SNE TECHNICAL NOTE

Jadex/JBdiEmo Emotional Agents in Games with
Purpose: a Feasibility Demonstration

Stefan Korecko*, Branislav Sobota, Peter Zemianek

Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,
Technical University of KoSice, Letna 9, KoSice, Slovakia; *stefan.korecko@tuke.sk

Simulation Notes Europe SNE 26(4), 2016, 195 - 204
DOL: 10.11128/sne.26.tn10351

Received: November 10, 2016

Accepted: December 5, 2016 (Special Issue Review)

Abstract. The jMonkeyEngine 3D game engine, com-
bined with Jadex agent system and JBdiEmo emotional
extension may offer a suitable toolset for effective crea-
tion of feature-rich virtual environments, provided that
an appropriate interface, allowing to use the full poten-
tial of all included components, exists. Then, such envi-
ronments may profit from the jMonkeyEngine ability to
model and simulate the physical world and capability of
Jadex and JBdiEmo to express both rational and emo-
tional aspects of characters inhabiting it. One of the
meaningful ways of utilization of such environments is to
use them as virtual testing grounds for software control-
lers of various devices, embedded to them. To involve
real humans in the testing, they may have a form of a
game, where the testing occurs during an interaction
between the devices and players. In this paper we pre-
sent both the interface and the embedding on an emer-
gency simulation game called JFireEmSim2. The primary
goal of the player in the game is to rescue a family from
a house under fire and the controller embedded into it is
of a simple autonomous cleaning robot. The paper de-
scribes the architecture of the game, focusing on the
interface, implementation of characters as Jadex and
JBdiEmo agents and embedding of the controller. It also
discusses suitability of the components for the given
task.

Introduction

Jadex [5], [6] is a software framework, where applica-
tions are composed of active, service providing compo-
nents. The components can be implemented in several
forms, with cognitive BDI agents being historically the
first and probably the most sophisticated ones.

BDI stands for belief-desire—intention, a model of
human practical reasoning, introduced in [4]. A BDI
agent has beliefs expressing what it knows about itself
and its environment, desires that represent states it
would like to achieve and intentions that provide means
to achieve the states.

The simplicity of BDI is the source of both its popu-
larity and criticism. The critics point out that BDI fo-
cuses on rational reasoning and ignores other aspects,
such as emotions. To deal with this issue in the context
of the Jadex framework we designed and implemented
JBdiEmo [11], [12] emotional engine, which uses a
modified version of the OCC model of human emotions.
The OCC model [16] considers emotions to be results of
cognitive processes and divides them into three classes:
emotions that are reactions to events, reactions to agents
and reactions to objects. The version used in JBdiEmo
originates from [17] and has a form of an inheritance-
based hierarchy of emotions.

A promising utilization of Jadex and JBdiEmo is in
computer games, where they can simulate both rational
and emotional behavioral aspects of non-playable char-
acters (NPCs), modeled as agents. Such utilization is
supported by Jadex via a visualization interface for the
jMonkeyEngine (jJME) 3D game engine. In [13] we
used the interface to develop an emergency simulation
game, where the player’s goal is to rescue people from a
flat under fire. The game proved that JBdiEmo can be
used with the interface without any modifications, but
also revealed that the interface provides only limited
access to JME.

In [13] we intended to use the platform consisting of
Jadex, JBdiEmo and jME for ordinary computer games
and serious games for education and training. However,
from the control system point of view, it is also interest-
ing to examine the possibilities of its utilization for the
so-called games with a purpose (GwP) [2], i.e. for
games where players are helping to solve serious prob-
lems.

SNE 26(4) - 12/2016

Korecko et al.

Jadex/IJBdiEmo Emotional Agents in Games: a Feasibility Demonstration

GwP try to hide their true purpose behind an inter-
esting gameplay and players can be completely unaware
of it. In our case, the GWP should provide a virtual envi-
ronment for evaluation and testing of software control-
lers or their executable prototypes. In the game, the
controller can be represented by an entity that resembles
the device to be controlled by it in the real world. And
the purpose of the player will be to evaluate the control-
ler by interacting with the corresponding entity during
the gameplay.

There is one prominent issue to deal with in order to
use the Jadex/JBdiEmo/jME platform in such way: A
new interface between Jadex and jME that will over-
come the limitations of the visualization interface, pro-
vided by Jadex, should be developed. This is necessary
to be able to use the full potential of JME for virtual
environment creation. The new interface has been de-
signed and experimentally implemented in a new
emergency simulation game, named JFireEmSim2.
JFireEmSim2, which is presented in this paper, shares
the basic goal with the original one [13], but features
more sophisticated gameplay and graphically-rich envi-
ronment. To demonstrate the feasibility of the GwWP idea
outlined above, it also includes a formally verified con-
trol program supervising an autonomous robot.

The rest of the paper starts with a short overview of
the Jadex/JBdiEmo/jME platform and limitations of the
original visualization interface (section 1). Section 2
presents the new game, focusing on its overall architec-
ture, new Jadex/JME interface and implementation of
NPCs as Jadex/JBdiEmo agents. Section 3 eclaborates
the GwP idea by presenting a cost-effective version of
corresponding development process and embedding of
the control program into an already existing game, in
this case the JFireEmSim2. The paper concludes with a
summary of achieved results and plans for future re-
search and development.

1 The Platform

The software platform, both games are built on, consists
of three components, implemented in Java: the Jadex
agent system, the emotional engine JBdiEmo and the
game engine jMonkeyEngine (jJME). While Jadex and
JME are standalone components, JBdiEmo can be used
only with Jadex.

SNE 26(4) - 12/2016

1.1 Jadex

In Jadex agents are defined by beliefs, goals and plans.
Goals stand for desires and plans for intentions. The
plans are executed with respect to the current goals of
the agent, messages the agent receives or events occur-
ring in the system. On the other hand, an execution of a
plan may result in new goals, messages or events.

Agents are specified as classes and actual agents are
instances of these classes. Each class is described by an
agent definition file (ADF), written in XML. An ADF
defines all BDI elements (i.e. beliefs, goals and plans).
It contains names, parameters and properties of the
elements and links to Java classes that implement be-
liefs and plans. At runtime, an agent consists of a mod-
el, created from his ADF, and a set of instantiated ob-
jects, representing his plans and beliefs.

Beliefs are stored in a form of facts. These are ac-
cessed by goals and plans to acquire stored data values.
A fact can be an arbitrary Java object.

Goals represent agent's specific motivations such as
to reach a new state or to perform some activities. Jadex
implements a full lifecycle for goals [5]: A goal can be
created when its creation condition is met, or during an
execution of some active plan. A newly created goal is
adopted and enters the main part of its life cycle. On the
basis of its context condition, an adopted goal can be in
the state ‘option’ or ‘suspended’. A goal in the ‘option’
state eventually becomes active and executes corre-
sponding plans. The active goal can be then suspended
if the context condition is broken during the execution
of the plans. If the plans of the goal achieve desired
results, the goal is finished in the state of success. If
they fail to achieve them, it is finished in the state of
failure. A goal may also be dropped at any time if its
results are no longer desired. Creation, context and other
conditions are specified in ADF.

Plans provide means to achieve active goals. For
every currently active goal, plans are executed until the
goal is reached, suspended, failed or dropped. They are
instantiated at runtime when corresponding events (e.g.
a goal creation) are triggered. They are also capable of
creating new goals.

Configuration of a whole Jadex application is speci-
fied in an application XML file, which defines how
many agents of which type will populate the applica-
tion. If 2D or 3D visualization is used, its settings are a
part of this file, too.

Korecko et al.

Jadex/IBdiEmo Emotional Agents in Games: a Feasibility Demonstration

1.2 JBdiEmo

JBdiEmo engine extends Jadex agents by emotions
associated with their rational plans, beliefs and goals.
The set of all emotions an emotional agent has, together
with their intensity values, form his emotional state. The
engine supports the whole modified OCC model and
how the emotions are mapped to BDI elements is shown
in Figure 1. JBdiEmo is implemented in such a way that
agent's actions can influence his emotional state and the
emotional state can, in turn, influence agent's further
actions.

OCC emotional model (modified)

5.GUI for visualization of the actual emotional state of
emotional agents. It also shows history of the events
that influence emotional plans, beliefs or goals (emo-
tional events).

6.Logger recording emotion intensity values to XML
files for future processing.

7.Helpers, which provide mathematical calculations
and other auxiliary functionality.

1.3 jMonkeyEngine
jMonkeyEngine JME) is an open source 3D game
engine, built on the OpenGL graphic library. It
also provides an integrated development environ-

_ _ Consequence ment, called jMonkeyEngine SDK, which is based
Eunsequam‘:e AL qlageni ASPECtD_I L) of actionofagent | on the NetBeans Platform. Thanks to the features
of event emotions emotions emolions K
emotions like material and terrain editors the comfort of
pleased, displea- approving, disap- ling, disfking gratification. game development in jJME is comparable to com-
sed. hope, fear. praving, pride, e, hate, Femorse, mercial engines, such as UDK or Unity. In should
. d.lsmss""‘ sheess; interest. disqust proiue, also be noted that jJME uses Bullet to simulate
gloating, pity reproach anger
. . . . physical phenomena, which, according to [7], is
Heltt felt to ! felt o | felt to one of the more accurate physics engines available
V V vV : in contemporary games.
Boals Plans Beliefs
1.4 Jadex 3D visualization interface
I\ A For Jadex, jJME is only one of several options to visual-
J y P
T e ize agent behavior. The other ones are textual output
Jadex BDI agent

Figure 1: OCC to BDI mapping as implemented in
IBdiEmo.

The engine consists of seven components:

1.JBdiEmo core, responsible for representation of
agent’s emotional state, checking of eliciting condi-
tions of each emotion, emotion intensity value calcu-
lation and messaging between emotional agents.
Agents access it via a belief.

2.Emotional agent initialization plan, implementing an
initial agent model mapping. It initiates processes
that repeatedly monitor agent’s events and the whole
Jadex platform for a presence of other emotional
agents.

3.Inter-agent emotional messaging plan, providing
message delivery between emotional agents.

4.Language extension allowing to distinguish ordinary
beliefs, goals and plans from the ones with associated
emotions (i.e. from the emotional ones).

and 2D graphics. The application XML file is responsi-
ble for the visualization configuration. Here, 3D models
and animations are associated with agents and models,
textures and positions of other objects are defined. A
direct access to jJME is also provided, but only to a sub-
set of its features.

The master-slave relationship between Jadex and
JME prevents developers to use important jJME features,
such as more sophisticated visual effects, collision de-
tection and physics engine. As [13] shows, this puts
several constraints on the visual appearance of the game
and forces developers to implement mechanisms like
collision detection on the Jadex side. In consequence,
the time spared by using Jadex to implement NPCs can
be lost because of the additional implementation work.

2 JFireEmSim2 Game

The constrains the original visualization interface puts
on developers, may render the whole idea of using Jadex
and JBdiEmo for NPCs implementation inefficient.
Fortunately, they can be overcome by designing a new
interface that put Jadex and jME in more equal position.

SNE 26(4) - 12/2016

Korecko et al.

Jadex/IJBdiEmo Emotional Agents in Games: a Feasibility Demonstration

The JFireEmSm2 game (Figure 2), which imple-
ments such interface, is situated in a village, where the
player has two goals. First, he has to rescue a family of
four from a house under fire; and second, he has to save
a depressed person on a nearby cemetery before he
commits suicide. To successfully save the family, all its
members have to be taken out of the house. A person
may refuse to follow the player because of the fear of
getting burned or due to the position in the family.

The actual appearance of the game can be seen in
Figure 2, where the situation after saving the first mem-
ber of the family is captured. There are health bars (red)
for all the family members (father John, mother Marie,
son Joe and daughter Jane) in the upper left corner.
Player’s health and extinguisher status are shown in the
lower left corner. The player’s character is the fireman
on the right side, seen from behind. The house under
fire is the wooden one on the left. There are two persons
in front of the house; a neighbor in white T-shirt, ob-
serving the event, and the saved person (Joe, in blue
shirt). In the background we can see another fire site
and a fireman. Their role is described is Section 3.

Structurally the game can be divided into three com-
ponents.

1.Game core with the entry point of the game and clas-
ses defining the basic gameplay, appearance of the
game and user input processing. They have white
background and names typed in normal font in the
class diagram in Figure 3 and are explained in more
detail in Section 2.1.

2.Jadex/]ME interface allowing non-restricting com-
munication between both frameworks. It consists of
two classes, Communicator and AgentControl (white
background and names in bold in Figure 3), de-
scribed in Section 2.

3.Agents representing NPCs, which implement their
behavior. The classes and ADF files belonging here
have light gray background in Figure 3, and are treat-
ed in Section 2.3.

There is also a fourth part in Figure 3, consisting of 5
classes with dark gray background. These belong to the
control program embedded into the game and are de-
scribed in more detail in Section 3.

2.1 Game core

The core of the game is designed as a typical jME ap-
plication with its main class, App, implementing the
JME base class SimpleApplication.

SNE 26(4) - 12/2016

The class App contains the entry point of the game
(method main) and methods required by SimpleAppli-
cation, such as simpleInitApp to initialize and sim-
pleUpdate to update the game in each game loop cycle.
Its properties, among others, provide access to the phys-
ics engine (bulletAppState), handle various objects in
the environment, such as individual fire sites (properties
fire, firePositions and fireNodes) and implement
2D user interface elements (e.g. hudControl to show
health of the player and NPCs). App also includes an
object called start, which initializes Jadex in a sepa-
rate thread.

The player of the game is represented by the Play-
er class, which defines its graphical appearance, includ-
ing animations, properties (e.g. health, extinguisher
charge level) and keyboard and mouse input processing.

NPCs are defined on three levels, first two of them
belonging to the core:

1.Character, a class which provides basic functionali-
ty for all NPCs in the game, such as movement, colli-
sion resolution and animations. The class also defines
an abstract method act, which should define NPC
behavior and all its descendants must implement it.

2.Inherited classes, holding aspects specific to corre-
sponding character category. These are SavingPer-
son for the family members, OtherPerson for a
neighbor observing the situation and QuestPerson for
the person about to commit a suicide on the ceme-
tery. These classes are connected to Jadex agents
(level 3) via corresponding AgentControl objects of
the interface and their instances, one for each NPC,
are properties of the App class.

3.Jadex agents, specifying their rational and emotional
behavior.

All classes implementing entities that can be seen in the
game are also connected to corresponding 3D models,
textures and animations.

2.2 Jadex/jME interface

The new interface, implemented by classes Communica-
tor and AgentControl, is designed as universal; it
doesn’t even require the part connected to Jadex to be
implemented in jJME. Its purpose is to keep the state of
objects representing NPCs on the jJME side synchro-
nized with beliefs of corresponding Jadex agents.

Korecko et al.

Jadex/IBdiEmo Emotional Agents in Games: a Feasibility Demonstration

Figure 2: JFireEmSim2 screenshot.

The class Communicator is implemented using single-
ton design pattern to ensure that only one instance of it
is available in the game. Its property agents holds a list
of AgentControl instances, one for each Jadex agent.
The Communicator itself just allows to add and remove
agents, so the whole synchronization is in the hands of
the AgentControl objects, which write values to agents’
beliefs, with their put methods and read belief values with
getBoolean, getInt and getFloat methods.

While on the jME side the interface is accessed via
the property agent of the classes inherited from Char-
acter, on the Jadex side it is done through a belief
called shared and plan UpdatePlan. These are defined
for each agent. The value of shared is an instance of
the corresponding AgentControl object, obtained via
the Communicator. The UpdatePlan automatically
updates beliefs of the agent every time the values stored
in the corresponding AgentControl object are changed.

2.3 NPCs behavior

The behavior of NPCs in the game is defined almost
exclusively by Jadex agents and each NPC has its own
ADF. In Figure 3 ADFs are depicted in the form similar
to classes, i.e. divided into three blocks. The first one
contains stereotype <<ADF>> to distinguish them from
classes and name of the ADF. The second one lists
agent’s beliefs and the third one goals. Plans are shown
as separate classes, connected to corresponding ADFs.
The diagram doesn’t show goals and beliefs common to

all agents, i.e. the ones belonging to jBdiEmo and the
belief shared. The goals and beliefs of Marrie, Joe
and Jane are similar to those of John: The fami-
ly saved belief is specific to John. Joe and Jane don’t
have the child saved belief, but have additional belief
called reproached. Joe also has the belief jane saved
and Jane has joe_ saved.

To illustrate how the agents define behavior of the
NPCs, let us have a look on the family to be saved.
When the game begins, an active goal of all family
members is wander and WanderPlan is carried out. This
means that the persons randomly wander around the
house. If a person gets too close to a fire, the
run from fire goal becomes active and RunFrom-
FirePlan tries to get the person to safe distance. How-
ever, when the intensity of the fear emotion, felt to the
goal run from fire, becomes too high, the cry goal
becomes active. This initiates the CryPlan, which
makes the person stop for few seconds and perform
appropriate animation. Another aspect that can abort
RunFromFirePlan execution is the value of disap-
proving emotion felt to the wander goal being higher
than 0.7. Then the GiveUpPlan is executed, which
means that the person stays in place and only the play-
er’s presence can change it by making the stay calm
goal active and StayCalmPlan executed. When the
player commands a person to follow him, the fol-
low player goal and FollowPlan are activated, pro-
vided the corresponding conditions are met: the mother
refuses to follow until the children are saved, and the
father is the last one to leave. Otherwise, the re-
ject follow goal and RejectPlan are activated.

3 Controller in Game

Now, let us assume that we are developing a safety-
critical part of a control program for an autonomous
cleaning robot, which works as follows: The robot
stores a list of locations to clean in its memory. After it's
turned on, it goes to the first location from the list and
cleans it. Then it proceeds to the next one. After clean-
ing all locations, it goes to a parking position and
switches to a standby mode.

SNE 26(4) - 12/2016

Korecko et al.

Jadex/IJBdiEmo Emotional Agents in Games: a Feasibility Demonstration

mygame::App <> INSTANCE «ADF» jadex.plans::RunFromFirePlan
-robot: Robot John =
-player: Player Tolow +body(): void
-john, joe, marrie, jane: SavingPerson) T
-neighbor: OtherPerson »
-questGiver: QuestPerson h PYE——— pi jadex.plans::GiveUpPlan
':f;:_ S:;::gg:?f -camera: PlayerCamera child_saved bady(): void
-bulletAppState: BulletAppState main f Control: C Control family_saved
fire: Fire ’ 1 <>\ animControl: AnimControl hp jadex.plans::StayCalmPlan
-ﬁre.PosllionsI] Vector3f -inputl\.!ana_ger: InputManager speed
-fireNodes: ArrayList<Fire> m:ﬂsmo: ;sr'_lqnv;a\:eclorsf(): Vector3f m(w +body(): void
-hudConlr-ol. HealthBarConirol -extinguisherWater = 100f: float calm’
+main(String(] args): void -idleAnim = "stand"; String cry ﬁ jadex.plans::DeathPlan
+simplelnitApp(): void -walkAnim = "walkAnim.001": String Stay._calm —
+simpleUpdate(float tpf): void “main: App u // / +body():
vy -neightor: OtherPerson agent_died |[iadex plans:CryPlan
17 - +Player{Spatial model, Node rootNode, ... follow_player = = =
chm‘racters..c.‘mmcfer < wUSEN > +update(): void run_from_fire +body(): void
-name: String T T 7 +setUpKeys(): void wander
-animContrel: AnimControl +exhaust(): void ject_follow -
-startPosition: Vector3f lkl— | +checkFireToExhaust(Fire fire): void cry ex plans::SavedPlan
-player: Player +checkDoorToOpen(): void +body(): void
+Character(String name): ctor <—
+followPlayer(Player player): void «ADF»
v ot veckr) Vi J"W_? Marre 1200 pans: RejoctFian
m [vector): voi
+act(): void <3"| z f +body(): void
4
ch SavingPerson J ‘:‘::' \\ Jjadex.plans::FollowPlan
-agent: AgentControl 1 ~body(): void
-closestFire: Fire P —
-save: boolean jacex . .
-followed = false: boolean + : i ﬁz’] s WanderPlan
+SavingPerson(String name, AgentControl agent): -agents: Map<String, AgentControl> -run = true: bool
+act(): void ~Communicator(). ctor : void
+runFromFire(): void +addAgent{AgentControl newOne): void SR
\ +getAgent(String name): AgentContral «ADF»
1 characters::OtherPerson ><'/ neighbor jadex.plans::ReproachPlan
-agent: AgentControl nteract::UpdatePlan| fire void
-fires: List<Fire> /1 -agent: AgentControl nearA B
-agents: List<Character> ent walk
L +body(): void speed
+OtherPerson(String name, AgentControl agent,...| agents near_house ex.plans::CelebratePlan)
+act(): void +body():
+addAgent{Character character): void 0. 3 agent allisaved o
AentiCh 1): void .. wander
+isAgentSaved(): boolean — worrie — jadex.plans:WorriePlan
+goToSeeHouse(): void . ‘ jadex, ontrol icelebrate |
[aaent -name: String +body(): void
\ o QuestPerson T pes: SimplePropertyChangeSupport \ T
-agent: AgentControl +AgentControll$lring name): clor =
17 -doad = false: boolean — +getName(): String aussioivec el plans: BrayBian
-saved = false: boolean a +put(String type, Object ob): Object an +body(): void
+QuestPerson(String name, AgentControl agent; 9e Ega?&?:&oxfg?ﬂiﬁmmn walk
+act(): void 5 "
) +getFloat(Object type): Float speed jadex.plans::DiePla
*getAgent(): AgentControl +contains(String type): boolean grave_on_fire =t
+isDead(): boolean die +body(): void
+setDead({boclean dead): void give_quest
+isSaved(): boolean m
1 +setSaved|boolean saved): void su

Figure 3: UML class diagram showing essential part of the JFireEmSim2 game structure.

SNE 26(4) - 12/2016

Korecko et al. Jadex/JBdiEmo Emotional Agents in Games: a Feasibility Demonstration

0
nnw | nne
— T -

18900 2700
SN T 4 \
wnw/ . \ene
[v
| . | N ' |
16200—+ : f— 1— 5400
| i \ ‘ |
\ N S f
wew\ XS Jese
13500 - . 8100
ssw | sse

10800

—— maxMsrblDst
safeDstClI
- — safeDstMov

Figure 4: Cleaning bot sensors arrangement.

The robot should be able to perform its job in public
areas, so from the safety point of view it is critical to
prevent it from hurting people. To detect them, it pos-
sesses a circularly arranged sensor array (Figure 4). The
sensor array returns 8 values, nne, ene, ese, sse, ssw,
wsw, wnw and nnw. The value nne (north north east) is
the distance to a nearest person, detected in the region
from north (compass angle 0 minutes) to north east
(2700 minutes), ene (east north east) the distance in the
region from 2700 to 5400" and so on. If no person is
detected in a region, then the corresponding value is
equal to the maximum distance, measurable by the array
(maxMsrblDst). The robot may hurt someone when
cleaning as the cleaning process is harmful for anyone
close enough or when a collision occurs during move-
ment. To prevent this, the control program should obey
safety critical properties, which can be formulated as
follows:
1.The cleaning cannot start or continue if anyone gets
as close or closer to the robot as the distance
safeDstCl.
2.The robot cannot move if anyone gets as close or
closer to its front as the distance safeDstMov.

According to this specification, we design and im-
plement the control program part with a method up-
dateAndEvaluate as its interface (Figure 5). The first
three parameters of the method specify what the robot
should do in the given situation, and the rest (nne to
nnw) are readings from the sensor array. The parameter
command defines whether the robot should:

¢ switch to standby mode immediately (value 0)
e g0 to a specified position and then clean (1) or
e g0 to a specified position and stand by (3).

The specified position is given as a compass angle
(p2gAngleInMin) and distance from the current posi-
tion (p2gDst). The method evaluates the situation and
issues instructions for the robot to follow. These include
commands to turn the robot on or switch it to standby
(the output parameter botOn), to start or to stop the
cleaning process (botCleaning) and the destination
where the robot should go (angleInMin and dst).

Now, assume that the control program part has been
developed using formal methods such as B-Method [1],
so we are sure that the safety critical properties hold in
its implementation. What we are not sure is whether the
distances safeDstCl and safeDstMov are set optimal-
ly. They should be large enough to prevent the robot
from hurting people, but not too large, as it will cause
the robot to interrupt its operation too often. To estab-
lish the distances, simulation experiments can be used.

3.1 Jadex/JBdiEmo/jME as simulation
platform

We consider Jadex/JBdiEmo/jME to be a suitable plat-
form for such simulation because of the following rea-
sons:

1.Support for quick construction of a virtual environ-
ment where the robot will operate, thanks to the edi-
tors of jMonkeyEngine SDK and ability to import
models already available online or created in differ-
ent applications. For example, most of the buildings
in JFireEmSim2 are freely available models and the
house under fire has been created in SketchUp
(ww.sketchup.com). NPC models were created in
MakeHuman (http://www.makehuman.org/) and their
animations in Blender (https://www.blender.org/).

2.Built-in physics simulation in jJME, provided by jBul-
let, a Java port of the Bullet engine. Bullet is used in
several simulation platforms, such as Gazebo
(http://gazebosim.org/) and V-REP (http://www.cop-
peliarobotics.com/). The jBullet port has been used
for simulation purposes as well, for example in [3]
for cells and surrounding fluid.

3.Possibility to populate the virtual environment with
characters with complex personality, thanks to the in-
tegration of Jadex and JBdiEmo. In addition, the
characters can be developed separately and integrated
to the environment afterwards.

SNE 26(4) - 12/2016

Korecko et al.

Jadex/JBdiEmo Emotional Agents in Games: a Feasibility Demonstration

Both jJME and Jadex have already been used for
simulation purposes. The Jadex case is described in [6]
and jJME is the basis of several robotics simulation envi-
ronments, such as jmeSim [8] and MARS [18].

' =
(0.3) command —p!
(0.21599) p2gAnglelnMin —p{
(0..maxint) p2gDst —pe
(0..maxMsrbiDst) nne —ps
(0..maxMsrbiDst) ene —pm
(0.maxMsrbiDst) ese —pm updateAndEvaluate
(0..maxMsrblDst) s5€ —pm-
(0..maxMsrblDst) SSW — !
(0. maxMsrbiDst) WswW —pm
(0..maxMsrbiDst) wnw —p

(0-maxMsrbiDst) nnw —p
~ .

—m= botOn (true, false)

— botCleaning (true, false)
—® anglelnMin (0..21599)
= dst (0..maxint)

Figure 5: Cleaning bot interface.

3.2 Simulation vs. GwP

In principal, an environment created with Jadex/JB-
diEmo/jME can be used in two ways:

1. For simulation experiments.
2. As a game with purpose.

The first case is de facto a game without player, with
properties and behavior of entities inhabiting the envi-
ronment given by their code and models only. So, dif-
ferent simulation experiments under equal conditions
can easily be performed.

In the second case, a human player is involved and
may interact with an entity representing the control
program. The GwP element is that the interaction pro-
vides data essential for evaluation or adjustment of the
control program, e.g. whether certain values of
safeDstCl and safeDstMov may endanger persons that
come close to the cleaning bot. This interaction can be
completely natural, for example the cleaning bot can be
situated in an area, which the player will visit either
way.

3.3 Cleaning bot in JFireEmSim2

While the Jadex/JBdiEmo/jME platform allows to build
a virtual environment relatively quickly, the more eco-
nomical option is to embed the control system to be
evaluated to an already existing game. This requires two
tasks to be performed:

1. Create an entity that will represent the con-
trolled system in the game.

2. Adjust the code of the game to integrate the
controller.

SNE 26(4) - 12/2016

To minimize the effort put into the first task we
should consider reusing the assets already available in
the game. For example, provided that the basic parame-
ters like dimensions, weight and speed of the cleaning
bot are similar to an average human, it can have a form
of an additional fireman in JFireEmSim2 and the posi-
tions to be cleaned can be represented as fire sites to be
extinguished (Figure 6).

Figure 6: The second fireman representing the robot ap-
proaching the fire sites, i.e. places to clean.

The controller can be integrated as it is shown in Fig-
ure 3 (classes with dark gray background). The control-
CBotController,
CBotControllerCore and ProximSensors, which

ler itself consists of classes
have been generated from formal specification, created
and verified using B-Method. The updateAndEvaluate
method can be found in CBotController.

The connection to the game is implemented via the
class Robot. It serves the similar purpose as the class
Character for NPCs, i.e. it provides visual representa-
tion of the robot (as a fireman). It is also responsible for
executing the updateAndEvaluate method and per-
forming actions according to the values it returns. The
input parameters of updateAndEvaluate are computed
from actual positions of the robot, place to clean, player
and NPCs by the class RelativePosition.

4 Related Work

Several aspects presented here can be found in other
sources, but the combination of using a game engine for
the basic gameplay and simulation of the physical
world, emotional agents for characters, behavior and the
resulting game for evaluation of the control systems via
seemingly ordinary gameplay remains unique to this
work. Regarding jBdiEmo, to our knowledge, it is the
only existing emotion-implementing extension for Jadex.

Korecko et al.

Jadex/IBdiEmo Emotional Agents in Games: a Feasibility Demonstration

The idea of turning a computer game into a testing
ground for control systems is in great extent realized
with the real-time strategy game Starcraft. According to
the survey [15], most of these works are implemented
via the Brood War Application Programming Interface
(http://bwapi.github.io/), which allows replacing a hu-
man player with a computer program and competitions
are organized where bots play against other bots or
human players.

A toolchain similar to ours has been used in [9], to
implement a serious game that teaches players about
energy consumption. To create the game the authors of
[9] used jME, MakeHuman and Blender, too. The game
doesn’t include an agent system, but uses co-simulation
via the Functional Mock-up Interface (FMI) to integrate
thermal and physical models of a building and applianc-
es. FMI should also be considered for a future version
of the jJME/Jadex interface or an interface between con-
trol programs and games.

The GwP idea has been formulated in [2] and GwP
usually contain gameplay focused on solving specific
problems, such as protein folding in Foldit [10] or find-
ing program loop invariants in Xylem [14].

Other implementations of non-emotional or emo-
tional artificial agents in computer games exist as well
and a short overview and comparison to Jadex and
JBdiEmo can be found in [13].

5 Conclusion

The new Jadex/JME interface, presented here as a part
of JFireEmSim2 game, allows to use both Jadex and
JME to their full potential when building virtual envi-
ronments for games or simulation experiments. The
experimental integration of the cleaning bot controller
also proved feasibility of the idea of computer games
utilization as testing environments with agent-based
NPCs and active participation of players. While
JFireEmSim2 in the state presented here provides only
basic realization of the idea, it can be developed and
experimented with in several different ways. One of
them is to use Jadex and jBdiEmo to implement more
complex gameplay and personalities of NPCs. The
gameplay should include active interaction between the
player and the robot, for example a task to adjust robot
parameters for maximum performance.

Another way is to enhance the possibilities of player
movements or perform experiments with selected
groups of human players. We also would like to return
to the importance of the idea with respect to formal
methods, which is touched only lightly here, in a sepa-
rate work. The JFireEmSim2 game is available by re-
quest from the authors.

References

[1] Abrial J. R. The B-Book: Assigning Programsto Mean-
ings, Ist ed. Cambridge: CUP; 1996. 816 p., 1996.

[2] Ahn L. von . Games with a Purpose. Computer. 2006;
39(6): 92-94.

[3] Applewhite-Grosso T et al. A multi-scale, physics en-
gine-based simulation of cellular migration, 2015 Winter
Smulation Conference; 2015 Dec; Huntington Beach,
CA, 1230-1239. doi: 10.1109/WSC.2015.7408248

[4] Bratman, M.E. Intentions, Plans, and practical rea-
son.1st ed. Cambridge, MA.: HUP; 1987. 200 p.

[5] Braubach L, Pokahr A, Jander K.. The Jadex Project:
Programming Model. In: Ganzha M, Jain C L, editors.
Multiagent Systems and Applications: Volume 1:Practice
and Experience. Berlin, Heidelberg. Springer; 2013. p
33.

[6] Braubach L, Pokahr A. The Jadex Project: Simulation.
In: Ganzha M, Jain C L, editors. Multiagent Systems and
Applications. Volume 1: Practice and Experience. Berlin,
Heidelberg. Springer; 2013. p 22.

[7] Erez T, Tassa Y, Todorov E. Simulation tools for model-
based robotics: Comparison of bullet, havok, mujoco,
ode and physx, ICRA, 2015, IEEE. pp. 4397-4404.

[8] Haber A, McGill M, Sammut C. Jmesim: An open
source, multi platform robotics simulator. Australasian
Conference on Robotics and Automation; 2012 Dec;
Wellington. 270-276.

[9] Kashif A et al. Virtual Simulation with Real Occupants
Using Serious Games. 14th International Conference of
the International Building Performance Smulation As-
sociation; 2015 Dec; Hyderabad. 2712-2719.

[10] Khatib F et al. Crystal structure of a monomeric retrovi-
ral protease solved by protein folding game players. Nat
Sruct Mol Biol. 2011;18(10): 1175-1177.
doi:10.1038/nsmb.2119.

[11] Koretko S, Herich T. On Some Concepts of Emotional

Engine for BDI Agent System, 14th |EEE Inter national

Symposium on Computational Intelligence and Informat-

ics, 2013 Nov; Budapest. 527-532. doi:

10.1109/CINTIL.2013.6705254.

Korecko S, Herich T., Sobota B. JBdiEmo — OCC Mod-

el Based Emotional Engine for Jadex BDI Agent System,

12th International Symposium on Applied Machine In-

telligence and Informatics; 2014 Jan; Herl'any. 299-304.

doi: 10.1109/SAMI.2014.6822426.

SNE 26(4) - 12/2016

[12

—

Korecko et al. Jadex/JBdiEmo Emotional Agents in Games: a Feasibility Demonstration

[13] Korec¢ko S, Sobota B, Curilla P. Emotional Agents as
Non-playable Characters in Games: Experience with
Jadex and JBdiEmo, 15th |EEE International Symposium
on Computational Intelligence and Informatics; 2014
Nov; Budapest. 471-476. doi:
10.1109/CINTI.2014.7028721.

[14] Logas H. et al. Software Verification Games: Designing
Xylem, The Code of Plants. Sth Int. Conf. Foundations
of Digital Games, 2014 April; Ft. Lauderdale.

[15] Ontanon S. et al. A Survey of Real-Time Strategy Game
Al Research and Competition in StarCraft. IEEE Trans.
on Computational Intell. and Al in Games. 2013; 5(4):1-
19.

SNE 26(4) - 12/2016

[16] Orthony A, Clore G, Collins A. The cognitive structure
of emotions. Cambridge: CUP; 1988. 207 p.

[17] Steunebrink B.R, Dastani M, Meyer J.J.Ch. The OCC
model revisited. In: Reichardt D, editor. Proc. of the 4th
Workshop on Emotion and Computing - Current Re-
search and Future Impact, 2009.

[18] Tosik T, Maehle E. MARS: A simulation environment
for marine robotics, OCEANS 14 MTY/IEEE; 2014 Sept;
St. John's. doi: 10.1109/0CEANS.2014.7003008

