

The fourth graph of figure 6 shows the error between
the measured and the model-predicted illuminances.
Individual error spikes between the measured and the
simulated data, visible at days 1-6, 11 and 12, reaching
up to approximately 150 lux can be observed. The
spikes mostly occur at peak daylight, when the external
illuminance is the highest, which implies that significant
deviations between the actual and the reconstructed
illuminances occur. Namely, the reconstructed illumi-
nance is a smooth curve, neglecting the occurrence of
individual clouds, which rapidly decrease the measured
illuminances and cause fast illuminance fluctuations.

The problem is not a flaw of the presented method,
but occurs solely due to the external illuminance sensor
limit and its reconstruction and can easily be avoided
using an illuminance sensor with a limit above 100,000
lux, which allows proper measurements of the illumi-
nances above 20,000 lux. On average, the error between
the measured and the estimated illuminances (mean
absolute error - MAE) is approximately 25 lux (dashed
vertical lines), which can be considered as a good model
approximation of the real data. Furthermore, the root-
mean-square error (RMSE) and the mean-bias error
(MBE), as two of the measures of estimation reliability,
are 12.60 % and 7.76 %, respectively, and suggest the
satisfactory reliability of the fuzzy estimator (RMSE
lower than 35 % and MBE lower than 15 %) [23].

Based on the presented comparison between the
measured and the estimated indoor illuminances and the
error measures (MAE, RMSE and MBE), the validation
of the model can be considered as successful. The study
has shown that the presented fuzzy black-box approach
can be used as a satisfactory approximator for the in-
door illuminance conditions in buildings.
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4 Conclusion

The paper presents a fuzzy black-box modelling ap-
proach to estimating the illuminance of an indoor envi-
ronment. The model is used to estimate the illuminance
level at a certain point on a surface, given the required
input values, and is easy to design and implement. The
method uses real environment measurements, such as
external illuminance, global and diffuse solar radiations,
blinds' position, lights' status and indoor illuminance, in
order to define the relations and obtain the parameters
of the model.

After the model is parameterized using the particular

input/output measurements of interest, simulated or
otherwise acquired input data can be used, replacing the
actual measurements if desired. The study has shown
that a relatively simple fuzzy structure can be used in
order to estimate the indoor illuminance at a particular
spot. Since the fuzzy approach is based on simple math-
ematics and the model's structure only incorporates
three membership functions per input and three fuzzy
rules, the estimation of the indoor illuminance is very
fast, allowing the use of the model in broader online or
offline environments. Furthermore, low estimation er-
rors (MAE = 25 lux, RMSE = 12.60 %, MBE = 7.76 %)
suggest a satisfactory reliability for the proposed esti-
mator.

The fuzzy black-box approach has its advantages
and flaws, when compared to other similar methods,
which need to be considered when deciding for the
appropriate illuminance-estimation method. Briefly, the
advantages of such an approach are the ease of model
design and parameterisation, an accurate estimation, the
mathematical simplicity, a quick calculation and the fact
that only limited knowledge of the process is needed.
Since the fuzzy model is parameterized from the meas-
ured data, the model's structure can also be used at dif-
ferent latitudes, different building orientations, window
sizes, indoor photometric and geometric characteristics,
etc., but only if the data is available to properly parame-
terize the model.

This claim has not been experimentally validated;
however, following the essence of the black-box ap-
proach, i.e., to define a relation between the model's
inputs and outputs without extensive knowledge about
the background to the problem, but only possessing the
required input/output data, the claim is reasonable.
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While the proposed approach has certain advantages
over other methods, it also has some general flaws,
which mainly originate from the need for measure-
ments. A fair number of measurements, in as many real
situations as possible, are needed in order to obtain a
robust and versatile model that covers a broad range of
climatic conditions (external illuminance, solar radia-
tion) and other influential variables (blinds, lights).
Moreover, the proposed approach is able to estimate the
illuminances for only one position; thus, if the illumi-
nance levels of different positions in a room are re-
quired, measurements from multiple illuminance sen-
sors should be obtained and used to train a multiple-
output fuzzy model.

During the study it was discovered that, depending
on the desired model versatility for different conditions,
measurements for at least a few days (3-5) are needed in
order to parameterize the model to satisfactorily esti-
mate the illuminance for similar inputs. If estimations
for a broader range of inputs are needed, at least 15 days
of data are required. In order to obtain the results as
shown in this paper, 30 days of data for different climat-
ic conditions should be used. The study revealed, that
the model performs surprisingly well even if the training
data is obtained only during the summer (due to higher
external illuminances and solar radiations) and the mod-
el is used for estimations in the other three seasons, i.e.,
training data: 15 consecutive days in July, validation
data: 10 consecutive days in January, yields: MAE = 35
lux, RMSE = 18.1 %, MBE = 12.2 %. Using a method
in this manner, a relatively small amount of model-
training data is needed, which can be obtained quickly
in exchange for a slightly lower accuracy of the model.

The black-box fuzzy model for indoor illuminance
estimation, as presented here, is not primarily intended
to be used as a stand-alone application, although it can
be, but to be included in broader test environments,
useful for a variety of studies, for instance: building
automation, living comfort, energy conservation, control
design, etc. Since such studies are practically impossible
to perform on real systems, due to varying weather
conditions and almost no repeatability, a combination of
different dynamic models (thermal, visual and air quali-
ty) and simulation procedures is the most frequently
used approach.

Therefore, the use of a simple illuminance model of
sufficient accuracy allows quick and repeatable testing
of the particular methods. Since the model is reliable
and allows for a quick estimation of the illuminance, it
can also be used in a similar way to the model presented
by Lindelof [17], i.e., as a model-based control ap-
proach using embedded controllers.
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Vice president M. Mujica Mota, m.mujica.mota@hva.nl
Treasurer M. Mujica Mota, m.mujica.mota@hva.nl
Secretary P. M. Scala, p.m.scala@hva.nl

Repr. ELROSIM M. Mujica Mota, m.mujica.mota@hva.nl
Edit. SNE/Web M. Mujica Mota, m.mujica.mota@hva.nl
Last data update June 2016

FRANCOSIM - Société Francophone de Simulation

FRANCOSIM was founded in 1991 and aims to the pro-
motion of simulation and research, in industry and aca-
demic fields.
#=7 djouani @u-pec.fr
P4 FRANCOSIM /Y skandar Hamam

Groupe ESIEE, Cité Descartes,

BP 99, 2 Bd. Blaise Pascdl,

93162 Noisy le Grand CEDEX, France

FRANCOSIM Officers
President Karim Djouani, djouani@u-pec.fr
Treasurer Francois Rocaries, f.rocaries@esiee.fr
Repr. EUROSIM Karim Djouani, djouani@u-pec.fr
Edit. Board SNE  Karim Djouani, djouani@u-pec.fr

Last data update December2012
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HSS — Hungarian Simulation Society

The Hungarian Member Society of EUROSIM was estab-
lished in 1981 as an association promoting the exchange
of information within the community of people involved
in research, development, application and education of
simulation in Hungary and also contributing to the en-
hancement of exchanging information between the
Hungarian simulation community and the simulation
communities abroad. HSS deal s with the organization of
lectures, exhibitions, demonstrations, and conferences.
— www.eurosim.info

#=7 javor@eik.bme.hu

P HSS/ Andrés Javor,

Budapest Univ. of Technology and Economics,
Sztoczek u. 4, 1111 Budapest, Hungary

HSS Officers

President Andras Javor, javor@eik.bme.hu
Vice president  Gabor Sz(ics, szucs@itm.bme.hu
Secretary Agnes Vigh, vigh@itm.bme.hu

Repr. EUROSIM  Andrés Javor, javor@eik.bme.hu
Deputy Gabor Sz(cs, szucs@itm.bme.hu

Edit. Board SNE Andras Javor, javor@eik.bme.hu

Web EuroSIM Gabor Szics, szucs@itm.bme.hu
Last data update March 2008

ISCS — Italian Society for Computer
Simulation

The Italian Society for Computer Simulation (ISCS) isa
scientific non-profit association of members from indus-
try, university, education and several public and research
institutions with common interest in all fields of com-
puter simulation.

— www.eurosim.info

#=7 Mario.savastano@uniina.it

< ISCS/ Mario Savastano,

c/o CNR - IRSIP,
ViaClaudio 21, 80125 Napoli, Italy

ISCS Officers
President
Vice president
Repr. EUROSIM
Secretary

M. Savastano, mario.savastano@unina.it
F. Maceri, Franco.Maceri@uniromaz2.it
F. Maceri, Franco.Maceri@uniromaz2.it

Paola Provenzano,
paola.provenzano@uniromaz2.it

Edit. Board SNE M. Savastano, mario.savastano@unina.it
Last data update December2010

LIOPHANT Simulation

Liophant Simulation is a non-profit association born in
order to be a trait-d'union among simulation devel opers
and users; Liophant is devoted to promote and diffuse
the simulation techniques and methodol ogies; the Asso-
ciation promotes exchange of students, sabbatical years,
organization of International Conferences, courses and
internships focused on M& S applications.

— www.liophant.org

#=7 info@liophant.org

< LIOPHANT Simulation, ¢/o Agostino G. Bruzzone,

DIME, University of Genoa, Savona Campus
viaMolinero 1, 17100 Savona (SV), Italy

LIOPHANT Officers

President A.G. Bruzzone, agostino@itim.unige.it
Director E. Bocca, enrico.bocca@liophant.org
Secretary A. Devoti, devoti.a@iveco.com
Treasurer Marina Masseimassei@itim.unige.it
Repr. ELROSIM  A.G. Bruzzone, agostino@itim.unige.it
Deputy F. Longo, f.longo@unical.it

Edit. Board SNE F. Longo, f.longo@unical.it
Web EuroSIM  F. Longo, f.longo@unical.it
Last data update June 2016

LSS — Latvian Simulation Society

The Latvian Simulation Society (LSS) has been founded
in 1990 as the first professional simulation organisation
in the field of Modelling and simulation in the post-
Soviet area. Its members represent the main simulation
centres in Latvia, including both academic and industri-
al sectors.

— briedis.itl.rtu.lv/imb/

=7 merkur @itl.rtu.lv

D4 LSS/ Yuri Merkuryev, Dept. of Modelling
and Simulation Riga Technical University
Kaku street 1, Riga, LV-1658, LATVIA

LSS Officers

President Yuri Merkuryev, merkur@itl.rtu.lv
Secretary Artis Teilans, Artis. Teilans@exigenservices.com
Repr. EUROSIM  Yuri Merkuryev, merkur@itl.rtu.lv
Deputy Artis Teilans, Artis.Teilans@exigenservices.com

Edit. Board SNE Yuri Merkuryev, merkur@itl.rtu.lv
Web EuroSIM  Vitaly Bolshakov, vitalijs.bolsakovs@rtu.lv
Last data update June 2016
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Information EUROSIM and EUROSIM Societies

KA-SIM Kosovo Simulation Society

Kosova Association for Modding and Simulation (KA —
SIM, founded in 2009), is part of Kosova Association of
Control, Automation and Systems Engineering (KA —
CASE). KA—CASE was registered in 2006 as non Profit
Organization and since 2009 is Nationa Member of
IFAC — International Federation of Automatic Control.
KA-SIM joined EUROSIM as Observer Member in
2011. In 2016, KA-SIM became full member.

KA-SIM has about 50 members, and is organizing the in-
ternationa conference series International Conference in
Business, Technology and Innovation, in November, in
Durrhes, Albania, and IFAC Simulation Workshops in
Pristina.

— www.ubt-uni.net/ka-case

#=7 ehajrizi@ubt-uni.net

< MOD&SIM KA-CASE;  Att. Dr. Edmond Hajrizi

Univ. for Business and Technology (UBT)
LagjjaKalabriap.n., 10000 Prishtina, Kosovo

KA-SIM Officers

President Edmond Hajrizi, ehajrizi@ubt-uni.net
Vice president  Muzafer Shala, info@ka-sim.com
Secretary Lulzim Beqiri, info@ka-sim.com
Treasurer Selman Berisha, info@ka-sim.com
Repr. ELROSIM  Edmond Hajrizi, ehajrizi@ubt-uni.net
Deputy Muzafer Shala, info@ka-sim.com

Edit. Board SNE Edmond Hajrizi, ehajrizi@ubt-uni.net
Web EuroSIM Betim Gashi, info@ka-sim.com
Last data update December 2016

PSCS — Polish Society for Computer
Simulation

PSCS was founded in 1993 in Warsaw. PSCS is a scien-
tific, non-profit association of members from universi-
ties, research ingtitutes and industry in Poland with
common interests in variety of methods of computer
simulations and its applications. At present PSCS counts
257 members.
— www.eurosim.info (www.ptsk.man.bialystok.pl)
#=7 leon@ibib.waw.pl
< PSCS/ Leon Bobrowski, c/o IBIB PAN,

ul. Trojdena 4 (p.416), 02-109 Warszawa, Poland

SNE 26(4) — 12/2016

PSCS Officers
President
Vice president

Leon Bobrowski, leon@ibib.waw.pl

Tadeusz Nowicki,
Tadeusz.Nowicki@wat.edu.pl

Z. Sosnowski, zenon@ii.pb.bialystok.pl

Zdzislaw Galkowski,
Zdzislaw.Galkowski@simr.pw.edu.pl

Leon Bobrowski, leon@ibib.waw.pl

Treasurer
Secretary

Repr. EUROSIM

Deputy Tadeusz Nowicki, tadeusz.nowicki@wat.edu.pl
Edit. Board SNE Zenon Sosnowski, z.sosnowski@pb.ed.pl
Web EuroSIM  Magdalena Topczewska

m.topczewska@pb.edu.pl
Last data update December2013

SIMS - Scandinavian Simulation Society

SIMS is the Scandinavian Smulation Society with
members from the four Nordic countries Denmark, Fin-
land, Norway and Sweden. The SIMS history goes back
to 1959. SIMS practical matters are taken care of by the
SIMS board consisting of two representatives from each
Nordic country (Iceland one board member).

SIMS Structure. SIMS is organised as federation of re-
giona societies. There are FinSim (Finnish Simulation
Forum), DKSIM (Dansk Simuleringsforening) and NFA
(Norsk Forening for Automatisering).

— WwWw.scansims.org

#=7 esko.juuso@oulu.fi

< SIMS/ Erik Dahlquist, School of Business, Society and
Engineering, Department of Energy, Building and Envi-
ronment, Maardalen University, P.O.Box 883, 72123
V asterds, Sweden

SIMS Officers

President Erik Dahlquist, erik.dahlquist@mdh.se
Vice president  Bernd Lie, lie@hit.noe
Treasurer Vadim Engelson,

vadim.engelson@mathcore.com
Repr. EuROSIM  Erik Dahlquist, erik.dahlquist@mdh.se
Edit. Board SNE Esko Juuso, esko.juuso@oulu.fi

Web EuroSIM Vadim Engelson,
vadim.engelson@mathcore.com
Last data update June 2016
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Information EUROSIM and EUROSIM Societies

((_~\
SLOSIM
)

SLOSIM - Slovenian Society for Simulation and Mod-
elling was established in 1994 and became the full
member of EUROSIM in 1996. Currently it has 90 mem-
bers from both Slovenian universities, institutes, and in-
dustry. It promotes modelling and simulation approach-
esto problem solving in industrial as well asin academ-
ic environments by establishing communication and co-
operation among corresponding teams.

SLOSIM - Slovenian
Society for Simulation
and Modelling

— www.slosim.si

#=7 dosim@fe.uni-lj.si

< SLOSIM / Vito Logar, Faculty of Electrical
Engineering, University of Ljubljana,
Trzaska 25, 1000 Ljubljana, Slovenia

SLOSIM Officers

President Vito Logar, vito.logar@fe.uni-lj.si

Vice president  BoZidar Sarler, bozidar.sarler@ung.si
Secretary Ales Beli¢, ales.belic@sandoz.com
Treasurer Milan Sim¢i¢, milan.simcic@fe.uni-lj.si
Repr. ELROSIM  B.Zupanci¢, borut.zupancic@fe.uni-lj.si
Deputy Vito Logar, vito.logar@fe.uni-lj.si

Edit. Board SNE B. Zupanéi¢, borut.zupancic@fe.uni-lj.si
Vito Logar, vito.logar @fe.uni-lj.si
BlaZ Rodi¢, blaz.rodic@fis.unm.si
Vito Logar, vito.logar@fe.uni-lj.si
Last data update December 2016

Web EuroSIM

UKSIM - United Kingdom Simulation Society

The UK Simulation Society is very active in organizing
conferences, meetings and workshops. UKSim holds its
annual conference in the March-April period. In recent
years the conference has always been held at Emmanuel
College, Cambridge. The Asia Modelling and Simula-
tion Section (AMSS) of UKSim holds 4-5 conferences
per year including the EMS (European Modelling Sym-
posium), an event mainly aimed at young researchers,
organized each year by UKSim in different European
cities.

Membership of the UK Simulation Society is free to
participants of any of our conferences and their co-
authors.

— www.uksim.org.uk
#=7 david.al-dabass@ntu.ac.uk

<1 UKSIM [ Prof. David Al-Dabass
Computing & Informatics,
Nottingham Trent University
Clifton lane, Nottingham, NG11 8NS
United Kingdom

UKSIM Officers

President David Al-Dabass,
david.al-dabass@ntu.ac.uk

Secretary A. Orsoni, A.Orsoni@kingston.ac.uk

Treasurer A. Orsoni, A.Orsoni@kingston.ac.uk

Membership chair G. Jenkins, glenn.|.jenkins@smu.ac.uk

Local/Venue chair Richard Cant, richard.cant@ntu.ac.uk

Repr. EUROSIM A. Orsoni, A.Orsoni@kingston.ac.uk

Deputy G. Jenkins, glenn.|.jenkins@smu.ac.uk

Edit. Board SNE A. Orsoni, A.Orsoni@kingston.ac.uk

Last data update March 2016

RNSS — Russian Simulation Society

NSS - The Russian National Simulation Society
(HanmonaneHoe O6miectBo MmutaronHoro Mogjenu-
posanus — HOUM) was officially registered in Russian
Federation on February 11, 2011. In February 2012 NSS
has been accepted as an observer member of EUROSIM,
and in 2015 RNSS has become full member.

— www.simulation.su

#=7 yusupov@iias.spb.su

> RNSS/R. M. Yusupov,

St. Petersburg Institute of Informatics and Automation
RAS, 199178, St. Petersburg, 14th lin. V.0, 39

RNSS Officers

President R. M. Yusupov, yusupov@iias.spb.su
Chair Man. Board  A. Plotnikov, plotnikov@sstc.spb.ru
Secretary M. Dolmatov, dolmatov@simulation.su

Repr. EUROSIM R.M. Yusupov, yusupov@iias.spb.su

Y. Senichenkov,
senyb@dcn.icc.spbstu.ru

B. Sokolov, sokol@iias.spb.su

Y. Senichenkov,
senyb@dcn.icc.spbstu.ru

Last data update June 2016

Deputy
Edit. Board SNE
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Information EUROSIM and EUROSIM Societies

EUROSIM OBSERVER MEMBERS

ROMSIM — Romanian Modelling and
Simulation Society

ROMSIM has been founded in 1990 as a non-profit so-
ciety, devoted to theoretical and applied aspects of mod-
eling and simulation of systems. ROMSIM currently
has about 100 members from Romania and Moldavia.
— Www.eurosim.info (www.ici.ro/romsim)
#7 sflorin@ici.ro
< ROMSIM / Florin Hartescu,
National Institute for Research in Informatics, Averescu
Av. 8 -10, 71316 Bucharest, Romania

ROMSIM Officers
President
Vice president

Florin Hartescu, flory@ici.ro
Marius Radulescu, mradulescu@ici.ro

Florin Stanciulescu, sflorin@ici.ro

Repr. EUROSIM

Deputy Marius Radulescu, mradulescu@ici.ro
Edit. Board SNE
Web EuroSIM Zoe Radulescu, radulescu@ici.ro

Last data update partly June 2016

MIMOS - Italian Modelling and
Simulation Association

MIMOS (Movimento Italiano Modellazione e Simula-
zione — Italian Modelling and Simulation Association) is
the Italian association grouping companies, profession-
als, universities, and research institutions working in the
field of modelling, simulation, virtual reality and 3D,
with the aim of enhancing the culture of ‘virtuality’ in
Italy, in every application area.

MIMOS became EUROSIM Observer Member in 2016
and is preparing application for full membership.

—  WWW.mimos.it

£=7 roma@mimos.it — info@mimos.it

> MIMOS — Movimento Italiano Modellazione e Simulazio-
ne; viaUgo Foscolo 4, 10126 Torino — via Laurentina
760, 00143 Roma

SNE 26(4) — 12/2016

MIMOS Officers

President Paolo Proietti, roma@mimos.it
Secretary Davide Borra, segreteria@mimos.it
Treasurer Davide Borra, segreteria@mimos.it

Repr. EUROSIM Paolo Proietti, roma@mimos.it

Deputy Agostino Bruzzone, agosti-
no@itim.unige.it

Paolo Proietti, roma@mimos.it

Edit. Board SNE

Last data update December 2016

CANDIDATES

Albanian Simulation Society

At the Department of Statistics and Applied Informatics,
Faculty of Economy, University of Tirana, Prof. Dr.
Kozeta Sevrani at present is setting up an Albanian
Simulation Society. Kozeta Sevrani, professor of Com-
puter Science and Management Information Systems,
and head of the Department of Mathematics, Statistics
and Applied Informatic, has attended a EUROSIM
board meeting in Vienna and has presented simulation
activitiesin Albania and the new simulation society.
The society — constitution and bylaws are being worked
out - will be involved in different international and local
simulation projects, and will be engaged in the organisa-
tion of the conference series ISTI — Information Sys-
tems and Technology. The society intends to become a
EUROSIM Observer Member.

#=7 kozeta.sevrani @unitir.edu.al

< Albanian Simulation Goup, attn. Kozeta Sevrani
University of Tirana, Faculty of Economy
rr. Elbasanit, Tirana 355 Albania

Albanian Simulation Society- Officers (Planned)

President Kozeta Sevrani,

kozeta.sevrani @unitir.edu.al
Secretary
Treasurer
Repr. EUROSIM Kozeta Sevrani,

kozeta.sevrani @unitir.edu.al
Edit. Board SNE Albana Gorishti,

albana.gorishti @unitir.edu.al
Majlinda Godolja,
majlinda.godolja@fshn.edu.al

Last data update December 2016
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EUROSIM 2019

9" EUROSIM Congress on Modelling and Simulation
. La Rioja, Logrofo, Spain, July 2019

UNIVERSIDAD
DE LA RIOJA

EUROSIM Congresses are the most important modelling and simulation events in Europe. For
EUROSIM 2019, we are soliciting original submissions describing novel research and
developments in the following (and related) areas of interest: Continuous, discrete (event) and
hybrid modelling, simulation, identification and optimization approaches. Two basic contribution
motivations are expected: M&S Methods and Technologies and M&S Applications. Contributions

from both technical and non-technical areas are welcome.

Congress Topics The EUROSIM 2019 Congress will include invited talks, parallel, special and
poster sessions, exhibition and versatile technical and social tours. The Congress topics of interest

include, but are not limited to:

Intelligent Systems and Applications

Hybrid and Soft Computing

Data & Semantic Mining

Neural Networks, Fuzzy Systems &
Evolutionary Computation

Image, Speech & Signal Processing

Systems Intelligence and
Intelligence Systems

Autonomous Systems

Energy and Power Systems

Mining and Metal Industry

Forest Industry

Buildings and Construction

Communication Systems

Circuits, Sensors and Devices

Security Modelling and Simulation

Bioinformatics, Medicine, Pharmacy
and Bioengineering

Water and Wastewater Treatment,
Sludge Management and Biogas
Production

Condition monitoring, Mechatronics
and maintenance

Automotive applications

e-Science and e-Systems

Industry, Business, Management,
Human Factors and Social Issues

Virtual Reality, Visualization,
Computer Art and Games

Internet Modelling, Semantic Web
and Ontologies

Computational Finance & Economics

Simulation Methodologies and Tools
Parallel and Distributed
Architectures and Systems
Operations Research
Discrete Event Systems
Manufacturing and Workflows
Adaptive Dynamic Programming
and Reinforcement Learning
Mobile/Ad hoc wireless
networks, mobicast, sensor
placement, target tracking
Control of Intelligent Systems
Robotics, Cybernetics, Control
Engineering, & Manufacturing
Transport, Logistics, Harbour, Shipping
and Marine Simulation

Congress Venue / Social Events The Congress will be held in the City of Logrofio, Capital of La
Rioja, Northern Spain. The main venue and the exhibition site is the University of La Rioja (UR),
located on a modern campus in Logrofio, capital of La Rioja, where 7500 students are registered.
The UR is the only University in this small, quiet region in Northern Spain. La Rioja is where the
Monasteries of San Millan de la Cogolla, cradle of the first words written in the Spanish language,
are situated, sites included in UNESCO’s World Heritage List in 1996. Of course, social events will
reflect this heritage — and the famous wines in la Rioja.

Congress Team: The Congress is organised by CAE CAE-SMSG, the Spanish simulation society,

and Universidad de la Rioja.

Info: Emilio Jiménez, EUROSIM President, emilio.jimenez@unirioja.es

Juan Ignacio Latorre, juanignacio.latorre@unavarra.es

www.eurosim.info



A modern approach to

modeling and simulation

&2¢ MapleSim

With MapleSim, educators have an
industry-proven tool to help bridge
the gap between theory and practice.

e MapleSim illustrates concepts, and
helps students learn the connection
between theory and physical behavior

e A wide variety of models are available
to help get started right away

s
" ey i
i eh MapleSim is built on Maple, which combines
P . "_i:r the world’s most powerful mathematical
i s computation engine with an intuitive, “clickable”
- user interface.

To learn more about how you can reinforce engineering concepts
using a combination of theory, simulation, and hardware, view this webinar.

www.maplesoft.com/SNEWebinar

Contact us: +49 (0)241/980919-30
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