
147

S N E T E C H N I C A L N O T E

Causality of System Dynamics Diagrams
Peter Junglas

PHWT Vechta Schlesier Str. 13, 49356 Diepholz, Deutschland; peter@peter-junglas.de

Simulation Notes Europe SNE 26(3), 2016, 147-154

DOI: 10.11128/sne.26.tn.10343

Received: September 3, 2015; Revised: March 20, 2016;

Accepted: April 15, 2016;

Abstract. System dynamics diagrams are generally re-
garded as a very simple modeling tool that can be im-
plemented easily with standard techniques. But a few
examples will show that this can be more complicated
than expected: The causality – i.e. the assignment of
block connections to inputs or outputs – can depend on
the state of the complete system. How this affects the
design of system dynamics libraries will be shown for
the different modeling approaches used in Modelica and
Simulink.

Introduction
System dynamics diagrams are a modeling method that

is used mainly for non-technical subjects like economy

or ecology [1]. Commercial tools for modeling and sim-

ulation are readily available (e.g. Stella from ieee sys-

tems [2]), there even exists a free Modelica implemen-

tation [3].

In view of the basically very simple structure of the

diagrams one should assume that they can be easily im-

plemented, e.g. using Simulink to create correspond-

ing blocks. Trying this one finds that the signal flow

method can be inconvenient to reproduce certain de-

tails, because every connection of a block has to be

defined beforehand as input or output, i.e. the causal-

ity of each connection is fixed. However in some ex-

amples the causality changes dynamically according to

the current state of the system. For the implementation

of this behaviour a modeling approach like “Physical

Modeling” [4] seems to be better suited, because here

the causality is dynamical in general and can only be

determined in the context of the complete system.

In the following several examples are going to il-

lustrate the basic problems, and implementations in

Modelica and Simulink will show, how they can be

solved. While the Simulink library is rudimentary and

only serves as a proof of concept, the Modelica version

is quite complete and can be useful on its own to allow

for the simulation of system dynamics diagrams with

physical modeling programs. It has been developped

originally for a textbook [5] and is available under an

open source licence from the author’s homepage [6].

The already existing Modelica implementation by Cel-

lier et al. [3] does not address the problems mentioned

here, because it concentrates on the simulation of the

famous world models, which are free of causality prob-

lems.

1 Basic System Dynamics
Diagrams

System dynamics diagrams consist of three different

types of basic building blocks: Reservoirs are stor-

age elements representing state variables, which change

their values – often called levels – through ingoing or

outgoing flows. Flows work like valves and define the

value of the flows, they connect reservoirs with exter-

nal sources or sinks or other reservoirs. They can use

the values of auxiliary variables that are computed with

converters. Fig. 1 shows a simple diagram containing

these blocks.

Figure 1: Basic blocks in system dynamics diagrams.

As an example we consider a simple model of pop-

ulation growth: The size of the population N changes

according to the number of births B and deaths D per

time. B is simply given by a constant rate b, whereas D

SNE 26(3) – 9/2016



148

P Junglas Causality of System Dynamics Diagrams

is limited by a fixed capacity Nc:

B = bN

D = d N with d =
d0

1−N/Nc

In the complete model (cf. fig. 2) the parameters b, d0

und Nc are defined in converters, an additional con-

verter uses them to compute the rate d. The flows mul-

tiply their two inputs to get the flow values B and D.

The diagram only shows the basic relations between the

variables, the concrete formulas are hidden inside the

blocks.

Figure 2:Model population.

The causality of the components is straightforward:

Converters can have an arbitrary number of inputs, but

only one output that is connected to other converters or

the correspondig inputs of a flow. A flow block uses

these inputs to compute the value of the flow and passes

it as an output value to the connected reservoirs. The ar-

rows denoting the flows in the diagram seem to contra-

dict this view, but they only denote the (positive) direc-

tion of a flow, not the logical flow of the signal, which

always proceeds from a flow to a reservoir. Finally a

reservoir subtracts input and output flow and computes

the value of its state variable by simple integration. This

value is provided via explicit outputs, which can be used

in converters or flows. This basic idea has been used in

the Modelica library described in [3] and can be easily

implemented in Simulink.

2 Models with Variable
Causality

2.1 Stock with saturation

A reservoir has two optional parameters that define min-

imal and maximal level values. In the example model

sink (cf. fig. 3) the first reservoir S1 has a minimal

value of 0 und a start value of 4, the outgoing flow is set

to 0.5 by a constant converter. The result of the simu-

Figure 3:Model sink.

lation can be seen in fig. 4: According to the constant

flow the level of S1 decreases linearly with time, until

at t = 8 the minimal value is reached, and stays constant

thereafter. The subsequent reservoir S2 has the corre-

sponding behaviour, especially it stays constant after t

= 8.

Figure 4: Simulation result of sink.

At first sight it seems that the model can be imple-

mented easily by adding a saturation into the reservoir

S1. This doesn’t affect the behaviour of S2 though, its

level would rise steadily after t = 8 according to the

given flow value. Instead one has to guarantee that the

outflow at S1 and the corresponding inflow at S2 change

from 0.5 to 0 according to the level of S1. This is a typ-

ical causality problem: Before t = 8 the size of the flow

is defined by the flow block, afterwards it is reduced to

0 by the reservoir S1. And the situation gets even more

complicated, if S2 has an upper limit smaller than 4:

Now it is S2 that has to change the flow value.

2.2 Simple conveyor belt model

The conveyor block models a simple conveyor belt, its

input values appear at the output after a given delay.

SNE 26(3) – 9/2016



149

P Junglas Causality of System Dynamics Diagrams

It is a discrete element with a fixed sample time. In

the test model conveyor (cf. fig. 5) a time varying

input is transported by a conveyor and accumulated in

a reservoir. Fig. 6 shows the result of the simulation,

which comes as no surprise.

Figure 5:Model conveyor.

Figure 6: Simulation result of conveyor.

The interesting point here is the causality of the out-

flow: It is completely defined by the conveyor block and

simply transported to the following reservoir. The value

given by the flow element is disregarded completely. In

this example the causality is not changing dynamically,

but it has the “wrong” direction – at least compared to

the standard situation defined in section 1.

2.3 Modeling a simple manufacturing
machine with Oven

A particularly clear-cut example is the Oven, a dis-

crete model for a generic manufacturing machine. It

has the three parameters initialLoad, capacity
and cookingTime and behaves like a baking tray:

Initially it is loaded according to the input flow, un-

til its capacity is reached. Subsequently the cooking

time starts, at the end of which the complete content

is forwarded to the output flow. The model oven1
(cf. fig. 7) shows the basic behaviour of the compo-

nent, using the parameter values capacity = 3 and

cookingTime = 2. The input flow has the constant

value 2, the output flow the value 1.

Figure 7:Model oven1.

The plot in fig. 8 shows the input and output flow

in the upper part and the load of the oven in the lower

part. At time t = 2 two incoming parts are stored in the

oven, in the next step only one. At t = 3 the capacity is

reached, the processing begins. Afterwards at t = 5 the

complete content of three elements is released, while

at the same time the next two parts arrive at the input.

The concrete timing behaviour, especially the overlap-

ping of output and input, is a matter of definition and

is modelled here after the corresponding blocks in the

Stella environment.

The size of the input flow depends in a complicated

way on the preceding flow element and the state of the

oven: During the loading phase the value is deter-

mined by the flow, until the capacity is reached. The

input then is given as the minimum of the input flow

and the remaining space in the oven. During the pro-

cessing time the oven sets the input to zero. The out-

put flow is defined by the oven alone: During loading

and processing it is zero and rises to the full value of

capacity only during a short discharging phase. As

in the conveyor example the value of the successive

flow element is ignored completely.

The situation gets even more complicated if one ex-

tends the model oven1 by reservoirs S1 and S2 at the

input and output of the oven: When S1 is going to run

empty – and has a minimal value of zero –, its output

SNE 26(3) – 9/2016



150

P Junglas Causality of System Dynamics Diagrams

Figure 8: Simulation result of oven1.

flow is calculated by its last level, the (maximal) size

defined by the flow element and the current state of the

oven. Fig. 9 shows a typical simulation result for such

a case.

Figure 9: Simulation result of oven2.

And if the output reservoir S2 has an upper satura-

tion limit, the simulation may fail: The oven wants to

get rid of its content, but the output storage has no room

for it. Obviously this is a situation to avoid not only in

the simulation.

3 Implementation of a System
Dynamics Library in Modelica

3.1 Design of Modelica libraries

Physical modeling environments based on Modelica

use a completely different approach to the problem of

causality [4]: It is not necessary to determine, which

quantities can be defined as input variables and used

to compute the values of output variables. Instead one

only specifies the relevant equations for a component,

without solving each of them for a variable. Addi-

tional equations are generated automatically using the

connections between the components. For this purpose

one distinguishes two types of quantities: Flow vari-

ables add together to zero at connection points – they

are often the time derivatives of conserved quantities –

, whereas potential variables meeting at a connection

have the same value.

How to create a simulation program out of the re-

sulting system of equations – generally a DAE system

–, is a difficult problem, but has been solved in many

cases of practical interest [7]. The corresponding algo-

rithms are implemented in Modelica based simulation

programs like Dymola or MapleSim.

The high flexibility that has been reached in

Modelica, comes with a price especially for library

builders: Since the description of the blocks does not

state explicitely where a quantity is computed, it is not

guaranteed automatically, that an arbitrary combination

of blocks and connections leads to a closed system, hav-

ing the same number of equations and variables. A rem-

edy for this problem has been presented in [8]: One de-

fines an equal number of flow and potential variables at

each connection point (connector) and provides each

block with as many equations as it has external flow

variables. In addition one can augment a block with

“common” signal lines that are explicitely designated as

input or output. In this case one needs an extra equation

in the block for each output variable. Models that ad-

here to these conditions are called “balanced”. Provably

they contain an equal number of variables and equa-

tions.

3.2 Conception of the connector

These considerations will now be applied to the con-

struction of a system dynamics library in Modelica.

Starting point is the definition of a suitable connec-

tor MassPort that contains the size of the flow as

SNE 26(3) – 9/2016



151

P Junglas Causality of System Dynamics Diagrams

Modelica flow variable dm, corresponding to its inte-

gral, the state variable m. The following two questions

have to be solved now:

1. Which quantity can be used as potential variable

that accompanies dm?

2. How can the equations be distributed between

reservoirs and flows?

Motivated by the basic systematics of system dy-

namics models that has been introduced in section 1 the

integration of the flow shall be done inside a reservoir,

which contains the following equation:

der(m) = inflow.dm +
outflow.dm;

This formulation employs the usual sign convention in

Modelica: A flow variable is positiv, when it flows into

the block.

Basically a flow block now computes the value of

dm using its input quantities. But as section 2 has made

clear, it has to take into account the levels of the adja-

cent reservoirs. Therefore reservoirs have to send the

necessary information as a real value data that adopts

the role of the potential variable. Considering the ex-

amples above there are three different possibilities, how

the value of data can be used:

1. not at all, the reservoir simply accepts any value

given by the flow,

2. the flow is set to data,

3. the flow is limited by data.

The first case complies with the “standard” causality.

The second case corresponds to the situation at the out-

flow of the conveyor or oven, the third to a reservoir

with saturation or the loading of the oven.

This behaviour could be implemented by setting

data = 0 in the first case and using the sign of data
to distinguish between the other two cases. But this idea

has two drawbacks: There is no easy way to implement

additional uses of data that could come up in future

extensions, and the test for zero with real variables is

a bad idea anyway. For that reason the connector will

be extended by an integer variable info, which is used

to indicate the corresponding case. This variable has

a fixed causality: It is always computed by a reservoir

and used inside a flow block. Therefore we need two

variants of the connector, where info is designated as

output or input respectively:

connector MassPortR
"mass port of reservoirs"
flow Real dm;
Real data;
output Integer info;

end MassPortR;

connector MassPortF
"mass port of flows"
flow Real dm;
Real data;
input Integer info;

end MassPortF;

3.3 Structure of the system dynamics library

After these preliminary considerations the further con-

struction of a system dynamics library is straightfor-

ward. It consists of the following four subpackages:

• Interfaces

• Reservoirs

• Converters

• Flows

As usual the definition of the connectors, base

classes and auxiliary functions are collected in

Interfaces. In particular it contains the function

constrainedRate that combines the external in-

put value of a flow with the data and info vari-

ables of its two MassPorts to compute the actual flow

value. This calculation is included in the base class

GenericFlow and inherited by all flow components.

The subpackage Reservoirs contains the stan-

dard elements Stock and SaturatedStock to-

gether with CloudSource and CloudSink, which

represent external sources or sinks. Discrete

components are the by now well-known Oven
and Conveyor supplemented by discrete versions

StockD and SaturatedStockD.

All components in the Flows subpackage have two

MassPorts to connect to surrounding reservoirs. The

basic Flow has a signal input that defines the flow value

in standard situations. Additionally the library provides

variants with several inputs to implement commonly

used simple equations and some elements for discrete

simulations.

The elements in Converters exclusively have

signal connections, they are defined in Modelica as

SNE 26(3) – 9/2016



152

P Junglas Causality of System Dynamics Diagrams

block, which means that they have a fixed causal-

ity. Programs specialised to system dynamics mod-

eling usually have only one converter and one

flow block. The actual relations can be defined

as parameter values, the number of inputs is adapted

automatically. Unfortunately this feature cannot be

implemented using Modelica. For this reason the

subpackages contain several components that imple-

ment the most common relations. A special fea-

ture are the two blocks SwitchedConverter and

TimeSwitchedConverter, which switch between

two inputs according to a control input or the simulation

time, and the GraphConverter, which implements

a function by linear interpolation between table values

that are read from a file. Blocks containing arbitrary re-

lations can be created easily by inheriting from a proper

base block and adding a few lines of Modelica code.

4 System Dynamics Diagrams in
Simulink

In the signal flow method connections have a fixed

causality, which can not change dynamically according

to the state of the system. Of course this doesn’t im-

ply that one cannot implement models like the examples

above, but one has to take care of the causality problems

explicitely. In the following some example models in

Simulink will show how this can be achieved. A sim-

pler, but less systematic implementation is described in

[5].

4.1 Modeling of continuous blocks

As has been described already in section 1 the “stan-

dard” situation has a fixed causality. Therefore it is easy

to construct corresponding blocks for reservoirs, flows

and converters in Simulink and create models like the

population example (cf. fig. 10). No external cloud

blocks have been included, since they don’t represent

any equations anyhow.

Unfortunately it is not possible to make the model

look more like a system dynamics diagram due to a

fundamental restriction of Simulink blocks: All input

signals are attached to one side of a block, all output

signals to the opposite side. The “upwards” orienta-

tion of the flows makes the distribution of lines a bit

more pleasant, but in larger examples it is hard to avoid

a hay-wire circuitry. The situation gets even worse by

the additional lines that are necessary to cope with the

-

+

population

births deaths

birth rate

basic death rate capacity

death rate

Figure 10:Model population in Simulink.

dynamical causality in the following examples.

For the implementation of a reservoir with satura-

tion we can resort to the ideas used in Modelica before:

A reservoir gets two additional outputs to signal the fol-

lowing flow block, when it is empty, and the preceeding

flow block, when it is full. A flow block has two cor-

responding inputs that are connected to the surrounding

reservoirs.

-

+

source

-

+

drain

1

Figure 11:Model sink in Simulink.

Fig. 11 shows how this idea is used in the model

sink. For simplicity the drain is realised as a simple

stock without saturation. The corresponding flow input

has the constant value 1 to indicate that the flow can

be delivered, otherwise it would be 0. This makes the

implementation of the flow block very simple: It just

multiplies its three inputs.

4.2 Modeling of discrete blocks

In a discrete model a reservoir with saturation behaves

differently than in the continuous case: Due to the fixed

time step the inflow can be limited by the space avail-

able or the outflow by the current level. Therefore the

two outputs that correspond to the data value of the

Modelica connector will provide the maximal and min-

imal values possible instead of simply 1 or 0 as in the

continuous case.

The discrete version of the flow block has to be

changed accordingly: Instead of just multiplying its

SNE 26(3) – 9/2016



153

P Junglas Causality of System Dynamics Diagrams

three inputs, it now takes their minimal value. If a con-

nected reservoir has no saturation the unconnected data

input of the flow needs a constant value of Inf (i.e. in-

finity) instead of 1. With these modifications a Simulink

version of the oven2 example with a limited reservoir

at the input looks like fig. 12.

Inf

-

+

input stock

-

+

output stock

δ

machine

Figure 12:Modell oven2 in Simulink.

But there is another feature still missing: The oven

defines the output flow, irrespectively of the value pro-

posed by the following flow block. One could im-

plement this behaviour by adding another signal from

the reservoir to the flow mimicking the info value in

Modelica, but this would clutter the diagram with even

more lines. Instead the flow block gets a boolean pa-

rameter useFlow that is set to false manually, if the

flow is preceded by an oven or a conveyor. Fig. 13

shows the complete implementation of the discrete flow

block. Now the model oven2 reproduces the results of

the equivalent Modelica example exactly.

1

outflow

1

infoL

2

inflow

3

infoR

min

z

1

 >= 

Switch

useFlow

Inf

Figure 13: Implementation of the discrete flow block in
Simulink.

The implementation of the oven component it-

self is cumbersome but straightforward, it uses three

UnitDelay blocks representing internal variables and

mimics the Modelica code completely. Alternatively

one could use an S-function to program the oven di-

rectly in Matlab.

In contrast the conveyor is completely trivial, it

just consists of an Integer Delay block. But it

shows an interesting difference to its Modelica coun-

terpart: To achieve a three step delay one sets the inter-

nal parameter to three (obviously), but in the Modelica

case, which uses an array together with the pre opera-

tor and a while sample() construct, one has to set

the parameter to four to get the same result. Apparently

the detailed timing of an event is handled differently in

Modelica and Simulink.

Though all example models have been successfully

implemented in Simulink, the results lack the simplic-

ity and flexibility of the Modelica version. This is only

partly due to the dynamic causality, but mainly – and

trivially – to the restrictive placement rules for connec-

tions on Simulink blocks.

5 Conclusions

The development of a flexible system dynamics library

is much easier using the dynamic causality of physical

modeling environments. Nevertheless it is possible to

mimic it completely in Simulink using a larger number

of signal lines between the blocks. Reversing the argu-

ment one could define the flow and potential variables

in the MassPort connectors with a fixed causality,

since dm is always computed in a flow, data in a reser-

voir. This shows that the idea of “dynamical causality”

in system dynamics diagrams is mainly a matter of con-

venience and depends on the definition of “one connec-

tion”.

In modeling courses a presentation of the ideas be-

hind the two different implementations will clarify the

notion of causality and broaden the modeling skills of

the students. An interesting point here, which will

need further clarification, is the different behaviour of

the pre operator in Modelica and the 1/z block in

Simulink.

Compared to dedicated system dynamics environ-

ments users of the Modelica library have to cope with

limitations of their tools. A main point is the missing

of the feature to input formulas directly as parameters.

Even if components for the most common relations are

provided and more can be created by a few lines of

Modelica, the typical user of system dynamics software

has little intention to write explicit code. In any case the

Modelica library presented here is a simple and cheap

replacement for specialised tools - at least for teaching

purposes.

SNE 26(3) – 9/2016



154

P Junglas Causality of System Dynamics Diagrams

References

[1] Hannon B, Ruth M. Dynamic Modeling. Springer,

New York, 2nd edition, 2001.

[2] Richmond B, Peterson S, Vescuso P. An Academic
User’s Guide to STELLA. High Performance Sys-

tems, Inc., Lyme, N.H., 1987.

[3] Cellier FE. World3 in Modelica: Creating System

Dynamics Models in the Modelica Framework.

In Proceedings of the 6th International Modelica
Conference, Bielefeld, Germany,2008; p. 393 –

400.

[4] Fritzson PA. Principles of Object-Oriented Mod-
eling and Simulation with Modelica 3.3. Wiley &

Sons, New York, 2015.

[5] Junglas P. Praxis der Simulationstechnik. Europa-

Lehrmittel, Haan-Gruiten, 2014.

[6] Junglas P. System dynamics library in
Modelica [Online]. [cited 2015 July

15]; Available from: http://www.peter-

junglas.de/fh/simulation/systemdynamics.html

[7] Cellier FE, Kofman E. Continuous System Simu-
lation. Springer, New York, 2010.

[8] Olsson H, Otter M, Mattsson SE, Elmqvist H.

Balanced Models in Modelica 3.0 for Increased

Model Quality. In Proceedings of the 6th Interna-
tional Modelica Conference, Bielefeld, Germany,

2008; p. 21 –33.

SNE 26(3) – 9/2016


