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Abstract. Evolution algorithms are optimization meth-
ods that mimic a process of the natural evolution. Their
stochastic properties result in a huge advantage over
other optimization methods, especially regarding solving
complex optimization problems. In this paper, several
types of evolutionary algorithms are tested regarding a
dynamic nonlinear multivariable system modelling and
control design. We have defined three problems: the first
one is the so-called grey box identification problem
where the characteristic of the system's valve is under
investigation, the second one is a black box identification
where the goal is a dynamic system’'s model develop-
ment using system’'s measurements data, while the third
one is a system’s controller design. The efficacy of solving
presented problems was compared to the usage of the
following optimization methods: genetic algorithms,
differential evolution, evolutionary strategies, genetic
programming, and a developed approach called AMEBA
algorithm. All methods have proven to be very useful for
grey box identification and design of a system'’s control-
ler, but AMEBA algorithm has also been successfully
used in a black box identification, where it generated a
corresponding dynamic mathematical model.

Introduction

In general, the evolutionary algorithms can be divided
into two major groups: parametrical and structural algo-
rithms. Parametrical algorithms evolve parameters,
while structural algorithms evolve structures or mapping
functions. For example, if we would have to design a
controller for a dynamic system, parametric algorithm
would demand to define parameters of the chosen con-
troller structure (very frequently a PID controller is used).

In contrast to parametrical algorithms, structural al-
gorithms do not require predefined form of the control-
ler, as they can evolve the whole controller through their
evolutionary process.

The most popular parametrical algorithms are genet-
ic algorithms (GA) [1][2], evolutionary strategies (ES)
[3], differential evolution (DE) [4] and others [5].

Most established structural algorithm is genetic pro-
graming (GP) that has multiple implementations from
the three-based implementation [6] to the grammatically
based implementation [7] and the evolutionary pro-
gramming that is directed into the evolvement of finite
state machines [8].

Evolutionary algorithms can be used also in the
complex field of the design of controllers of dynamic
systems, e.g. multivariable, non-linear, time-variant [9].

In this paper, the evolution of different models and
control strategies are designed and compared with the
usage of different evolutionary algorithms. From the
parametrical group the efficacy of GA, ES and DE is
illustrated, while from the structural group an algorithm
of tree based genetic programming and the Agent Mod-
elled Evolutionary Based Algorithm (AMEBA) are used
[10],[11]. Relative advantages and disadvantages have
been estimated regarding modelling and control design
of non-linear multivariable dynamic system of three
coupled thanks.

The paper is organized in the following way. In the
first section a short description of the three coupled
tanks system is given. In the second section a structure
of the system’s model and the corresponding controller
are specified. In the third and fourth sections the model-
ling and the control design results which were generated
using different evolutionary algorithms are presented
and compared. The result section is followed by the
description of AMEBA system toolbox that was used to
generate the results of AMEBA method [12]. At the
end, the conclusions and some ideas for the future work
are given.
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1 Three Coupled Tanks System

System of three coupled thanks is illustrated in Figure 1.
It consists of three identical cylindrical assembled water
tanks with cross area S, which are interconnected with
the pipes and two valves V| and V,, while the valve at
the output pipe is V3. Actuators of this system are two
water pumps that supply the first and the third tank with
water flows @ (t) and Dy,(t). Water levels in each
tank hy(t), hy(t), and hs(t) are measured with the corre-
sponding sensors. Level difference between the first and
the second tank generates water flow ®;(t) through the
valve V, and level difference between the second and
the third tank generates flow ®y4(t) through the valve V..
The output flow ®;,,(t) depends only on the water level
h;(t) and valve V; properties.
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Figure 1: System of three coupled tanks.

System of three coupled thanks represents a laboratory
device but for the testing we have used its model [13].

1.1 Model structure

During the phase of designing a model of certain dy-
namic system it is usually desired to include as much
knowledge of the system as possible. In such a way, we
have more chances of building a suitable model. Theo-
retical modelling approach enables model building on
the basis of the equilibrium equations which determine
system’s basic behaviour. For further model improve-
ment, additional nonlinear functions are needed which
describe different specific parts of the system. In the
first phase the system’s model can be presented with
three equilibrium equations which are described with
equations (1).

Dyp 1 (t) — P3(t) = S+ hy(t)
®3(t) — D4(t) = S hy(t) )
Dy (t) + Dy 5 (t) — Py (t) = S+ hs(b)
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Input flow rates are determined by the water pumps
which are controlled with the voltage signals u, and u,.
Water flows from the first to the second tank and from
the second to the third tank are given with the equations

2).
D3(t) = Ky Ry (t) — hp(2)
@y (t) = Ky hy(t) — ha(t)

These water flows depend on the water levels in the
tanks and the characteristics of the valves. These char-
acteristics are expected to be of the square root type.
From the experimental data it was established that static
characteristic of the valve V3 is not square root function
and so we have tried to estimate corresponding descrip-
tion by the so-called indirect identification method or
‘grey box identification’ [14]. Grey box identification is
a process in which we firstly gather measurements of

@)

the system’s behaviour, secondly we build a mathemati-
cal model and include all the data that we have into it.
Thirdly we try to estimate the missing parameters or
functions to the constructed model. Block diagram of
the chosen structure is illustrated in Figure 2.
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system structure.

Estimation of the characteristic of the valve V; is de-
fined optimization problem as the rest of the model had
been constructed using the equilibrium equations and
measured characteristics of the other parts. Optimization
process was minimizing the difference between re-
sponses of the model and measurements of the system
by adapting valve’s characteristic. The fitness function
used in this optimization process is presented by equa-
tion (3).

1=ijmm—w@m 3)

Fitness function is equal to the absolute sum of differ-
ence between responses of the model and corresponding
measurements.
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Measurements obtained for the identification process
consist of eight responses to the different input or exci-
tation signals. Six of them were used in the identifica-
tion process and two for the validation of the model.
One pair of the excitation signals and corresponding
responses is illustrated in Figure 3 and Figure 4.
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Figure 3: Input signals u,(t) and u,(t).
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Figure 4: Responses of the system to chosen input
signals.

From the presented responses, the cross couplings are
visible (each input influences both systems’ outputs
h,(t) and h,(t)). These cross couplings also prove that
the system is a multivariable one.

1.2 Controller design

Block diagram of system’s close loop operation is pre-
sented in Figure 5.

Nyrer (8) a(t) Uy (t vam(t)' > hy(t)
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Figure 5: Closed-loop system operation

Close loop system should maintain water levels in
the first and in the third tank at the corresponding refer-
ence values h,g1 and h,¢. Fitness function that is used in
the optimization process of the controller design is pre-
sented in equation (4).

hmmﬁmm+mwm+
4
m—mmﬁm®HWMWt

Fitness function represents a sum of the integrals of
errors € and e, (that represents difference between
actual water levels h; and hz and referenced values hyen
and hye) and integrals of the pumps activity U; and U,.
Both contributions are weighted with the weight W
The control system was tested with the usage of the
reference signals that are presented in Figure 6.
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Figure 6: Reference signals.

Controller must be able to control the systems water
levels in a way that is demanded by the step shaped
changes of the reference signals.

2 Modelling Results

Modelling results are divided into two groups. The first
group consists of the results obtained by the paramet-
rical evolutionary algorithms and the second group by
the structural evolutionary algorithms.

2.1 Parametrical evolutionary algorithms

Parametrical evolutionary algorithms can optimize only
parameters, so we have constructed a polynomial math-
ematical function with four parameters a;, a,, az, and a4
which should describe as good as possible the relation
between the water level h;(t) and output water flow
Din(t).

@, (t) = a;h3(0) + ah3(t) + azhs(t) +a,  (5)
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We have tested and compared three parametrical
methods GA, ES, DE. Optimization process was defined
for all methods identically in order to get comparable
results. Solutions have been evolved during 1000 gener-
ations and with the generation size of 30 individuals.
Results are presented in two ways. The first way is the
comparison of the quality of the model that was gener-
ated by each method and the second is the comparison
of the convergence of the used methods. Quality of
generated solutions is presented in Table 1.

Error identification Error validation

Met. [%] [%]
DE 1.77 3.27
ES 1.79 3.58
GA 1.88 4.57

Table 1: Evaluation of modelling results of parametrical
algorithms.

Error column represents a relative average deviation
from the identification signals of the system and valida-
tion column represents relative average deviation from
the validation signals. All results are quite similar,
which means that there is high probability that we have
found a global minimum of the proposed valve function.
Best algorithms are DE and ES that have managed to
generate 1% better result. Example of the system’s re-
sponses of the best model generated by the DE method
is presented in Figure 7.
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Figure 7: Comparison of measurements with the re-

sponse of the model generated by the DE

method.

We have compared also the convergence of the algo-
rithms and the results which represent the average con-
vergence of 10 optimization runs for each method are
presented in Figure 8.
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Figure 8: Average convergence of parametrical methods

Statistical analysis of the methods’ convergences shows
efficiency of each algorithm during the search of opti-
mal solution. DE has the fastest convergence and it
generates the best results.

2.2 Structural evolutionary algorithms

In addition to parametrical optimization also two struc-
tural algorithms, namely GP method based on trees and
AMEBA were tested. For the AMEBA algorithm addi-
tional test has been conducted. Test, where the model of
the whole system has been built (not just model of the
valve V3;) with the black box identification method as
the AMEBA algorithm can be used also for multi-input
multi-output systems.

Structural algorithms are capable of building system’s
structure automatically. Settings of the evolution were
the same for both methods which enable the comparison
of the results. For the GP, we have used addition, sub-
traction, multiplication, division, power and constant
types of nodes and for the AMEBA algorithm we have
used the same nodes’ types as for the GP with the use of
additional dynamic nodes like delay, integral, deriva-
tive, low pass filter and high pass filter. Results are
evaluated in Table 2.

Algorithm Error ident. [%] Error valid. [%]
GP 1.62 3.12
AMEBA valve 3.57 4.65
AMEBA full model 5.63 7.23

Table 2: Evaluation of modelling results when using
structural algorithms.

GP algorithm has generated the best solution and its tree
representation is presented in Figure 9.
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Figure 9: Solution generated with the GP method.
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Simplified solution of GP is presented in equation (6).
This is a polynomial function with two parts, the first
has rational number in the exponent and the other is a
linear one.

fos(£) = 2.086 h(t) + 5.023 h(t) ©6)

Result generated by the AMEBA algorithm is not as
good as the result obtained by GP and it is presented in
Figure 10.
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Figure 10: Graph representation of model of the valve
generated with AMEBA algorithm.

In Table 3 a legend is presented that shows colours of
different types of nodes assembling AMEBA algorithm
solutions.

Color Node Color Node
Input Amplification
Output Exponent

Low pass filter Delay
High pass filter Derivative

Multiply Integral

. Divide Add

Table 3: Color-legend of different types of nodes.

Valve function that was generated by the AMEBA
algorithm is presented in equation (7).

®@;,n(t) = —0.5 - 0.54(—0.8(hs(t)))"58 7

The result of the valve function generated with the
AMEBA algorithm is a nonlinear function. AMEBA
algorithm has successfully generated also a model of the
whole system with the process of black box identifica-
tion. We have used the same measurements for generat-
ing this model that were in use for the identification of
the valve. Model is represented in Figure 11. Model
generated with AMEBA algorithm is complex, full of
nodes of all types and feedback loops that represent
system dynamic properties.

® o)
e/ 9
o .Q ‘ 0
0 i o
. o .. ®
@ O : 0
<~ d o
' o Yo R
© e @ @
6] @ (@)

Figure 11: Graph representation of system's model
generated with the use of AMEBA algorithm.

3 Results of the Controller
Design

Results of designing control algorithm are also divided
into two groups: into a parametrical and a structural

group.

3.1 Parametrical evolutionary algorithms

Parametric methods usage demands a parametrically
defined problem so we constructed a controller that is
assembled with four proportional-integral (PI) control-
lers with 8 parameters to be optimized.

The proposed controller is a multivariable one with
two inputs (differences between desired and actual wa-
ter levels) and two outputs to drive water pumps. Con-
troller’s parameters to be optimized are described with
equations (8).

SNE 26(4) - 12/2016
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() = K,a(t) + K,-fa(t)dn

u, (t) pl1 p12 el(f) Kiyq i12 ey (t)
[llz(f)] [KpZI _uzz] [ez(f) Kiay |?2] f [ez(f)
el(t)] [hl rer () — hy(t)
*—’? (O [harer(t) = hs(t)

All 8 parameters are represented in two matrices K, and
Ki. Results calculated with the parametrical methods are
presented in Table 4.

Algorithm Error Energy used
DE 2.04% 35.9%
GA 2.04 % 36.5%
ES 2.48 % 35.3%

Table 4: Evaluation of controller optimization results
calculated with parametrical methods.

Results of all algorithms are very similar but the DE
method has ones again proven to be the best as it calcu-
lated the controller with the lowest error and minimum
estimated usage of energy.

3.2 Structural evolutionary algorithm

Structural evolutionary algorithms don’t need the con-
troller’s structure to be defined in advance in contrast to
parametrical methods. This group is capable to evolve
the structure as well as all the parameters automatically.
Results of two methods, GP an AMEBA, are presented
in Table 5.

Algorithm Error Energy used
AMEBA 15% 34.1%
GP 9.3% 35.5%

Table 5: Results of controllers generated by structural
evolutionary methods.

The solution which was generated by the GP method is
presented by equation (9).

uy (1) = e (22207 4oy (1) up(6) = uy(£) )

GP method didn’t generate a suitable solution as the
controller is not capable to follow corresponding refer-
ence signals. The solution generated by the AMEBA
algorithm is presented in Figure 12.
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Figure 12: Graph representation of controller generated
by the AMEBA algorithm.

Controller that was generated by AMEBA algorithm is
illustrated by equation (10). AMEBA algorithm generat-
ed a controller with the best performance.

ur(k) = Xo(k)
us(k) = 0,74(4e; + 0, 11{Xy(k) * Xa(k) *0,95(—0,87)(e2)))
Xo(k) = ez (10)
Xi(k) =0,34fLP(Xo(k))
Xa(k) = —0,2(—ey + 0,40 fILLP(Xo(k — 1)) + 0,08X,(k — 1))

4 Toolbox development

AMEBA algorithm is being developed also as a soft-
ware package with user friendly graphical interface. The
core development is being built in Java programming
environment that can be used also with Matlab, which
allows a very efficient support in simulation of dynamic
systems via Simulink. Graphical interface is also devel-
oped in Matlab due to its good graphical support.

Toolbox enables settings of the simulation environment
with the inclusion of Simulink model as it is shown in
Figure 13.

r - | -
B AMEBA toolbox =) e s
File Tools £l

Node [ Agenll Reproduction | General | Simulation
|~ Wodel select ]
This file must include s-Function block. (S-Function can be
generated from Tools menu and Generate s-function option)
Acc Files\template mdl [ Browse |
- Evolution run |
Number of generations Max gen.
Value of finess function 984,54
|
[_pouse | [ cancer |

Figure 13: Settings of simulation environment.
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The agent of AMEBA algorithm is implemented as

S-function so it can be included into the model as a
standard block. Toolbox enables control and monitoring
of the optimization process where it displays current
generation number and the value of the fitness function
of the best agent.
Toolbox enables settings of population properties like
size of population, size of reproductive population that
determines how many best agents will be given oppor-
tunity to reproduce, number of elite agents, and other
settings that determine the end of optimization process
like maximum number of generations and minimum
change in fitness function value (Figure 14).

[ B AME8A toolbax [F= ) P )

File Tools . |

Wde’ Ageﬂ!‘ Repmductlun. General | Simulation
Population setfings
Size of population 10
Size of reproductive population: 5

Number of eiite offsprings: 1

Evolution settings

Max number of generations: 10

Tolerance of fitness function 1

Fitness function settings.

Affect of cell size on fitness fun.: 0.001

Figure 14: General setting.

The number of inputs and outputs of an agent can be
defined together with the maximum number of nodes
that can be generated at the agent’s creation (Figure 15).

rl] AMEBA toolbox & = )

File Tools El

Nede| Agent | Reproduction | General | Simulation

Agent settings

Number of inputs: 1

Humber of outputs: 1

Maximum number of inital organels: 10

Figure 15: Agent settings.

Different types of nodes can be selected from which the
algorithm will chose and build agents. Each node has its
own settings that determine initial value of the nodes
parameter and steepness of change in case node mutates
(Figure 16).

[ B AMEBA toolbox =S e )

File Tools

Node | Agentl Repraduction | Generall Slmulatlonl

Y

Inttial range of parameters [10 10]

Range of parameters change: 2]

Figure 16: Node settings.

Selected nodes Unselected nodes
Constant - Time (event) -
_ D Exponential
Delay Integral
Sum Derivate
Multiplicate Power
Logical

=2 Comparison =

Nodes settings: Amplifire

Reproduction mechanisms can be set with their parame-
ter of probability. As agents are evaluated and selected
for reproduction the reproduction mechanism is ran-
domly selected and the probability parameter deter-

mines their possibility of being selected (Figure 17).

Figure 17: Reproduction settings.

B AMEBA toclbox =] = [
File Tools k]
[ Node | Agent| Reproduction | General | Simulation|
Selected reproductions Unselected reproductions.
Elite - -
Change nodes parameter B
addnode E
Remove node
Remove muttiple nodes.
Change edges source @ 2
Reproduction settings: Elite
Probability parameter: 10

Additional functionalities enable better usability of the
method such as saving and importing of all setting into
file for later use. With this option, also the initial popu-
lation can be imported which enables the inclusion of
certain knowledge of the solution into the optimization
problem. It is also possible to convert agent into math-
ematical equation to observe its structure. It can also
generate Matlab S-function file for the easier implemen-

tation in Simulink (Figure 18).

L -

B AMEBA toolbox B AMEBA toolbox

Tools File

Saveas luction | General | Simulation Mody  Generate optians file Simulation

Generate analitical solution
Import options =

Exit —“ Col Generate s-Function
‘ampiifire: Ampiifire
I == || foolr

Figure 18: Additions functionalities of Toolbox.
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5 Conclusions

The system of three coupled thanks was selected to
present the efficacy of three different approaches of the
usage of the evolutionary algorithms methods: the grey
box identification, the black box identification and the
controller design.

Parametrical evolutionary algorithms generated
good results for both modelling and control of the sys-
tem. Also, structural methods manage to generate good
solutions for both types of problems. In general, the
most important advantage of the structural algorithms in
comparison to the parametrical methods is the absence
of the need to define a suitable structure. This property
is especially important when dealing with more com-
plex systems with multiple inputs and outputs. With the
usage of AMEBA algorithm, we have managed to gen-
erate also a complete model of the system and we gen-
erated a system controller with the best performance.

Future work on AMEBA algorithm development
will be focused on optimization process as we are going
to explore the impact of various effects on the quality of
the solution and on the convergence rate of optimization
process like the effect of size of the population size,
suppression of the agents with large number of nodes,
using multiple environments at once and similar, of
course in comparison with other optimization approach-
es. Special attention will be devoted to the so called
smart optimization where additional knowledge from
chosen area can be taken into account to improve
searching efficacy. The AMEBA method is a work in
progress and the method will be available as an open
source project.
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