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Abstract. Lighting conditions in buildings and efficient
use of solar energy are a subject of considerate attention
in order to provide sufficient living comfort and to re-
duce the energy use. For this reason numerous methods
and techniques, practical and theoretical, have been
developed. In this paper a theoretical approach to mod-
elling of the indoor lighting conditions is proposed,
based on fuzzy black-box modelling. The presented
model is able to estimate indoor illuminance levels as its
outputs, by using measured external conditions as its
inputs. The model can be used to study the influence of
both controllable and uncontrollable variables to the
indoor lighting conditions, such as weather, time of the
year, blinds position, electric lighting and others. Fur-
thermore, using the above model studies on control
design can be performed in order to obtain algorithms
for maximal use of the solar energy and to minimize the
energy consumption. The study has shown that a fuzzy
illuminance model can estimate the indoor illuminance
levels comparable to the measured data. Small error
measures show that similar modelling approach can be
used in order to integrate the proposed model into other
environments and can further be used for simulations
on indoor lighting comfort, control design or model-
based control.

Introduction

Indoor lighting conditions and the efficient use of solar
energy have become very important in recent decades,
both in terms of overall living comfort [1, 2] and ener-
gy-efficient buildings [3, 4, 5, 6].

A summary of the research carried out to date in the
area of buildings' energy efficiency, buildings' energy
performance and buildings' processes modelling can be
found in the excellent review paper by Foucquier et al.
[7]. Furthermore, sufficient daylight conditions have
been proven to have a beneficial effect on human health
[8]. Numerous approaches to controlling indoor-
illuminance conditions have been proposed, most of
which attempt to either achieve constant indoor-
illuminance levels, so as to provide sufficient living
comfort, or to maximize the use of solar energy, while
still providing acceptable lighting conditions [9, 10, 11,
12, 13]. Together with the modelling of light flux, in-
door light intensities and surface illuminances, which
usually represent the basis for control design techniques,
have also been the subject of much attention. Further-
more, many methods exist that are able to provide ap-
proximate illuminance-level prediction in a certain
position in a room, given its geometry, global orienta-
tion, the position of the sun, the surface characteristics
and/or the weather conditions/measurements [14, 15,
16]. Moreover, a study performed by Lindelof [17]
proposes a fast daylight model, able to obtain indoor
illuminances as a linear combination of the external
global and diffuse radiations, validated using the Radi-
ance model, which can be used as a replacement for the
real system of embedded controllers. Similarly, availa-
ble software tools, i.e., Radiance, Daysim, Skyvision
([18, 19, 20]) and many others, are also able to calculate
more-or-less accurate illuminance levels for a given
position in a room; however, significant knowledge of
the modelled system (complete geometric and photo-
metric characteristics of the room, inventory, windows,
blinds, lights, etc.) and the software itself are needed, in
order to ensure accurate results. A lot of the existing
approaches rely on known mathematical daylighting
concepts and thus try to describe the physical relations
between the input and output variables.
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If the measurements of the real environmental condi-
tions are available, a black-box approach to the calcula-
tion of the indoor illuminance can be introduced as one
of the modelling possibilities. Black-box models have
proved to be a useful tool for the modelling of processes
whose characteristics, relations and dynamics are not
exactly known or are harder to model with conventional
approaches.

The objective of this study is to propose a black-box
approach to indoor-illuminance estimation by using a
fuzzy inference model. The proposed methodology
results in the development of a model that describes the
relations between its inputs: horizontal unobstructed
illuminance (external illuminance), global and diffuse
solar radiations, the positions of the blinds and the status
of the lights; and its output: the estimated indoor illumi-
nance. The method is, from the input/output point of
view, similar to some existing methods, i.e., Lindelof
[17]; however, the methodological approach between the
proposed and the existing methods is entirely different.

One of the main advantages of the proposed method
is the simple design and parameterisation of the model,
which does not require any knowledge about the mod-
elled system, since the model's parameters, which define
the input/output relations, inherit the room's characteris-
tics, implicitly defined in the obtained measurements.
Meaning that the room's characteristics, such as: geome-
try, indoor surfaces' reflectances, blinds' reflectances,
quantity, sizes and positions of the windows, lights and
furniture; and also the position of the indoor illuminance
sensor, reflect in the measured indoor illuminance.
Moreover, a change in either the room characteristics or
the position of the sensor, if sufficiently large, also
affects the measured value. After the model is parame-
terized (trained) and validated using the particular in-
put/output measurements of interest, simulated or oth-
erwise acquired input data can be used, replacing the
actual measurements. The inputs defining the blinds'
positions and the lights' status either need to be prede-
termined, adjusted manually or by means of the control-
ler. Since the method uses measurements instead of
physical characteristics in order to define the relations
of the model, programming skills and the effort to man-
ually design the room interior are not needed.

The proposed structure of the fuzzy models is very
simple (5 inputs, 1 output, 3 Gaussian membership
functions per input and 3 fuzzy rules) and the fuzzifica-
tion/defuzzification procedures are simple vector multi-
plications.
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The simplicity of the model is reflected in the fact
that it is a fast model, with short evaluation times, which
facilitates its inclusion in other applications or control
algorithms. Finally, even though the model's structure is
simple, the validation results have very accurate estima-
tions in comparison with the measurements.

Although the proposed methodology has advantages,
the fuzzy approach also has some drawbacks, which
need to be considered when adopting the concept. In
contrast to methods based on the physical modelling of
the daylighting processes and pre-programmed algo-
rithms, which normally require only the input part of the
data in order to obtain the output, the fuzzy approach
requires both the input and the output part of the data in
order to parameterize the model using an automated
training procedure. After the model is parameterized,
only the input data is required. Moreover, since the
model is based on measured data, which defines the
room's characteristics, the calculation of the indoor
illuminance under different conditions (e.g., different
geometry, reflectances, sensor positions, etc.) needs a
re-training of the model with new measurements. From
this point of view, other tools like Radiance outperform
the proposed method, since they are able to calculate a
more-or-less accurate indoor illuminance for an arbitrar-
ily positioned surface [23, 24].

The purpose of the study is not to propose a specific
model that would represent a general solution for all
possible situations (like Radiance, for instance), but to
propose a simple methodology for how to obtain a mod-
el for a particular environment, where the model is
characterized as fast, accurate and easy to obtain, with-
out excessive knowledge of the particular problem.
Furthermore, since the in-depth studies on, e.g., building
automation, control design, energy conservation, living
comfort, etc., are practically impossible to perform on
real systems, due to varying weather conditions and
poor repeatability, the use of a relatively simple illumi-
nance model of sufficient accuracy in combination with
the simulation procedures allows fast and repeatable
testing of the designed algorithms or the model-based
control of real processes.

1 Indoor Environment

The following section gives a description of the indoor
environment, whose measurements are used as a basis
for the fuzzy black-box model's development and the
parameterisation.
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The indoor environment consists of a room with di-
mensions of 749 m x 493 m x 3.88 m (I x w x h), a
floor area of 38.80 m” and a volume of 163.40 m®, with
one outside wall that has a window, facing south-west
(rotated approximately 30° counter clockwise from the
east-west direction), where the outside wall is the long-
est wall. The room is located on the 4™ of 5 floors in a
building with no external obstacles that would obscure
the light flow through the window (lat: 46.045737, lon:
14.494851). The area of the window is 11.4 m* with
installed venetian blinds. The transmission of visible
light through the window is 80 %. The room character-
istics in terms of the photometry are the following: grey
floor (35 % reflectance), white ceiling (80 % reflec-
tance), white walls and beige furniture (average 65 %
reflectance). Figure 1 shows the floor plan of the partic-
ular room, with the marked positions of the sensors
(indoor and external illuminance, global and diffuse
solar radiation - placed on the roof of the building,
blinds' position), the window and the blinds.

The studied indoor environment is equipped with an
automation, supervisory control and data-acquisition
system (SCADA), which is composed of three distinct
parts: the sensor array, the process and supervision
level, and the data-acquisition level. The system
measures the necessary values, such as the global and
diffuse solar radiation, the external illuminance, the
position of the blinds (and other values not relevant to
this study) and controls the indoor-illuminance levels
(and other values not relevant to this study) using the
motorized venetian blinds and the electric lighting. The
sensor for external illuminance (Thermokon LI65 out-
door light sensor) is mounted vertically on the facade
beside the window and is capable of measuring the
illuminance in the range from 0 to 20,000 lux. The sen-
sors for the global and diffuse solar radiation (Kipp &
Zonen CM7B pyranometer and albedometer) are
mounted 2 floors higher, horizontally on the roof of the
building and are measuring the solar radiation in the
range 305 to 1,800 nm from 0 to 1,400 W/m?. The in-
door illuminance sensor (Thermokon LI0O4) is placed
horizontally on the workbench/desk (at a height of ap-
proximately 0.9 m) and is capable of measuring the
illuminance in the range from 0 to 2,000 lux. A com-
plete description of the automation system and the ap-
plied control algorithms can be obtained from the paper
by Kosir et al. [13].

T —

it
sensor Blinds

Figure 1: Floor plan of the modelled room, with the
marked positions of the sensors (indoor and
external illuminance, global and diffuse solar
radiation (placed on the roof of the building),
blinds' position), the window area and the
blinds.

The global and diffuse solar radiation are measured in
W/m?, the external illuminance in lux, while the blinds'
position can take values between 1 and 5 (1 - 0° slat
angle (vertical), 2 - 30° slat angle, 3 - 60° slat angle, 4 -
90° slat angle (horizontal) or 5 - blinds completely re-
tracted) and the lights' status can be either 0 (OFF) or 1
(ON).

2 Fuzzy Model

The concept of the black-box theory relies on under-
standing something entirely in terms of its function,
without knowing the background or the mechanisms
that enable this functionality. From this point of view,
machine-learning techniques, among which are also
fuzzy-inference systems, as one of the black-box ap-
proaches, can be considered as a mechanism of this
black box for the input-to-output mapping of the data
space. Meaning, if an appropriate structure of the sys-
tem is designed, an arbitrary nonlinear function between
the system's inputs and outputs can be described by the
fuzzy mechanism. Since the black-box approach has no
physical background to the particular process, the func-
tion describing the input-to-output space can be as close
to the real physical relation as the learning data can
describe it. Such a system can, therefore, be definitely
valid only in the vicinity of the mapped data space.
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This could be considered as one of the drawbacks of
the black-box approach, as if the learning-data input-
output relation is missing, the later incidence of such an
input could lead, but not necessarily, to incorrect output
estimations and should be experimentally validated.
However, if sufficient data is available, the black-box
approach has certain advantages over conventional
modelling approaches. As mentioned before, when the
structure of the black box is specified, its relations are
determined only according to the input and output data,
which eases the modelling for those who are, or are not,
familiar with the process. Physical relations, process
characteristics and other properties that could be hard to
describe mathematically are replaced by the proper
selection of the fuzzy structure (which can be obtained
experimentally) and only limited knowledge (usually
the order of the process) of the physical process is need-
ed to build the process model. In this manner, the proper
structure and parameterisation (pre-programmed auto-
mated learning procedures) of the fuzzy mechanism
ensures that the model's parameters, which define the
input/output relations, inherit the room's characteristics,
implicitly defined in the obtained measurements.

2.1 Structure of the model

The proposed black-box illuminance model is based on
a Takagi-Sugeno (TS) fuzzy-inference system (FIS)
[25] that was trained using real environment measure-
ments as the inputs and outputs. The model, in TS form,
approximates a nonlinear system by smoothly interpo-
lating affine local models [25]. Each local model con-
tributes to the global model in a fuzzy subset of the
space characterized by a membership function. The
affine TS model can be used to approximate any arbi-
trary function with any desired degree of accuracy [26,
27, 28]. The generality can be proven with the Stone-
Weierstrass theorem [29], which suggests that any con-
tinuous function can be approximated by a fuzzy-basis
function expansion [30].

Since the light-flow dynamics can be, from the
room-illuminance point of view, considered as infinitely
fast or instantaneous, the black-box model is regarded
as a static model from the modelling perspective. This
means that a change in either the global or the diffuse
light, the blinds' position or the lights' status has an
immediate effect on the change in the observed illumi-
nance, with no transitional dynamics, meaning that the
value of the current illuminance is completely inde-
pendent of the previous illuminance sample.
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The fuzzy model uses the external illuminance mul-
tiplied by the position of the blinds, the global and dif-
fuse solar radiation, the lights' status and the blinds'
position as the inputs and the indoor illuminance as the
output. The reason for using the multiplied external
illuminance and blinds position as the input is that better
estimation results can be achieved, in comparison to the
results with only external illuminance as the input,
which is a consequence of a prior virtual increase in the
external illumination (multiplied by a factor from 1 to
5), dependent on the position of the blinds. The multi-
plication, therefore, implies that more light is entering
the office when the position of the blinds is higher
(higher slat angle) or if the blinds are completely re-
tracted.

This implication allows better estimations of the in-
door illuminance by the fuzzy model, since the particu-
lar input already partially describes the relation between
the external illuminance and the blinds' position. How-
ever, the relation between the external illuminance, the
blinds position and the indoor illuminance is not linear,
as implied by the multiplication, but nonlinear, which is
later defined by the corresponding fuzzy membership
functions and the antecedent rules. The use of the global
and diffuse radiation as two of the inputs (besides the
external illuminance, the blinds' position and the lights'
status) is optional and leads to better estimation results,
in comparison with the results that have the global and
diffuse radiation measurements omitted.

The reason for using the blinds' position as one of
the inputs, despite the fact that it has already been used
in the multiplication with external illuminance, is that
even better estimation results can be achieved in com-
parison with the results that have this input omitted,
which could be a consequence of the nonlinearity of the
process caused by the blinds' reflectance, which is thus
represented more accurately. Figure 2 shows a schemat-
ic representation of the model.

Inputs

External illuminance
X Black box
illuminance model

|| Fuzzysystem |_
Takagi-Sugeno

Figure 2: Schematic representation of the fuzzy black-box
illuminance model.
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2.2 llluminance reconstruction

This section explains an optional method for simple
external illuminance reconstruction, which is necessary
when the illuminance sensor has a limit (in this case
20,000 lux). If sensors with higher limits (100,000 lux
or higher) are used to obtain the measurements, the
external illuminance reconstruction is not needed and
the measured external illuminance can be used as an
input to the fuzzy model directly.

Knowing that during sunny summer days the exter-
nal illuminance can go above 100,000 lux, the missing
(saturated) data needs to be reconstructed in order to
achieve better estimations of the calculated value. As
the fuzzy model also uses the global and diffuse solar
radiations (among others) as its inputs, it is able to suf-
ficiently well predict the indoor illuminance levels, even
when the external illuminance goes above the sensor's
limit (20,000 Iux) and its value is not reconstructed;
however, estimations during peak daylight are less accu-
rate. The reconstructed signal is far from being equal to
the actual illuminance levels; however, according to the
validation results presented, an approximate estimation
of the external illuminance suffices. Since the daily
illuminance trend follows approximately the same
shape, it can be approximately reconstructed according
to the total saturation time of the external illuminance
sensor, as given in the equation 1:

tsat = tena — tstart (1)

Greconstruct (tstart : tend)

=15

. 2 .
x 104\/(_(llnspace(_tsatr tsat)) + tsatz)(llnspace(_tsatl tsat) + tsat)
2tq;

Qi = Giu + Greconstructed

where tgyt and teng represent the beginning and the end
of the sensor saturation in hours, tg represents the over-
all length of the saturation in hours, Qrecongtruct F€presents
the reconstructed illuminance signal to be added to the
measured illuminance signal in lux, Qy represents the
external illuminance signal in lux and the command
linspace(a,b) represents a vector of linearly spaced
values between a and b.

Figure 3 shows the comparison between the meas-
ured and the reconstructed external illuminance, as
obtained by equation 1 for a part of the training data (5
days in early August), where the sensor reaches its up-
per limit.

x10

i Measured
sk " — — — Reconstructed |{

|

External illuminance [lux]

Day
Figure 3: Comparison between the measured and the

reconstructed external illuminance for 5 days in
early August.

As can be seen in figure 3 the measured external illumi-
nance is saturated at 20,000 lux for several hours around
midday, while the reconstructed illuminance reaches up
to almost 90,000 lux, which seems reasonable for sunny
summer days. Equation 1 and the corresponding results
are obtained experimentally, without any physical back-
ground and are not validated nor taken from any other
source, but merely a rough estimation of what the exter-
nal illuminance should be like. If the illuminance sensor
has a limit that is high enough, such an estimation is not
needed.

2.3 Parameterisation of the model

The parameterisation of the fuzzy model, also known as
the training, was carried out for 1 month of different
measurements with a sample time of 15 s. The data was
chosen in a manner that covered all four seasons and as
many real-world situations as possible, i.e., sunny,
cloudy, foggy weather, different sun azimuths and ele-
vations, quick illuminance changes due to partial cloud-
iness or incoming thunderstorms, operation of lights,
shading, etc. Shorter or longer periods of measurement
data can be used to train the model; however, using less
training data results in a less versatile and robust model,
which is sufficiently accurate only for similar condi-
tions. On the other hand, using more training data re-
sults in a more versatile and robust model; however,
extended data only increases the model's performance
by a smaller amount. The fuzzy model uses three data
clusters for each input and the Gaussian membership
functions.
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An adaptive, neuro-fuzzy, hybrid learning algorithm
(ANFIS), as implemented in the Matlab environment,
was used for the model training.

Figure 4 shows a part (5 days in early August) of the
input data (otherwise 30 days) that was used for the
model training, including the external illuminance, the
global and diffuse solar radiation, the blinds' position
and the lights' status.
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Figure 4: A part (5 days in early August) of the input data
for the model training, including the
reconstructed external illuminance (upper
panel), the global and diffuse solar radiation
(middle panel), the lights' status and the blinds’
position (lower panel).

As is clear from figure 4, for the selected days, the
global and diffuse radiation take values between 0 and
900 W/m>, the external illuminance between 0 and more
than 20,000 lux (reconstructed above 20,000 lux as
shown in figure 3), the blinds' position can be in the
range from 1 to 5 and the lights' status can be either 0 or
1, as already described.
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3 Results

Using real measurements, the model was trained using
an ANFIS training algorithm. Figure 5 shows the shape
and distribution of the trained-model membership func-
tions for each input. The membership functions, which
characterize the input-output space, define the effect of
a given input value on the computed output value. Since
the presented model has five different inputs and three
data clusters, each input has three membership functions
with different centres and kurtosis.

o o o o
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Degree of membership
Degree of membership
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Figure 5: Shape and distribution of the fuzzy membership
functions on all five inputs for all three data
clusters as obtained by the ANFIS training
algorithm.

Figure 5 shows the shape and the distribution of the
membership functions, which contribute to the value of
the output, i.e., the indoor illuminance level, which is
obtained using the following equations:

out; = [Qiusbzindsdiu—pngobflgzob—pQdifCldif—p

StigntsCliights—1) SpiinasClprinas—1] X
[0.0002238,—0.2234, 2.091,453.3, 182.4]T
373.1 )

out; = [qiuSpiinasClin-2, qglobClglob—Z' qdifCldif—Z'

StigntsCliights—2 SpiinasClprinas—2] X
[0.002637,0.3512,1.361,—99.01, —16.13]T
168.1 (3)

outs = [qiuSpiinasClin-3 qglobClglob—SJ QdifCldif—3r

SiigntsCliights—3» SpiinasClpiina-3] X
[0.01307,—0.8077,1.146,128.5, —1.442]T +
19.17 “4)
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where ¢ represents the external illuminance, Syinds
represents the blinds' position, Qg and Qg represents
the global and diffuse solar radiation, Signs represents
the lights' status and cly, (X - correspondent input, n -
cluster number) represents the degree of membership
(from 0 to 1) of the given input to the corresponding
cluster. Finally, the indoor illuminance @, is obtained
using the following equation:

)

The membership functions shown in figure 5 and the
fuzzy rules described by equations 2 to 5 define the so-
called mapping of the input-output data space. General-
ly, each input contributes to the combined output ac-
cording to the corresponding membership functions, its
centre position and kurtosis and the equations 2 to 5.

Figure 6 shows the validation of the model by com-
paring the measured and model-estimated indoor illu-
minances for 12 different days (days 1-3: June, days 4-
6: September, days 7-9: December, days 10-12: March),
covering different solar positions and climatic condi-
tions. The model was validated using the data from
different days than were used for the model training.

As can be seen in the first graph of figure 6 the in-
door illuminance levels obtained with the fuzzy model
in general correspond to the measured illuminance lev-
els. The indoor illuminance measurements during the
periods of daylight are approximately limited to a range
from 400 to 1,600 lux and are a consequence of the
external illuminance conditions, the position of the
blinds and the status of the lights. Lower indoor-
illuminance values occur during the morning and early
afternoon, while these values are higher later in the day,
which is a direct consequence of the room's orientation
(direct sunlight to the window area appears in the late
afternoon, around 6pm). The illuminances at night, both
measured and estimated, are around 10 Iux, and not
close to 0 lux as expected, which could be a conse-
quence of the skyglow (light pollution) and the neigh-
bouring street lighting.

The second graph of figure 6 shows that external il-
lumination measurements reach over 20,000 lux (near
80,000 lux estimated) in the first 6 validation days' data
(June and September), which is reasonable for this peri-
od of the year. However, shorter intervals of sensor
saturation appear in days 4 to 6 (September), due to the
shorter intervals of daylight, which is also reflected in
lower estimated peak illuminances (up to 40,000 lux).

Qin = Gout1 t Qoutz + Gouts
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Figure 6: llluminance model validation; first graph shows

the comparison of the measured (black line) and
model simulated (grey line) indoor illuminances
for 12 different days (days 1-3: June, days 4-6:
September, days 7-9: December, days 10-12:
March); second graph shows the measured
external illuminances with reconstruction; third
graph shows the position of the blinds and the
lights' status, respectively; fourth graph shows
the illuminance estimation error (dashed vertical
lines show the mean absolute error interval).
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Furthermore, individual occurrences of illuminance
below 20,000 lux suggest partial cloudiness or incoming
thunderstorms (i.e., day 1). The last 6 validation days'
data (December and March) mainly exhibit illuminances
below 20,000 lux, typical for the winter and spring
seasons. Days 6, 11 and 12 suggest sunny weather with
partial cloudiness (day 12), while days 8 to 10 suggest a
full overcast or all-day fog, which is typical for this time
of the year.

The fourth graph of figure 6 shows the error between
the measured and the model-predicted illuminances.
Individual error spikes between the measured and the
simulated data, visible at days 1-6, 11 and 12, reaching
up to approximately 150 lux can be observed. The
spikes mostly occur at peak daylight, when the external
illuminance is the highest, which implies that significant
deviations between the actual and the reconstructed
illuminances occur. Namely, the reconstructed illumi-
nance is a smooth curve, neglecting the occurrence of
individual clouds, which rapidly decrease the measured
illuminances and cause fast illuminance fluctuations.

The problem is not a flaw of the presented method,
but occurs solely due to the external illuminance sensor
limit and its reconstruction and can easily be avoided
using an illuminance sensor with a limit above 100,000
lux, which allows proper measurements of the illumi-
nances above 20,000 lux. On average, the error between
the measured and the estimated illuminances (mean
absolute error - MAE) is approximately 25 lux (dashed
vertical lines), which can be considered as a good model
approximation of the real data. Furthermore, the root-
mean-square error (RMSE) and the mean-bias error
(MBE), as two of the measures of estimation reliability,
are 12.60 % and 7.76 %, respectively, and suggest the
satisfactory reliability of the fuzzy estimator (RMSE
lower than 35 % and MBE lower than 15 %) [23].

Based on the presented comparison between the
measured and the estimated indoor illuminances and the
error measures (MAE, RMSE and MBE), the validation
of the model can be considered as successful. The study
has shown that the presented fuzzy black-box approach
can be used as a satisfactory approximator for the in-
door illuminance conditions in buildings.
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4 Conclusion

The paper presents a fuzzy black-box modelling ap-
proach to estimating the illuminance of an indoor envi-
ronment. The model is used to estimate the illuminance
level at a certain point on a surface, given the required
input values, and is easy to design and implement. The
method uses real environment measurements, such as
external illuminance, global and diffuse solar radiations,
blinds' position, lights' status and indoor illuminance, in
order to define the relations and obtain the parameters
of the model.

After the model is parameterized using the particular

input/output measurements of interest, simulated or
otherwise acquired input data can be used, replacing the
actual measurements if desired. The study has shown
that a relatively simple fuzzy structure can be used in
order to estimate the indoor illuminance at a particular
spot. Since the fuzzy approach is based on simple math-
ematics and the model's structure only incorporates
three membership functions per input and three fuzzy
rules, the estimation of the indoor illuminance is very
fast, allowing the use of the model in broader online or
offline environments. Furthermore, low estimation er-
rors (MAE = 25 lux, RMSE = 12.60 %, MBE = 7.76 %)
suggest a satisfactory reliability for the proposed esti-
mator.

The fuzzy black-box approach has its advantages
and flaws, when compared to other similar methods,
which need to be considered when deciding for the
appropriate illuminance-estimation method. Briefly, the
advantages of such an approach are the ease of model
design and parameterisation, an accurate estimation, the
mathematical simplicity, a quick calculation and the fact
that only limited knowledge of the process is needed.
Since the fuzzy model is parameterized from the meas-
ured data, the model's structure can also be used at dif-
ferent latitudes, different building orientations, window
sizes, indoor photometric and geometric characteristics,
etc., but only if the data is available to properly parame-
terize the model.

This claim has not been experimentally validated;
however, following the essence of the black-box ap-
proach, i.e., to define a relation between the model's
inputs and outputs without extensive knowledge about
the background to the problem, but only possessing the
required input/output data, the claim is reasonable.
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While the proposed approach has certain advantages
over other methods, it also has some general flaws,
which mainly originate from the need for measure-
ments. A fair number of measurements, in as many real
situations as possible, are needed in order to obtain a
robust and versatile model that covers a broad range of
climatic conditions (external illuminance, solar radia-
tion) and other influential variables (blinds, lights).
Moreover, the proposed approach is able to estimate the
illuminances for only one position; thus, if the illumi-
nance levels of different positions in a room are re-
quired, measurements from multiple illuminance sen-
sors should be obtained and used to train a multiple-
output fuzzy model.

During the study it was discovered that, depending
on the desired model versatility for different conditions,
measurements for at least a few days (3-5) are needed in
order to parameterize the model to satisfactorily esti-
mate the illuminance for similar inputs. If estimations
for a broader range of inputs are needed, at least 15 days
of data are required. In order to obtain the results as
shown in this paper, 30 days of data for different climat-
ic conditions should be used. The study revealed, that
the model performs surprisingly well even if the training
data is obtained only during the summer (due to higher
external illuminances and solar radiations) and the mod-
el is used for estimations in the other three seasons, i.c.,
training data: 15 consecutive days in July, validation
data: 10 consecutive days in January, yields: MAE = 35
lux, RMSE = 18.1 %, MBE = 12.2 %. Using a method
in this manner, a relatively small amount of model-
training data is needed, which can be obtained quickly
in exchange for a slightly lower accuracy of the model.

The black-box fuzzy model for indoor illuminance
estimation, as presented here, is not primarily intended
to be used as a stand-alone application, although it can
be, but to be included in broader test environments,
useful for a variety of studies, for instance: building
automation, living comfort, energy conservation, control
design, etc. Since such studies are practically impossible
to perform on real systems, due to varying weather
conditions and almost no repeatability, a combination of
different dynamic models (thermal, visual and air quali-
ty) and simulation procedures is the most frequently
used approach.

Therefore, the use of a simple illuminance model of
sufficient accuracy allows quick and repeatable testing
of the particular methods. Since the model is reliable
and allows for a quick estimation of the illuminance, it
can also be used in a similar way to the model presented
by Lindelof [17], i.e., as a model-based control ap-
proach using embedded controllers.
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