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Abstract. With evermore complex system the monitor-
ing and fault detection is becoming a crucial part of con-
trol systems. They allow fast and effective fault diagno-
sis and can decrease the cost of system maintenance.
Modelling of processes plays a crucial part when design-
ing a monitoring system. In this paper an on-line ap-
proach for modelling of fuzzy model is presented (Evolv-
ing Fuzzy Model - eFuMo). As demonstrated in the paper,
the method can be used in the design of model based
fault detection system.

Introduction

Increasing demands of productivity and reliability call

for extending the ability of a common SCADA systems

with the monitoring and fault detection systems. There

are several approaches for designing the fault detection

system. In our paper the monitoring system is based

on a process model. The model is based on a evolving

fuzzy model method (eFuMo). The presented method

is able to build Takagi-Sugeno fuzzy model (TS) from

scratch, starting with one cluster and a local model. The

TS fuzzy models are a powerful practical engineering

tool for modelling and control of complex systems.

They expand and generalize the well-known concept of

gain scheduling. They utilize the idea of linearization

in a fuzzily defined region of the state space. Due to

the fuzzy regions (clusters), the nonlinear system is

decomposed into a multi-model structure consisting of

linear local models [1].

This enables the T-S fuzzy model to approximate

virtually any nonlinear system within a required accu-

racy, provided that enough regions are given [2].

The eFuMo method is an on-line learning method

that is also able to adapt models during the function-

ing of the system. Depending on the learning abilities,

the on-line fuzzy-identification methods can be divided

into: Adaptive methods (e.g., ANFIS [3], GANFIS [4],

rFCM [5], rGK [6]), where the initial structure of the

fuzzy model must be given. The number of space par-

titions/clusters does not change over time, only the pa-

rameters of the membership functions and local mod-

els are adapted; Incremental methods (e.g., RAN [7],

SONFIN [8], SCFNN [9], NeuroFAST [10], DENFIS

[11], eTS [12], FLEXFIS [13], PANFIS [14]), where

only adding mechanisms are implemented; Evolving
methods (e.g., SAFIS [15], SOFNN [16], GAP-RBF

[17], EFuNN [18, 19], D-FNN [20], GD-FNN [21],

ENFM [22], eTS+ [23], ENFM [22], FLEXFIS++

[24], AHLTNM [25], SOFMLS [26]) which, besides an

adding mechanism, implement removing and some of

them also merging and splitting mechanisms. More on

evolving methods can be found in [27] and [28], where

concepts and open issues regarding these methods are

presented.

The paper is organized in the following order. First,

the eFuMo learning method is described, next the mon-

itoring problem is given followed by results and conclu-

sions.

1 eFuMo Structure

The eFuMo method has two types of mechanisms for

identifying the fuzzy model: the adaptation algorithm

and the evolving mechanisms. The first is responsible

for parameter adaptation, such as cluster centers and lo-
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Figure 1: The eFuMo top scheme.

cal models’ parameters; the second is responsible for

structure update: adding, removing, merging and split-

ting of clusters. A central decision logic (CDL) decides

which type of mechanism will be used at current sam-

ple. The block scheme is presented on Figure 1. In

the following subsection, the adaptation and evolving

mechanisms will be presented and at the end the CDL

will be described.

1.1 Adaptation mechanisms

In order to build the TS fuzzy model clusters and local

linear models must be identified. Adaptation mecha-

nisms are responsible for identifying clusters’ and local

models’ parameters and for their adaptation. To parti-

tion input-output data space recursive clustering algo-

rithm is used and for identifying the local models’ pa-

rameters the fuzzy recursive least squares is used.

Space partitioning. For data space partitioning,

the cluster centers and fuzzy covariance matrix must be

calculated. The centers are adapted with the following

equation:

vi(k+1) = vi(k)+Δvi(k) (1)

Δvi(k) =
μi(k)η (x f (k)−vi(k)

)
si(k)

(2)

where η is fuzziness factor, vi is the center position

vector x f is clustering vector, μi is membership degree

of the current clustering vector to the i-th cluster also

called the firing degree of the i-th cluster and si(k+ 1)
is the sum of past membership degrees / firing levels of

the i-th cluster:

si(k) = λcsi(k−1)+μi(k)η . (3)

where λc was introduced as a forgetting factor to en-

able the adaptation of centers. The membership degrees

μi can be calculated as in equation 4 (c is the number

of existing clusters), either based on rFCM [5] (equa-

tion 5), rGK [6] (equation 6) or Mahalanobis distance

(equation 7).

μi(k)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

∑c
j=1

(
di(k)
d j(k)

) 2
η−1

if x f (k) �= vi; i = 1, ...,c

1 if x f (k) = vi
0 if x f (k) = v j; i �= j

(4)

di(k) =
((

x f (k)−vi(k)
)T (x f (k)−vi(k)

))0.5
(5)

di(k)=
((

x f (k)−vi(k)
)T

det(Fi)
1
p F−1

i
(
x f (k)−vi(k)

))0.5

(6)

di(k) =
((

x f (k)−vi(k)
)T F−1

i
(
x f (k)−vi(k)

))0.5

(7)

To get the area of cluster influence the fuzzy covari-

ance matrix Fi is calculated. The recursive equation for

Fi is the following:

Fi(k+1) = γc
si(k−1)

si(k)
Fi(k)+

μi(k)η

si(k)
DFi(k)

DFi(k) = (x(k)−vi(k))(x(k)−vi(k))
T . (8)

where γc is the forgetting factor. To be able to calculate

the Gustafson-Kessel clustering distance (equa-

tion 6) the inverse and determinant of fuzzy covariance

matrix must be calculated. The recursive equation for

the inverse matrix is obtained by using the Woodbury

matrix identity lemma. The equation is following:

[Fi(k+1)]−1 =
1

γc

si(k)
si(k−1)

[
[Fi(k)]

−1 − B
C

]
(9)

B = [Fi(k)]
−1 DFi [Fi(k)]

−1 (10)

C = γc
si(k−1)

μi(k)η +dT
Fi
[Fi(k)]

−1 dFi (11)

dFi = x f −vi(k). (12)
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The determinant is obtained using determinant lemma

(equation 13):

det(A+uvT) = (1+vTA−1u) det(A). (13)

The recursive equation for determinant calculation is:

det(Fi(k+1)) =

(
γc

si(k−1)

si(k)

)p

det(Fi(k))(1+A)

(14)

A =
1

γc

μi(k)η

si(k−1)

(
dT

Fi
[Fi(k)]

−1 dFi

)
, (15)

where p is the number of rows/colmuns of fuzzy co-

variance matrix. The detailed derivations of equations

are given in [6]. The eFuMo method implements the

method for stopping the cluster parameters adaptation

if the clusters firing level is below a certain user defined

threshold βcuttrh . This prevents clusters, that are far from

current clustering vector, to converge to that area. The

clusters’ firing levels 4 that are below the threshold are

set to zero. The rest of the firing levels are then normal-

ized.

Local models’ parameters identification.
Each cluster has a linear local model, that is valid in that

area. The output of the local model is calculated as:

ymi(k) = θ T
i [1 xk(k)T ]T , (16)

where xk(k) is the regression vector and θ T
i are the local

model parameters. The regression vector is usually the

input part of the clustering vector:

x f (k) = [xk(k)T y(k)]T , (17)

where y is the process output. However unlike many ex-

isting on-line fuzzy identification methods the eFuMo

method allows the clustering vector to be different than

the regression vector.

The eFuMo has different fuzzy least squares based

identification methods included ([12], [22], [5] and

[29]). Usually best results are obtained using local

fuzzy weighted least squares presented in [12]:

xe(k) = [1 xk(k)
T ]T

Pi(k+1) =
1

λr

(
Pi(k)− βiPi(k)xe(k)xT

e (k)Pi(k)
λr +βixT

e (k)Pi(k)xe(k)

)

θ i(k+1) = θ i(k)+Pi(k)βixe(k)
(

y(k)−xT
e (k)θ i(k)

) (18)

where i is the cluster index, θ is the vector of local

model’s parameters and β is the firing level of cluster

and the y is the process output. The firing levels are

calculated on the input space. Usually the methods use

Gaussian functions equation 19 or equation 20:

μi(k) = e
− (x fk

−vik
)2

2ηmFik,k k = 1,2, ...p−1 i = 1,2, ...,c

βi =
p−1

∏
k=1

μi(k)

(19)

βi = e
−D2

ik
2ηm i = 1,2, ...,c,

D2
ik =

(
x fin(k)−viin

)T F−1
iin

(
x fin(k)−viin

)
.

(20)

where ηm is the overlapping factor usually set to 1, Fik,k
is diagonal element k of fuzzy covariance matrix, x fk
and vik are the k-th element of clustering vector and k-th

element of i-th cluster center vector, respectively. The

Fiin is the input fuzzy covariance matrix, x fin is the clus-

tering vector containing only the input variables and viin
is the cluster center in an input space. The obtained fir-

ing levels are then normalized:

βi =
βi

∑c
k=1 βk

i = 1,2, ...,c. (21)

One can also use the same equation for firing level cal-

culation as with clustering algorithm. However, with

Gussian functions the transitions between local models

(clusters) are more smooth.

When building the simulation model, the model pa-

rameters can be identified more accurately using the in-

strumental version of least squares [30]. The instrumen-

tal variable adaptation algorithm for equation 22 can be

written as:

xe(k) = [1 xk(k)
T ]T

xem(k) = [1 xkm(k)
T ]T

Pi(k+1) =
1

λr

(
Pi(k)− βiPi(k)xem(k)xT

e (k)Pi(k)
λr +βixT

e (k)Pi(k)xem(k)

)

θ i(k+1) = θ i(k)+Pi(k)βim xem(k)
(

y(k)−xT
e (k)θ i(k)

)
(22)

where xem(k) is the regression vector where the delayed

process outputs were replaced with model outputs and

βim is the membership degree of vector x fm(k), which

is the clustering vector, where delayed process outputs
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Figure 2: The clustering algorithm.

were replaced with model outputs:

x f (k) = [u(k−n) ...u(k) y(k− r) ... y(k−1)]

x fm(k) = [u(k−n) ...u(k) ym(k− r) ... ym(k−1)]

(23)

where ym is the model output and y is the real output. In

both cases the dead zone for adaptation can be consid-

ered [31].

The adaptation procedure can be represented by the

diagrams as shown on figure 2 and figure 3. In figure

2 the clustering procedure is represented and in figure

3 the local model parameters identification algorithm is

presented.

1.2 Evolving mechanisms

To upgrade the fuzzy model structure evolving mecha-

nisms, such as adding and removing the clusters is im-

plemented in the eFuMo method.

Figure 3: The parameter adaptation algorithm.

Adding mechanism. This is one of the most im-

portant mechanisms. It adds new clusters to the fuzzy

model structure and improves the fuzzy model perfor-

mance. In the literature, there are several different con-

ditions of adding new clusters based on model out-

put error, distance of current sample to existing cluster

and ε-completeness which is based on current samples

membership degree to existing clusters.

In [32] (DFKNN) a cluster adding is based on Eu-

clidian distance to the existing cluster centers and the

change of variance that the new sample brings to the

closest cluster. The distance and variance change must

be greater than the predefined threshold. A new cluster

is added if a certain number of sequential samples sat-

isfy this condition. In [11] (DENFIS) adding is based

on an Euclidian distance. If the distance of current

sample to closest cluster is grater than two times the

threshold a new cluster is added. In [20] (D-FNN) and

[21] (GD-FNN) adding is based on model error and dis-

tance of new sample vector to closest cluster. If both are

grater than a user defined threshold the cluster is added.

The threshold is decreasing with time. In [17] (GAP-

RBF) and [15] (SAFIS) a new cluster is added if the

model error and distance of the current sample to ex-

isting clusters is over a threshold. They calculate the

decrease in error if current sample would be taken for a

new cluster. If the decrease is large enough new cluster

is created. In [18, 19] (EFuNN) the adding is based on

sensitivity calculated based on normalized fuzzy differ-
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ence distances. The eTS method [12] adds a new cluster

when the potential of current sample is higher than a po-

tential of existing clusters and if it is distanced enough

from the nearest cluster. In [33] (NFCN), [22] (ENFM),

[8] (SONFIN), [9] (SCFNN), [16] (SOFNN) adding is

based on ε-completeness principle. In [13] (FLEXFIS)

the adding is based on distance and vicinity quotient.

In practice, the distance conditions work best.

Therefore, the eFuMo implements two conditions for

adding: the distance conditions and the consequent

samples conditions. Both conditions must be satisfied

in order for a new cluster to be added. The consequent

samples condition is to prevent a new cluster being cre-

ated based on outlier sample. This condition means that

several consecutive samples must satisfy the distance

condition before a new cluster is added. The condition

is explained in [32].

The distance adding condition is based on a normal-

ized distance. There is an option of choosing the com-

ponent distances or Mahanalobis distance. The normal-

ized component distances are calculated as:

di j =
|x f j(k)− vi j |

kn
√

fi j j

, j = 1, ..., p i = 1, ...,c (24)

where x f j(k) is the j-th element of clustering vector,

vi j is the j-th component of i-th cluster center, p is the

length of clustering vector, c is the number of clusters,

fi j j is the j-th diagonal element of i-th cluster’s fuzzy

covariance matrix and kn is the user defined constant,

usually set to 2. When using normalized Mahanalobis

distance the normalization vector is formed from diag-

onal elements of fuzzy matrix:

sinorm = [
√

fi11

√
fi22

...
√

fipp ]
T , (25)

The normalized distance is then calculated as:

dinorm =
((x f (k)−vi)

T F−1
i (x f (k)−vi))

0.5

kn(sT
inorm

F−1
i sinorm)

0.5
(26)

With the first condition, a cluster can be added is any

of the component distance equation 24 is larger than 1.

The same component distance must be larger than 1 for

all existing clusters. With the second condition a cluster

can be added if the distances equation 26 to all clusters

are larger than 1. Figures 4(a) show the possible adding

space for the component distance conditions and figure

4(b) for the Mahanalobis distance condition. Both fig-

ures show the possible adding space (orange) for two

(a) Component adding

distance.

(b) Mahalanobis adding

distance.

Figure 4: Different adding distance conditions.

dimensional space. When a cluster is added, the param-

eters of the cluster must be initialized. The center of

a new cluster is set at the position of current clustering

vector. The fuzzy covariance matrix is initialized as di-

agonal matrix where the distances to closest cluster are

considered. The diagonal elements are defined as:

fnew j j =− d2
i j

2ηm ln(εβ )
, (27)

where εβ is a user defined constant, normally set to

0.15. If the distance di j is smaller than standard de-

viation (
√

fi j j ), then this diagonal element is equal to

a diagonal element of the closest cluster’s fuzzy covari-

ance matrix ( fnew j j = fi j j ).

The first cluster is added at the position of the first

clustering vector. Its fuzzy covariance is initialized in

the similar manner considering the input-output space

boundary and expected number of clusters:

dmax j = max(x j)−min(x j), j = 1, ..., p (28)

where dmax j is an expected range of j-th element of

clustering vector. The influence zone of the j-th com-

ponent is then calculated as:

din f luence j =
dmax j

2 c
, j = 1, ..., p (29)

where c is the expected number of clusters. The di-

agonal j-th element of fuzzy covariance matrix is then

calculated as:

σ2
j =−

d2
in f luence j

2ηm ln(εβ )
j = 1, ..., p (30)
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The fuzzy covariance is built with σ2
j as:

Fi =

⎡
⎢⎢⎢⎣

σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
p

⎤
⎥⎥⎥⎦ (31)

The parameters of new local model can be initialized

using weighted mean:

θi+1 j =
∑c

i=1 ωi j θi j

∑c
i=1 ωi j

(32)

where i is the index of cluster and j is the parameter

index. Weights ωi j can be equal to normalized firing

levels of clusters, or equal to normalized firing levels of

clusters combined with parameters variances:

ωi j = βi
1

σ2
Pi j j

, (33)

where σ2
Pi j j

is the j-th diagonal element of least squares

covariance matrix of i-th cluster.

Removing mechanism. It is meant to remove old

clusters and clusters created based on outliers. In

eFuMo method, this mechanism is not so important as

the method incorporates the forgetting factors that en-

sure the adaptation of the structure to the new data.

However, it may happen that a cluster is created in a

partition of input-output space that doesn’t have much

samples and is not very important for the model accu-

racy. This mechanism ensures that these clusters are

removed from the model structure. In literature, differ-

ent ideas are presented. In [34] the cluster is removed

if in a certain time the cluster doesn’t receive any sup-

port sample. Cluster receives a support sample if it has

greater firing level than other clusters. This might be a

problem with industrial processes, where it might hap-

pen that the process is in one working point for a longer

period of time. In this case, other clusters, that describe

different working points, might be removed from the

structure. In [20], [21], [17], [15] in [16] (D-FNN, GD-

FNN, GAP-RBF, SAFIS in SOFNN) the removing is

based on model error. In [20] (D-FNN) the error re-
duction ratio is introduced. The amount of error, that a

certain cluster brings to the overall model error is calcu-

lated. If this is small, the cluster is considered as redun-

dant and is therefore deleted. Similar concept is used in

[21] (GD-FNN), where sensitivity index is introduced.

In [15] (SAFIS) an equation is introduced to estimate

the error change if a certain cluster is removed from

the structure. If this change is small, the cluster is re-

moved. In [16] (SOFNN) removing is based on optimal
brain surgeon approach [35, 36]. In [37] (Neural gas)

the clusters are removed based on their age. All clusters

that are older than an user defined age are removed from

the structure. In [38, 39] (exTS) the removing is based

on cluster’s support and cluster’s age. The clusters are

removed based on support-age ratio. Similar conditions

are introduced in +eTS [23], where also the utility con-

dition is added. This condition is based on the ratio of

sum of firing levels and age of cluster. The threshold

values are defined with standard deviation and mean

values of the ratios. In general, this is not adequate,

since there is usually small number of clusters; there-

fore, using standard deviation and mean value are not

really representative. In +eTS also minimal existence

condition is introduced. With this condition, a newly

created cluster must gather a certain amount of support

samples in a certain time period after creation. If the

gathered support is lower than a predefined threshold,

the cluster is removed from the structure. In [18, 19]

(EFuNN) the removing is based on cluster’s age and

sum of cluster’s firing levels. In [32] (DFKNN) remov-

ing is based on minimal support and time period. If the

cluster has lower support than an user defined threshold

the cluster is deleted. The cluster is also removed if in

certain time period after cluster’s creation, no support

sample is assigned to it.

The proposed eFuMo method has two conditions for

removing: A minimal existence condition and support-

age ratio condition. The minimal existence condition

is the same as in [23]. It simply removes clusters that

in certain period after creation (kdelay) don’t receive

enough support samples (Nsi). The time period (kdelay)

and support threshold (Nstrh) are user defined constant

usually set to 20 and 10, respectively. The support-age

ratio condition is based on clusters’ supports Nsi nor-

malized with clusters’ age (equation 35). Cluster with

the ratio lower than a percent ε of mean ratio is deleted.

Age ai is defined as a number of samples from the clus-

ter’s creation ki and current sample k:

ai = k− ki (34)

Sni =
Nsi

ai
. (35)
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Both conditions for removing can be written as:

IF Sni < ε mean(Sn)

OR
(
Nsi < Nstrh AND k > ki + kdelay

)
THEN remove i-th cluster.

(36)

Splitting mechanism. It is in our case meant for

fine tuning the evolving fuzzy model. It can add clus-

ters in input-output space, where the output model er-

ror is higher than predefined threshold. The concept of

splitting was used in the on-line incremental learning

of Gaussian Mixture Models in [40], where the Cher-

noff bound is used and in [41], where fidelity measure

is used. It is argued in [42] that these methods are slow

and don’t produce good results. Therefore they pro-

pose an integrating a joint incremental on-line split-and-

merge scenario, that should overcome under- and over-

clustered partitions. The splitting is based on a BIC

value. The BIC is a combination of Gaussian density

function function and cluster overlapping. The clusters

that are split are found using trail and error procedure.

In [10] (NeuroFAST) clusters are split based on mean

squared error (MSE). The error is checked every P step.

The cluster that has the highest MSE and is at least P-

times activated is split.

The eFuMo’s splitting mechanism is based on rel-

ative model error, that clusters gather over time. The

error is updated every time the splitting mechanism is

called and the current sample doesn’t satisfy the dis-

tance adding condition. First the relative model error is

calculated:

e(k) =
|ym(k)− y(k)|

3.4σy
, (37)

where y is the real output and ym is the model output.

The σy is calculated by CDL block and represents cur-

rent standard deviation of the process output. The error

is then divided among the existing clusters and added to

the previous error:

esumi(k) = esumi(k−1)+βie(k), (38)

where βi is the firing level of i-th cluster. The splitting

mechanism checks the cluster with the highest error. If

its support from the last change in cluster number till

now is higher than a threshold (usually set to 20) and

its error normalized with N (number of samples used

to calculate the error) is larger than a threshold value,

the cluster is split. The error threshold is set by the

user, specifying the maximal and minimal error thresh-

old and the decay constant. The current threshold is

calculated as:

etrh = max(emaxexp(−N/T ),emin), (39)

where etrh is the current threshold, emax is the maximal

error threshold, emin is the minimal error threshold, N
and T are the number of samples that are used for error

calculation and decay constant, respectively.

The positions of the split clusters are calculated us-

ing diagonal elements (vector sinorm) of the fuzzy covari-

ance matrix.

vi1 = vi +0.5sinorm

vi1 = vi −0.5sinorm

(40)

where i is the index of the cluster that is split. The new

center positions can also be calculated using the sin-

gular value decomposition as in [43]. The fuzzy co-

variance matrix, support and sum of past membership

degrees are set to half of their original value for both

clusters. The time of cluster creation is for both clusters

initialized as the creation time of the original cluster.

Merging mechanism. There are two types of

merging algorithms implemented in eFuMo: supervised

and unsupervised. In literature different concept of

merging techniques can be found. In [32] (DFKNN),

the center positions are monitored. If the centers are

converging to the same area the clusters are merged.

The used similarity measure is based on samples mem-

bership degrees and is similar to the correlation between

clusters firing levels. It is presented in detail in [44]. In

[18] (EFuNN), the merging is done based on clusters’

firing levels correlation. The method merges neigh-

borhood clusters, where after merging the total radius

does not exceed the predefined maximal radius. In [22]

(ENFM),the clusters are merged if the membership de-

gree of the first cluster to the second and vice versa is

higher than a predefined threshold. In [16] (SOFNN)

clusters are merged if the cluster centers of the two clus-

ters are the same. The possibility of using similarity

measure from [45] is mentioned. In [46] (FLEXFIS+),

the merging based on membership function intersec-

tions is proposed and the overlapping index is calcu-

lated. If this index for the two clusters is higher than

a predefined threshold and the angles between the local

models’ parameters are small the clusters are merged.

The eFuMo unsupervised merging is based on most

commonly used principle of merging. It merges clusters

SNE 26(4) – 12/2016



212

D Dovžan et al. Evolving Fuzzy Model Method for on-line Fuzzy Model Learning

that are close together. The similarity and the vicinity

of the two clusters are measured by the normalized dis-

tance:

d2
ik = (vi−vk)

T F−1
i (vi−vk), i,k = 1, ...,c i �= k. (41)

dnormik =

√
d2

ik

2sT
inorm

F−1
i sinorm

(42)

The distances are calculated only for clusters that have

higher support from last change in cluster number than

an user defined threshold (usually set to 20 for both val-

ues). The clusters are considered for merging if both

normalized distances dnormik and dnormki are shorter than

the predefined threshold εβ :

dnormik <
√
−ln(εβ ) (43)

If this criterion is satisfied, the distance ratio is checked:∣∣∣∣1− min(dnormik ,dnormki)

max(dnormik ,dnormki)

∣∣∣∣< kdmerge (44)

if the ratio is above the user defined threshold kdmerge

(usually 10 percent) clusters are merged.

The parameters of new cluster are initialized as a

weighted mean. The fuzzy covariance as proposed in

[22]:

Fnew =
1

(Nsi +Nsk)3
((Ns3

i +2Ns2
i Nsk +NsiNs2

k)Fi+

+(Ns3
k +2Ns2

kNsi +NskNs2
i )Fk+

+(Ns2
i Nsk +NsiNs2

k)(vi −vk)(vi −vk)
T )

(45)

The new center is calculated as:

vnew =
Nsivi +Nskvk

Nsi +Nsk
(46)

In the same manner a the new sum of past membership

degree is calculated. New support of the cluster 47 and

time of creation are calculated as weighted mean where

weights are sum of past membership degrees (si, sk):

Nsnew =
Nsisi +Nsksk

si + sk
. (47)

The local linear model parameters are calculated as

weighted mean:

θnew j =
ωi j θi j +ωk j θk j

ωi j +ωk j

j = 1, ...p, (48)

where weights ω are the cluster supports Ns combined

with a variance of the parameters.

The supervised merging considers the prediction

model error. The supervised merging has three different

measures to detect the clusters that could be merged to-

gether. It uses angles between local models’ parameters

(angle merging condition), correlation between clusters

firing levels (correlation merging condition) and dis-

tance ratio (distance ratio merging condition). Only

clusters that gathered higher support and sum of past

membership degrees than a predefined threshold can be

considered for supervised merging. The correlation co-

efficient is calculated based on monitoring of firing lev-

els and their products βi j(k) = βi j(k− 1)+βi(k)β j(k),
βii(k) = βii(k−1)+βi(k)βi(k) and is calculated as:

Ci j(k) =
βi j

β 0.5
ii β 0.5

j j
(49)

If the coefficient Ci j(k) is above user-defined threshold

(usually set to 0.9) the clusters i and j are considered

for merging.

The distance ratio criterion for merging is similar

than with the unsupervised merging. The distance ratio

is calculated as:

dik =

√
(vi −vk)T det(Fi)

1
p F−1

i (vi −vk)

Kd
|1−min(dik,dki)|

max(dik,dki)

(50)

The clusters are considered for merging if the distance

ratio Kd is lower than an user defined threshold (usually

0.05) and the correlation coefficient is at least half of

the threshold defined for correlation merging condition.

The angle merging criterion is based on local mod-

els’ angles. First the parameters are normalized. The al-

gorithm sweeps all local models’ parameters to find the

vector of the largest absolute value of parameters. Then

the parameters of local models are normalized with this

vector. The angles for the two clusters for all parame-

ters are calculated:

αi jk = |arctan(θik)− arctan(θ jk)| (51)

where k is the parameter index. The clusters are consid-
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ered for merging if all angles αi jk , k = 1, ..,r, where r is

the number of local model’s parameters, are below the

user-defined threshold (usually set to 2 degrees) and the

correlation coefficient is at least half of the threshold

defined for correlation merging condition.

After the eFuMo identifies the possible merging

pairs with the correlation, angle and distance ratio

merging conditions it then checks the local models for

the error:

x1 = [1, ū1, ..., ūp−1]
T

e1 = |θ T
i x1 −θ T

j x1|

e2 =
p

∑
r=1

|θir(x1r +2σur−1
)−θ jr(x1r +2σur−1

)|

e3 =
p

∑
r=1

|θir(x1r −2σur−1
)−θ jr(x1r −2σur−1

)|

e =
1

10.2 σy

3

∑
r=1

er

(52)

where ū is the mean value of a certain input variable

σur−1
is its standard deviation, σy is the standard devia-

tion of the process output, p−1 is the number of inputs,

j and i are the cluster indexes θi is the i-th cluster’s local

model parameter vector and θir is the r-th parameter of

the i-th local model.

The pair that has the lowest error and the error is be-

low the threshold is merged. The center of the merged

cluster is positioned in the middle between maximum

and minimum border of both clusters:

d1 = vi −v j

v′i = vi + sign(d1)sinorm

v′j = v j − sign(d1)s jnorm

d2 =
v′i −v′j

2

vnew = v j +d2

(53)

The fuzzy covariance matrix and support of a new

merged cluster is initialized as a sum of both clusters’

fuzzy covariance matrices and supports, local model pa-

rameters are initialized as a mean of both local models’

parameters and the creation time is initialized to the cre-

ation time of the oldest cluster. The sum of past mem-

bership degrees is initialized to the max sum of past

membership degrees of both clusters.

Figure 5: Scheme of the CDL.

1.3 Central decision logic

The CDL is responsible for proper flow of the opera-

tions. It controls the calls to evolving mechanisms and

adaptation mechanisms. It also calculates the mean and

standard deviations of the inputs and output of the pro-

cess, that is identified with eFuMo. The scheme of the

CDL block is shown on figure 5 and the sub-blocks are

shown on figure 6.

The input to the eFuMo identification method are

clustering vector (x f ), regression vector (xk), output of

the process (y) and number of current sample (i). The

CDL block first checks the current sample number (i) to

the sample number when the last change in cluster num-

ber was made and the user defined time delay. If the

sum of these two values are smaller than a current sam-

ple number, the evolving mechanisms may be called.

Otherwise the CDL skips the call to evolving mecha-

nisms.

The CDL first calls the adding mechanism, then the

removing mechanism, follows the supervised merging

mechanism and unsupervised merging mechanism and

at the end the CDL calls the splitting mechanism. If one

of the mechanisms changes the cluster number other

evolving mechanisms that follow are not called and the

eFuMo continues with the adaptation algorithm.
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(a) Block A (b) Block C

(c) Block B (d) Block B

Figure 6: The CDL scheme blocks. The c is the number of clusters, c_trh is the maximal allowed number of clusters, age_trh is
the age threshold for minimal existence condition and last_change is the sample number when the last change in
cluster number occurred.
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Figure 7: Scheme of the MBBR.

The CDL algorithm is also responsible for calculating

the variance and mean of the input variables and output.

The variance σ2 is calculated on line by the following

equation:

σ2
x (k) =

1

k

(
(k−1)(σ2(k−1)+ x̄(k−1)2)+ x(k)2

)−
− 1

k2
((k−1)x̄(k−1)+ x(k))2

(54)

where x is the variable and x̄ is the mean of it, calculated

as:

x̄(k) =
1

k
((k−1)x̄(k−1)+ x) (55)

If the splitting is enabled, the CDL also calls the error

update algorithm. The algorithm updates a cluster error

equation 38. This algorithm is only called if the current

data sample doesn’t satisfy the distance adding condi-

tion. The CDL also calculates the clusters’ firing levels

products used to calculate the correlation coefficient 49.

2 Monitoring Example
2.1 Monitoring system idea

The monitoring system that includes the evolving fuzzy

model was tested on measured data from a pilot waste-

water treatment plant, shown in figure 7. The pilot plant

consists of two anoxic reactors, two aerobic reactors

and an additional reactor, where the water is collected

before returning as an internal recycle or passing down

to the settler. To ensure the homogeneity, the waste wa-

ter is mixed by mixers in the anoxic reactors and by air

flow in the aerobic reactors. In this example the mon-

itoring of oxygen concentration in anoxic reactors will

be done. The monitoring system is based on Takagi-

Sugeno (TS) fuzzy model that estimates the relations

between the input and output variables. The oxygen

concentration is estimated from the air flow, the tem-

perature in the reactor and the previous measurement of

the oxygen concentration. First order local models are

used. The inputs were selected by a backward selec-

tion. The idea is to detect the error in the process output

based on the inputs. The outputs of the FDS are yso f t(k)
and alarm(k). The output alarm(k) indicates the pres-

ence of the fault in the measured signal (alarm(k) = 1:

fault detected). The output yso f t(k) is the process output

with the removed fault. If there is no fault detected the

output yso f t(k) is equal to the process output y(k). If the

fault is detected, the output yso f t(k) is calculated based

on a fuzzy model that describes the proper relations be-

tween the input signals and the monitored signal.

The FDS determines the fault based on the internal

fuzzy model of the signal relations. For monitored sig-

nal, three models are kept in the FDS’s memory: a full

evolving fuzzy model, an adaptive fuzzy model (param-

eters of clusters and local models are adapted) and a

fuzzy model with fixed parameters that holds the in-

formation about the last good known parameters. The

learning of the fuzzy models is delayed for 200 samples.

The delay was introduced for future research to cope

with slower faults. The data sample is used for learning

if there was no fault detected. For each sample and each

model the relative prediction error is calculated. The

calculated error (its absolute value) is assigned to the

model. The prediction error assigned to the fuzzy model

is combined with the simulation error, which is calcu-

lated periodically on every 200-th sample using the 200

samples in the buffer. The prediction error is also used

for learning the prediction-error fuzzy model. Namely,

each model that describes the signal relations is accom-

panied by the error model. The error model is used to

calculate the allowed difference between the estimated

and measured signals. For estimating the sensor output

during the failure, the model with the lowest assigned

error is used.

The adaptive and fixed model structure and parame-

ters can be replaced when a cluster is added or removed

from the evolving fuzzy model’s structure. Before the

number of cluster changes, the error of each model is

checked. If the evolving model has the smallest error,

the adaptive and fixed model structure is replaced by the

evolving model’s structure. In addition their error mod-

els are replaced. The simplified diagram of the proce-

dure is shown in figure 8.

The variances denoted as σ_evolving, σ_adaptive
and σ_ f ixed are calculated from the error model:

σ =
c

∑
i=1

βi

√
Fir,r , (56)
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Figure 8: Scheme of the FDS for a subprocess.

where Fir,r is the last diagonal element of the error fuzzy

model’s cluster i. This element represents the variance

of the error. As seen in figure 8, the alarm is raised

if the difference between the estimated output and the

measured output is higher than the maximum allowed

difference. Note that the alarm is turned off when for at

least 30 consecutive samples the difference is below the

defined threshold for turning off the alarm. To ensure a

smooth transition from the estimated output to the mea-

sured output, when the alarm is turned off a filter was

implemented that calculated the output of the FDS as:

yso f t =
((30− kalarm)ymodel + kalarmy)

30
, (57)

where kalarm is the number of samples from the sam-

ple when the condition for turning the alarm off was

reached. The maximum number of kalarm is 30 and its

value is reset to 0 every time a new alarm is raised.

2.2 Detecting the false alarms due to manual
calibration

Manual tuning and offset repairs of the oxygen concen-

tration signal is performed every few months. This is

seen on the upper graph in figure9. The drift of the sen-

Figure 9: Effect of sensor calibration.

sor was manually reduced by the operator, causing the

FDS to report an error. It can be seen that the shapes

of the estimated and measured outputs are practically

the same. However, due to an offset of the signal the

FDS detects the error. To automatically turn off such

alarms, an additional algorithm was implemented to the

FDS. This algorithm is turned on when a new alarm

is detected. With this procedure the algorithm starts to

calculate the variances of the estimated output, the mea-

sured output and the variance of their difference when

the alarm is raised. The idea behind this solution is that

the variance of the estimated and measured output (if

they are only shifted) should be higher than the variance

of their difference, under the assumption that the model

used for estimating the output is not biased and the pro-

cess output changes (there is an excitation present). The

variances are calculated recursively with equations 55

and 54. When the variance of the difference between

the estimated and measured outputs falls under the vari-

ance of both, the estimated and the measured outputs

the raised alarm is turned off. The algorithm starts to

check this condition after the alarm is present for some

time (in our case 300 samples). The algorithm is turned

off when, for at least a certain number of consecutive

samples (in our case 100), the variance of error is below

the model and process variance. The algorithm is also

turned off if its maximum functioning time is reached.

3 Results and Discussion
The presented idea was tested on real data. To esti-

mate the performance of the system during a sensor’s
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Figure 10: Oxygen-concentration fault detection.

malfunction a failure was simulated on a known part of

the data. Note that the duration of the simulated fault

was exaggerated in order to test the system. The sim-

ulated faults lasted for about 7000 samples (around 39

hours). Usually, the faults last from about a few min-

utes up to 6 hours. The settings of the evolving method

were obtained based on trail and error. The fault was

simulated between the samples 35000 and 43000. The

whole experiment is shown in figure 10. The first 8000

data points were used for the initial learning of the fuzzy

model. The learning was performed using the eFuMo

method. The alarm signal and the number of fuzzy

model clusters are shown in figure 11. Besides the sim-

ulated fault, the system also detected some faults that

were not added to the signals. These faults were caused

by sudden spikes in the monitored signals and therefore

the detection of the fault seems justified.

Even though the estimated signal is not entirely cov-

ering the measured signal, we believe that the estima-

tion accuracy is still good enough. The error between

the measured and estimated signal during the fault is

given in Table 1. This table also includes the NIDE

index, the minimum, maximum and mean absolute er-

ror, the signal range for the faulty samples, the mini-

mum, maximum and mean relative error, and the sam-

ples where the fault was simulated are given.

As can be seen on the upper graph in figure 9, the

manual tuning creates an offset of the measured signal,

resulting in the detection of a fault. At around sam-

ple 8400 a real fault occurs, which then quickly van-

ishes. Later on the measured signal is shifted. The FDS

Figure 11: Alarm signal and number of clusters over the
experiment.

Estimation Error Concentration O2

NDEI 0.488

min. abs. 2.83e-5
[
g/m3

]
max. abs. 1.347

[
g/m3

]
avg. abs. 0.189

[
g/m3

]
signal range 2.72

[
g/m3

]
min. rel. 1.04e-5

max. rel. 0.495

avg. rel. 0.0695

faulty samples [103] 35−43

Table 1: Estimation error during the simulated fault.

detects the alarm. Because the signal is shifted after

the fault, the alarm is still present. The alarm is finally

turned off at sample 11500, when the measured signal

comes into the allowed difference zone and stays there

long enough for the fuzzy model to adapt itself to the

signal shift. On the lower graph in figure 9, the false-

alarm detection was implemented. It can be seen that

the signal shift is successfully detected and the alarm is

turned off more quickly than without the implemented

false-alarm detection algorithm.

On figure 12, the course of variances are shown. The

variance of the difference (between the estimated and

measured signal) falls under the measured signal’s vari-

ance very quickly. This is partly because the initial fault

of the measured signal is included in the variance cal-

culation. The variance of the difference falls under the

variance of the estimated signal at sample 9475. With
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Figure 12: The course of variances.

this, the conditions for overriding the original alarm are

met. The last alarm based on the output differences is

raised at sample 9740. Therefore, the variance proce-

dure is switched off at sample 9840. The procedure suc-

cessfully detected the signal offset caused by the man-

ual calibration.

4 Conclusion
In this paper an evolving fuzzy model method for on-

line learning of fuzzy models was presented. The

method is useful when dealing with nonlinear time-

varying processes. The method was used in an exam-

ple of fault detection system. The presented results

show that the approach can be successfully used for

such tasks. The only issue of the method and all such

methods is in its tuning. There are a number of parame-

ters that need to be tuned. Their tuning highly depends

on a problem and require an expert to tune them. Fur-

ther research will be focused on lowering the number of

tuning parameters and on self tuning of the method.
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