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Abstract. Accurate anticipation of the remaining use-
ful life (RUL) of a machine is becoming mandatory for
efficient exploitation of the asset and avoiding the un-
planned downtimes. This should be achieved without
extra investments in additional sensors and processing
power. In this paper we present an approach to the RUL
prediction of a shot blasting machine by using record-
ings from inexpensive vibrational sensors. The key idea
consists in (i) employing generalised Jensen-Rényi diver-
gence (JRD) as a measure of change in the vibrational
pattern and (ii) associating JRD with the abrasive wear
in rotor blades. It is essential to note that these two
show monotonic relationship. Hereupon, a simple hid-
den Markov model with stochastic inputs and JRD as out-
put is proposed. The hidden states of the model are up-
dated on-line bymeans of Kalman filter. Prediction of the
remaining useful life is done by executing Monte Carlo
simulations on the updated model and evaluation of the
first passage time of the JRD. The approach is success-
fully validated experimentally by running themachine up
to failure, hence allowing for naturally evolving wear pro-
gression and breakdown.

Introduction
Stable and anticipative condition of process equipment,

high availability and reliability, along with product

quality are key factors that allow companies to stay

competitive on the market. However, wear, material

stress and environmental factors cause equipment to

fail. The problem occurs if that happens unexpectedly,

since the consequence can be partial or total break-

down of a production line, destroyed equipment and

even catastrophes.

Migrating towards more cost effective condition-

based and predictive maintenance (instead of sticking

to the outdated concepts of reactive and periodic main-

tenance) has become a way to raise the overall process

performance and cost efficiency. To accomplish this

goal, systems for on-line and non-destructive condition

monitoring (CM) have to be employed to timely alert

about the onset and location of fault in the early stage

[1]. Indeed, the degradation of an asset usually goes

through a distinct incipient phase with some noticeable

indicators, which provide advanced warning about on-

set of failure. However, what the operators and main-

tenance people indeed want to know is when to stop

the machine and take accommodation actions. Reliable

estimate of the remaining useful life (RUL) becomes

indispensable.

In spite of significant advances in condition moni-

toring in the last decade in terms of methodology and

key enabling technologies, yet no massive use in indus-

trial sector has been witnessed to date [2]. There are

several reasons for that, including (i) (still) relatively

high cost of the design and commissioning, especially

when domain specific solutions have to be adopted and

(ii) the fact that traditional approaches require addi-

tional instrumentation (e.g. for rotational speed) to be

implemented hence rising the cost.

Compared to CM, predicting RUL is by far more

difficult problem. Only limited success has been

achieved in special cases like in aeronautics and defence

systems. The problem is notoriously demanding for

several reasons: (i) data about overall useful life from

similar items of equipment are seldom available, (ii)

knowledge about degradation, i.e. wear mechanisms is

incomplete and (iii) comprehensive knowledge of oper-

ating history, disturbances and past maintenance actions

is usually unavailable.

The objective of the design approach presented be-

low is to comply with the three main requirements: (i)

to come up with signatures sufficiently robust to varia-

tions in the operating conditions; (ii) to set up the alarm

threshold the required prior knowledge should be min-

imal (meaning that all the required information should
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be extracted from data in fault-free operation) and (iii)

to perform condition monitoring (CM) using minimal

number of sensors thus making the method both broadly

applicable and financially viable.

In this paper we propose an approach to the RUL

prognosis based solely on vibrational records. The idea

is to exploit the relationship between the degradation

phenomena in the material, the remaining life and char-

acteristic information patterns in measured signals. The

latter are obtained by statistical signal processing of

signals from vibrational sensors in a way to accom-

plish monotonous dependance with the level of ma-

chine degradation. Evaluation of the vibrational fea-

tures is based on statistical analysis of the envelope of

the generated vibration [3]. State of health of the ma-

chine is determined from change in the vibrational sig-

nature by calculating the "distance" between initial and

current signatures. That is achieved by evaluating the

generalised Jensen-Rényi divergence of the vibrational

features. Since the degradation is stochastic process,

we will exploit hidden Markov models to describe the

degradation phenomena. The states of the models are

updated on-line and then used to simulate propagation

of the future degradation and hence evaluate the proba-

bility density function of the remaining useful life.

The concept of RUL estimation above is applied to

a shot blasting machine.

The rest of the paper is organised as follows. Section

2 introduces the problem related to the degradation of

the machines during operation. Simple process model

for RUL prediction, complemented with the health in-

dex, is presented in Section 3. Experimental results are

highlighted in Section 4. The paper ends up with con-

cluding remarks.

Shot lasting achine
Shot blasting machines are widely used in the process of

surface cleaning where contaminants from the surface

of castings are removed in order to prepare the metal

parts for further finishing like, for example, painting,

coating or mechanical treatment.

In shot blasting machines (Figure 1) small shots of

abrasive material are fed to the turbine blades where the

shots form a stream flowing along the blade length. De-

pending on the actual arrangement of the separating ro-

tor and the sleeve, the flowing stream will be roughly

uniform on the blades’ width and length. As soon as

the stream of shots leaves the blades, its direction is

controlled by setting the wheel, whilst its shape changes

both in width and length, thus forming a range of shot

flow that hits the surface of object under treatment.

Figure 1: The shot blasting machine and illustration of the
principle of operation.

The problem addressed in this paper concerns abra-

sive wear of the rotor blades. Abrasive grains transverse

the blade from center to the periphery and their kinetic

energy increases due to centrifugal forces of the rotat-

ing blade. Hence the abrasive grains scrap the surface of

the blade thus forming "micro-chips", i.e. small pieces

of material removed from the blade surface. With in-

creasing number of the operating cycles the wear in-

creases, gradually leading to the damaged blade, which

can eventually break and cause downtime.

The outlook of a new blade at the beginning of the

process and near failure is given in Figure 2. The prob-

lem is that it is not possible to accurately judge the level

of wear on the basis of the number of cycles. Therefore

it is of utmost interest for the operators to have an indi-

cator on the level of wear in non-intrusive manner, i.e.

without interrupting the blasting process.

Inference on the level of damage is done on the basis

of signal analysis from vibrational sensor mounted on

the housing of the machine close to the rotor bearing.
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Figure 2: Turbine blade at the beginning of the operation
(left) and at the end of the useful life (right).

Vibrational features and
health index

.1 Feature extraction from vibrational signal

Faults in the rotational machines affect the inner pat-

terns of vibrational signals referred to as features [3].

By tracking the way these features evolve over time, it

is possible to perform sufficiently accurate RUL predic-

tion.

Wear in a turbine blade of the machine gradually

results in increased imbalance of the rotor system. Vi-

brations resulting thereof can be viewed as the result of

excitation, caused by rotor movement, on the machine

eigen-structure. The resulting spectrum contains char-

acteristic components at the frequencies m ·nblades · frot
where m ∈ 1,2, ..., nblades is the number of blades and

frot is rotational speed. By applying the narrow-band

filtering around the characteristic frequency we get a

narrow-band stochastic signal whose energy (or enve-

lope) is Rice distributed.

Sampling of vibrational signal is performed at high

frequency during short measurement sessions with an

interval of 2 hours between two consecutive sessions.

Changes in the probability distribution function (pdf)

are characterised by calculating the "distance" between

the current pdf and the reference one obtained when the

machine is in nominal (healthy) state. Among several

possible metrics that can be used to describe this dis-

tance, we suggest the so-called f -divergence measures,

more precisely the generalised Jensen-Rényi (JR) diver-

gence [4]. The rationale is simple. Instead of compar-

ing two distributions, we compare two ensembles of dis-

tributions, one from fault-free reference condition and

the other from current condition. The strength of this

approach lies in the fact that comparing only two distri-

butions is subjected to considerable fluctuations, which

make final decision making difficult.

.2 Jensen-Rényi divergence

The generalised Jensen-Rényi divergence (JRD), de-

noted by JRw
α serves to quantify the dissimilarity

among n pdfs P1, ...,Pn. It reads:

JRw
α(P1, . . . ,Pn) = Hα

(
n

∑
i=1

wiPi

)
−

n

∑
i=1

wiHα (Pi)

(1)

where ∑n
i=1 wi = 1 and Hα is the Rényi entropy:

Hα(P) =
1

1−α
ln ∑

x∈D

pα(x). (2)

with α ∈ [0,1].
The selection of weights wi in (1) is in principle ar-

bitrary. If wi are selected uniformly i.e. wi = 1/n, the

divergence reaches maximal value [5]. JR divergence

quantifies shared information among n random vari-

ables. If they are identical, i.e. P1 = P2 = . . . = Pn,

the divergence is zero.
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Figure 3: (a) Pdfs three random signals, and (b) pairwise JR
divergence as a function of α .

The usability of the JR divergence concept can be

described with a simple example. Figure 3(a) shows
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three pdfs of Rician family. By considering the pairwise

JR divergence with uniform weights, the relation (1) be-

comes:

JRw
α(P1,P2) = Hα

(
1

2
(P1 +P2)

)
(3)

− 1

2
(Hα (P1)+Hα (P2)) ,

where P1 and P2 are pdfs of interest. As shown in

Figure 3(b), the JR divergence corresponds to the dis-

similarity between corresponding pdfs.

Figure 3(b) additionally shows the effect of the val-

ues of the parameter α . Low value of α ≈ 0 emphasizes

dissimilarity among pdfs in the lower part of the range

of random variable (approximately x ∈ (6,8)) where

pdfs do not differ much, hence low divergence values.

In the middle region (x ≈ 4, α ≈ 0.2) the pdfs differ the

most, hence the highest values of JR divergence. Fi-

nally, α ∈ (0.6,1) captures the region of the bulk prob-

ability masses and the divergence drops in a relatively

linear manner.

.3 The role of weights wi

To allow tracking the changes in pdfs, the exponential

weights wi are suggested in this paper. The weights wi
are calculated using the exponential function of the fol-

lowing form:

wi =C · e− λ
n i (4)

where λ is sensitivity parameter, n is the number of pdfs

(1), i = 1,2, . . . ,n and C is normalising constant. One

can easily see that (4) reduces to the uniform weighting

for λ → 0 and n → ∞.

The influence of weights wi on JR divergence can

be illustrated by a simple simulated example. The sim-

ulation consists of 21 Gaussian pdfs with one heaving

significantly different μ as shown in Figure 4(a). The

JR divergence is calculated as: JRw
α(P1,P2, . . . ,Pi),

i = 1 . . .21.

The rate of change in JR divergence is condi-

tioned with the selection of weights as shown in Fig-

ure 4b. The most notable increase is observed if uni-

form weighting is applied, i.e. wi = 1/n [5], while ex-

ponential weighting delays the impact.

.4 Health index

The concept of health index is widely used in system

condition monitoring and serves to describe the aggre-
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Figure 4: The evolution of JR divergence after measurement
sessions. Note that all pdfs are equal except the
pdf #11. (a) Pdf’s of the simulated signals
associated to the measurement sessions 1, . . . ,21

(b) JR divergence. Up to i < 11 there is no
dissimilarity in the distribution,
hence JRw

α (P1,P2, . . . ,Pi) = 0.

gated level of health either of a component or machine

as a whole. In the case of shot blasting machines the

health H is perfect when the machine is new, hence

H = 0. With evolving abrasive processes on the blades,

more and more surface material is removed, which re-

sults in increased vibrations. The Jensen-Rényi diver-

gence is viewed as an appropriate metric that reflects

the change in vibrational pattern caused by the level of

wear in turbine blades. To find the relationship, life-

long experiments have been run in which machine oper-

ation was periodically interrupted by operators who per-

formed invasive measurement of the blades volume. All

the time during operation, the vibrations were regularly

measured. The most important result of the experiment

is the finding that between JRD and the extent of dam-

age (equivalent to removed volume of blade material)
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there exists a monotone relationship. This is indicated

in Figure 5. Consequently, one can adopt the health in-

dex to be equal to the normalised JRD, i.e. Hk =
JRDk
JRD∗

where JRD∗ stands for JRD when the machine turbine

is considered worn out.

Note that health index H does not rise monoton-

ically all the time, but in the period approximately

[30,100] it slightly decreases. Such a behaviour looks

illogical given the fact that the machine should get more

and more worn with new operating cycles. The expla-

nation lies in the fact that at the begining of the opera-

tion, the machine is not perfectly balanced. If we take

into account that abrasive processes are not the same on

all the blades, then asymmetry in abrasion slightly cor-

rects the position of the center of gravity, hence result-

ing in lower vibrations and apparently improved condi-

tion. Such a situation changes as soon as abrasion pro-

gresses. Then asymmetrical wear in the blades results

in increased imbalance and consequently raised vibra-

tions.

Stochastic odel of brasive
ear

.1 Abrasive wear

The key mechanism of deterioration of condition of the

turbine blades is abrasive wear [6]. Each time a shot

particle enters the turbine, it travels along the blade’s

length. Along that path it removes a small layer of the

blade material of volume δV according to the Archard’s

law

δV = k ·δA ·δL, (5)

where k is the wear coefficient, δA is the contact area

and δL is the length of the path traversed by the shot

particle on blade’s surface.

In the ideal case, when all the blades were identi-

cal, the mass removed from each blade would be the

same. Thus the center of gravity would stay at the ro-

tational axis, which means negligible vibrations. How-

ever, due to irregularities in the particle size, angle of

entry and variations of the blade’s microstructure, there

are minute variations in the mass removed from each

blade. As a result, the generated vibrations tend to in-

clude amplitude modulations that depend on the num-

ber of blades and the rotational speed. Therefore, the

intensity of these sidebands can be directly correlated

with the removed volume of the blade material due to

abrasive wear. Since there is no other source of vibra-

tions, one can safely assume that any particular change

in the vibration’s signature in the lower frequency band

(<2 kHz) is due to mass loss and is therefore directly

related to the blades’ condition.

.2 Hidden Markov model

The Archard’s law (5) describes mass loss due to the

blade interaction with single shot particle. During nor-

mal operation a number of particles travel along the

blade’s surface. During the interval of time [tk−1, tk] the

loss of volume can be written as:

ΔVk = k · Ãk · L̃k, (6)

where Ãk is the cumulative contact area of the shot parti-

cles and L̃k is the cumulative traversed distance. These

two quantities are results of stochastic processes and,

consequently, also ΔVk is stochastic process. Therefore,

the total volume loss at k+1 would be:

Vk+1 =Vk +ΔVk. (7)

Due to surface changes, the contact area and the tra-

versed length are expected to change over time. There-

fore, based on (7), we can assume that the volume loss

ΔVk is a process defined by the stochastic variable de-

fined on the set of non-negative real numbers. To con-

sistently model such a process, several options are at

disposal as for example, gamma or Weibull distribu-

tion. The problem is that in such a case recursive up-

dates can be done only by numerical techniques. A

way around is to assume that the increments ΔVk fluctu-

ate around some mean value μ . The size of fluctuation

can be described by a normally distributed white noise

wμ ∼N (0,σ2
μ) such that σμ � μ . From here it follows

that

ΔVk −ΔVk−1 = wμ,k −wμ,k−1

and consequently one can write

ΔVk = ΔVk−1 +wΔV,k

where wΔV,k ∼ N (0,2σ2
μ)

Hence we get a state-space model with states Vk and

ΔVk. The problem now is that none of the states is avail-

able through on-line sensor reading. This can be sorted

out by replacing the volume Vk by health index Hk,

which is calculated on-line from acquired vibrational

records.
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Figure 5: The relation between fault progression and evolution of health index (JR divergence): (a) at the beginning of the
experiment, (b) in the middle of the experiment and (c) at the end of the experiment.

Hence the resulting state space model reads as fol-

lows [
Vk+1

ΔVk+1

]
︸ ︷︷ ︸

xxxk+1

=

[
1 1

0 1

]
︸ ︷︷ ︸

A

[
Vk

ΔVk

]
︸ ︷︷ ︸

xxxk

+

[
0

wΔV,k

]
︸ ︷︷ ︸

wwwk

(8)

The measurement equation that relates system states

and computable health index Hk reads

Hk = [1 0]︸︷︷︸
CCC

[
V (k)
ΔVk

]
+nk (9)

where nk ∼ N (0,σ2
n ) is white noise uncorrelated

with wwwk.

.3 Kalman fiter

The states of the discrete model (8) can be effectively

estimated using the Kalman filter approach [7, 8]. The

unknown states are updated at each measurement ses-

sion resulting in the moments of the posterior distribu-

tion of system states xxxk ∼ N (x̂xxk|k,PPPk|k) as follows

1. Initialisation step: set the estimates x̂xx0|0 =

x̄xx0, PPP0|0, QQQ=wwwwwwT , RRR= σ2
n from data obtained through

life-long experiments on similar machines.

2. Prediction step

x̂xxk|k−1 = AAAx̂xxk|k−1

PPPk|k−1 = AAAPPPk−1|k−1AAAT +QQQ

3. Update step: calculate the system output vector yyy
based on calculated JRD and then update the moments

of state probability distribution function

KKKk = PPPk|k−1CCCT (CCCPPPk|k−1CCCT +RRR)−1

x̂xxk|k = x̂xxk|k−1 +KKKk(yyyk −CCCx̂xxk|k−1)

PPPk|k = (III −KKKkCCC)PPPk|k−1

4. When the next measurement session appears set

k = k+1 and go to step 2.

.4 RUL predictor

Having an updated model at a given measurement ses-

sion k one can simulate the possible future trajectories

of the state space model (8) by Monte Carlo approach.

Using realisations of random processes of noise terms

wΔ,k+s, nk+s, s > 0 is is possible to calculate the cor-

responding trajectories of the state vector xxxk+s and the

predicted health index Hk+s. Based on that one can eas-
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ily calculate the distribution of first passage time, i.e.

the time s∗ at which the health index H crosses the up-

per bound H∗.

Results of experiments

The RUL estimation algorithm was evaluated on a shot

blasting turbine in real operating environment. The

blades were subjected to 400 operational hours spread

over a period of 4.5 months. Vibration signals were

acquired during 10 seconds long measurement sessions

every two hours while the machine was in full opera-

tion. In that period, three visual inspections were per-

formed after 10 hours of operation, at the 120th hour

and at the end of the experiment. Vibrations were mea-

sured on the bearing housing nearest to the turbine with

sampling frequency of 10 kHz.

.1 Evolution of the health index

The health index was calculated as JR divergence ac-

cording to (1) with unifirm weights wi. First 20 hours

of operation were used as a reference point. The evolu-

tion of the health index is shown in Figure 5.

As shown in Figure 5, in the initial phase, the health

index values were near zero. This is an indication that

the energy distribution of the newly observed vibra-

tion is very similar to the initial ’fault-free’ distribution,

hence the minimal JR divergence.

The first significant increase of the JR diver-

gence occurred around the 30th hour of operation. Af-

ter the initial increase the JR divergence gradually de-

creased. As said, this effect can be attributed to the run-

in phase of the turbine blades.

The onset of fault is visible at the 80th hour of opera-

tion. At this point the degradation of the blade condition

commenced. This is clearly indicated by the increase in

the calculated JR divergence. The observed degrada-

tion was confirmed by the visual inspection performed

at 120th hour, as shown in Figure 5. The degradation

trend is kept almost constant until the last fifth of the

run i.e., around the 130th hour. The calculated health

index surpassed the threshold at the 180th hour. The

operation was halted at the 190th hour with the blade

condition corresponding to the estimated health index,

as shown in Figure 5.

.2 RUL prediction

The evolution of the calculated health index is evalu-

ated according to the Archard’s law, as described in

Section 4.1. Based on results of Kalman filtering, the

trajectories of future states, and consequently health in-

dex, are calculated from a set of noise realisations.

The RUL prediction based on the first 100 measure-

ments is shown in Figure 6. At each time moment, the

Kalman filter provides estimates of the posterior prob-

ability distribution of the state vector xxxk+s and the out-

put yk+s. To come to the distribution of the actual RUL

we perform Monte Carlo simulations of the output tra-

jectoris. The distribution of the RUL can be evaluated

from the histogram of first passage times for each sim-

ulation run. As shown in Figure 6, the proposed un-

scented Kalman filter (UKF) provides left skewed RUL

estimates. The 3σ confidence interval is sufficiently

narrow and corresponds to the actual evolution of the

health index.

For proper assessment of the model’s accuracy, the

RUL estimates should be plotted versus a theoretically

expected RUL. Typically, the theoretical RUL is ex-

pected to be a linear function with gradient -1. This

is shown in Figure 7. Note that during the first 2/3

of the operational life the RUL prediction is not reli-

able. However, in the last third of the life, predictions

become rather accurate meaning that roughly 2 months

before the blades are fully worn the operators have reli-

able information, which could be used to plan the main-

tenance actions at a convenient occasion in a way that

do not disturb regular production (for example, during

a weekend or night shift).

Figure 6: RUL prediction at the 100th measurement
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Conclusion

The proposed feature based on JR divergence is shown

to be sufficiently sensitive to perform accurate condition

monitoring of shot blasting machines. Furthermore, it

is shown that the evolution of the JR divergence can be

directly related to the removed mass from the turbine’s

blades due to abrasive wear. As a result, the evolution

profile can be described through Archard’s law of abra-

sive wear. Based on this result, accurate RUL prediction

is be achieved by estimating the models’s states using

computationally simple Kalman filter and Monte Carlo

simulations over noise realisations.
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