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Abstract. It is often informally stated that system dy-
namics (SD) models are equivalent to differential equa-
tion systems. This paper formalizes the concept of an SD
model as a collection of rate equations, auxiliary equa-
tions, and the “flow coupling” of flows to stocks. If such
a model has no causal loops that consist only of auxil-
iaries, then it is possible to find an equivalent differen-
tial equation system. The generalized solution concept
of Carathéodory is shown to be suitable for defining the
corresponding state transition map, which leads to a for-
mal dynamical system.

Introduction

According to Hinrichsen and Pritchard [1], a dynamical

system is a structure that consists of a time set (i.e., a

totally ordered set of all time values) T, an input value

set U , an input function space U ⊂ UT , a state space

X , an output space Y , and two maps: the state transition

map φ and the output map η . For every initial value

x0 ∈ X at time point t0 ∈ T, every input signal u ∈ U
and every time point t ∈ T such that (t; t0,x0,u) ∈ Dφ ⊂
T

2 ×X ×U , φ maps to the state x = φ(t; t0,x0,u) ∈ X .

The output map then produces the corresponding output

value y = η(t,x,u(t)) ∈ Y .

Four axioms must hold for the state transition map:

Interval Axiom: For every fixed initial value x0, initial

time t0, and input signal u, φ is defined on an interval in

T that contains t0.

Consistency Axiom: For t = t0, φ always maps to the

initial value x0.

Causality Axiom: If two input signals u and v equal

each other on the interval between t0 and t1, then

φ(t1; t0,x0,u) = φ(t1; t0,x0,v).
Cocycle Property: If we “restart” the system at time

t1 > t0, we get the same state at time t2 > t1 as if

we go directly to t2 from t0, because φ(t2; t0,x0,u) =
φ(t2; t1,φ(t1; t0,x0,u),u).

It is often informally stated that every system dy-

namics (SD) model is equivalent to a system of differen-

tial equations and thus a dynamical system. Basically,

every stock or level stands for one differential equation,

which describes the change of the stock over time. In

this paper, we show formally that this is indeed true.

Note. This article is a revised version of Section 3.4

of the author’s PhD thesis [2].

1 The Building Blocks of System
Dynamics Models

1.1 Stocks and flows

One major advantage of SD is that only a few basic ele-

ments are necessary to build a model. Every SD model

consists of stocks and flows (equivalently, they are often

called levels and rates). Stocks are variables that accu-

mulate a certain quantity. Through this accumulation,

stocks represent the memory and state of the system.

Flows are the other important variable type. They

have no memory, because at every time point, their

value depends only on the current values of the stocks.

But they represent stock changes, because flows are

the sole quantities that the stocks directly accumulate.

More specifically, a flow F may be an inflow of a cer-

tain stock S, in which case S is increased by F , or it may
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be an outflow of S, in which case S is decreased by F .

These two elements are enough to describe the en-

tire dynamics of a system. Actually, as we will show, if

the dependence of the flows on the stocks is specified

through equations, the system is equivalent to a sys-

tem of ordinary differential equations, where the stocks

are the state variables and the flows are the right-hand

sides of the differential equations. Together with initial

values for the stocks, an initial value problem is given,

which has a unique solution under the condition well-

known from the theory of differential equations that the

right-hand side is continuous in time and Lipschitz con-

tinuous in the state variable. In this regard, SD is just

another way of describing differential equations.

However, the systematic way of deriving the equa-

tions is the real benefit of the method. The stock and

flow structure is important on its own, even without the

equations, because even it alone gives qualitative in-

sight into the possible and probable dynamic behaviour

of a system. Moreover, it has a standardized graphical

notation, the stock and flow diagram. Figure 1 shows a

simple stock and flow diagram.

Figure 1: A stock and flow diagram that consists only of
stocks (depicted as boxes) and flows (depicted as
pipes with valves in the middle). If the source or
sink of a flow is not important because it lies
outside the system boundary, a small cloud
symbol is drawn instead. Blue arrows show causal
dependencies.

In the diagram, boxes depict stocks and pipes with

valves in their middle depict flows. Every flow that ends

in a stock is an inflow for this stock, whereas every flow

that begins in a stock is an outflow. Stock 1 has one in-

flow that begins in a source outside the model boundary,

depicted by a cloud symbol. Similarly, an outflow goes

from Stock 2 into a sink. The flow in the middle is both

an outflow for Stock 1 and an inflow for Stock 2.

There is an additional causal structure in the dia-

gram. The blue arrows show on which stocks the flows

depend. For example, the flow between Stock 1 and

Stock 2 depends on both of them. On the other hand, it

would be an error to use Stock 1 in the equation of the

outflow from Stock 2, because there is no blue arrow

from Stock 1 to Flow, which means that it is indepen-

dent of Stock 1. Fortunately, SD simulation software is

capable of automatically detecting such inconsistencies

between diagram and equations.

1.2 Auxiliaries and constants

Stock and flow diagrams with only stocks, flows, and

their causal dependencies along with equations could

describe every possible SD model, but often different

concepts and effects are involved in a flow equation. In

this case, it is beneficial to include intermediary vari-

ables to state these relationships directly in the stock

and flow diagram. They are called auxiliaries because

of their not necessary but often helpful nature. Like

flows, these variables can depend on stocks and other

auxiliaries. It must always be possible to calculate their

value from all values of the stocks.

Additionally, stock and flow diagrams can include

constant values as separate quantities. Of course, it

would be possible to just write these values in the equa-

tions of auxiliaries or flows, but as in computer pro-

gramming the use of such “magic numbers” is consid-

ered to be bad practice. The SD methodology tries to

encourage modellers to make concepts graphically ex-

plicit and to give them meaningful names.

2 Formal Definition of SD
Models

Definition 2.1 (System Dynamics Model). A sys-
tem dynamics model with m stocks (levels), n flows

(rates), ka auxiliaries, and kp parameters consists

of n flow or rate equations fi : D fi → R, i ∈
{1, . . . ,n}, where D fi ⊂ R

m × R
ka × R

kp , ka auxil-

iary equations g j : Dg j → R, j ∈ {1, . . . ,ka}, where

Dg j ⊂ R
m ×R

ka ×R
kp , and the flow coupling FC ∈({0, . . . ,m}2 \{(i, i) : i ∈ {0, . . . ,m}})n

.

The flow coupling FC denotes which stocks a flow

connects. Here, the index 0 represents a source or sink.

The pair (i,0) in the flow coupling stands, for exam-

ple, for a flow from the i-th stock into a sink. A flow

from the i-th stock into the stock with index j would be

represented by the pair (i, j).
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All variables of a system dynamics model have val-

ues in R. We write x(t) ∈ R
m for the state vector

of stocks at time t, r(t) ∈ R
n for the vector of flows,

a(t) ∈ R
ka for the vector of auxiliaries, and p ∈ R

kp for

the parameter vector.

3 Causal Loops

In the following, we want to find a corresponding differ-

ential or integral equation system for an SD model and

define the state transition mapping and the output map-

ping via the solution of this equation system. This is im-

possible if the equations for the auxiliary variables form

algebraic loops: Suppose that there are three auxiliary

variables a1, a2, and a3 in the model, and that the equa-

tions are a1 = g1(x,a,p) = a2, a2 = g2(x,a,p) = a3,

and a3 = g3(x,a,p) = a1. Obviously, the equations are

redundant and reduce to a1 = a2 = a3, which has in-

finitely many possible solutions.

The question is which preconditions secure that

there are no algebraic loops involving auxiliaries. This

involves the concept of causal links.

Definition 3.1 (Causal Link). In a system dynamics

model, a variable v1, where v1 is a stock, an auxiliary,

or a parameter, is a direct cause of an auxiliary or flow

v2 if the corresponding auxiliary equation g j (or f j) de-

pends on v1, that is, if the value of g j (or f j) is not the

same for all values of v1, where all other variables are

fixed. Likewise, a flow v1 is a direct cause of a stock

v2 if it is an outflow or inflow of v2. In both cases, the

model has a causal link from v1 to v2.

Beginning from a variable, it is possible to follow

causal links.

Definition 3.2 (Causal Chain). A sequence v1, . . . ,vk
of variables with k ∈ N is called a finite causal chain of

length k beginning at v1 if for every i ∈N with 1 ≤ i < k
there is a causal link from vi to vi+1. Likewise, a se-

quence (vi)i∈N is called an infinite causal chain begin-

ning at v1 if it has the same property as in the finite case.

Definition 3.3 (Causal Loop). A causal loop of length

k is a finite causal chain v1, . . . ,vk where v1 = vk and

vi �= v j if 1 < i < k or 1 < j < k.

If and only if there is a causal loop that involves

just auxiliary variables the equations form an algebraic

loop.

4 The Link Matrix
We will now define a matrix that stores all causal links

between auxiliaries. It is possible to see if an SD model

includes a causal loop with only auxiliary variables

from the structure of this matrix.

Definition 4.1 (Link Matrix). The link matrix L of an

SD model with auxiliary variables a1, . . . ,aka is the ma-

trix where Li, j is 1 if there is a causal link from ai to a j
and 0 otherwise.

Obviously, auxiliaries that have only causal links to

flows do not pose any problem. But also other auxil-

iaries with causal links only to these first kind of auxil-

iaries cannot be part of an algebraic loop. We can pur-

sue this strategy further and thus classify them:

Definition 4.2 (Causal Order). An auxiliary is of causal
order 0 if it has no causal link to any other auxiliary. It

is of order 1 if it has only causal links to auxiliaries of

order 0. Generally, an auxiliary has causal order n if

it has links to auxiliaries of order n− 1, but not causal

links to auxiliaries of higher order. All other auxiliaries

have infinite causal order.

Lemma 4.3. An auxiliary a0 has infinite causal order
if and only if it is part of a causal loop involving only
auxiliaries or if there is a causal chain beginning at a0

that ends in such a causal loop.

Proof. No auxiliary in a causal loop has causal order

0, because every auxiliary in the loop has a causal link

to the next auxiliary in the loop. It follows that also no

auxiliary can be of order 1, because an auxiliary of order

1 only has links to order-0 auxiliaries. The same holds

for every finite order. Finally, if a causal chain ends in

an auxiliary that is part of a causal loop, all auxiliaries

of the causal chain have infinite order, which can be

seen recursively.

On the other hand, suppose that a0 is not part of a

causal loop with only auxiliaries and there is also no

causal chain beginning at a0 that ends in a loop. As

there are only ka auxiliaries and no auxiliary can be part

of a causal chain twice if the chain contains no loop,

every causal chain that starts at a0 is finite. If a0 has

infinite order, at least one of the auxiliaries to whom

it has a causal link, denoted by a′0, has to have infi-

nite order too. Again, one of the auxiliaries to whom

a′0 has a causal link has to have infinite order. In this

way, it would be possible to construct an infinite causal

chain where every auxiliary has infinite order, which is
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in contradiction of the fact that every causal chain start-

ing from a0 is finite.

Figure 2 shows an example of a causal diagram with

only auxiliary variables. All auxiliaries in the loop have

infinite causal order. Additionally, a0 has infinite causal

order because it has a link to another auxiliary of infinite

order. The other auxiliaries (a5, a6, and a7) have finite

order.

Figure 2: In this causal diagram, a6 and a7 have causal order
0 (they have no link to any other auxiliary). The
only other variable with finite causal order is a5,
which has causal order 1 because it has only links
to variables of order 0. All other auxiliaries in the
diagram have infinite causal order.

Proposition 4.4. An SD model contains a causal loop
involving only auxiliaries if and only if it is not possible
to renumber the auxiliaries such that the link matrix is
a lower triangle matrix.

Proof. First, suppose that the model has a causal loop

involving only auxiliaries. For the link matrix to be

a lower triangle matrix, a variable ai can only have a

causal link to a j if j < i. One variable a′ of the causal

loop has to be the variable with the lowest number of all

variables in the loop. As a variable in the loop, it has a

causal link to the next variable in the loop. This variable

must then have a lower number then a′, which leads to

a contradiction. Therefore, the link matrix cannot be of

lower triangular form.

Now suppose that no causal loop involves only aux-

iliaries. Lemma 4.3 shows that then all auxiliaries must

have finite causal order. We can therefore numerate the

auxiliaries according to their order: First, we take all

order-0 auxiliaries, then all order-1 auxiliaries, and so

on. Each auxiliary can have only links to auxiliaries

with lower order, which shows that the link matrix is of

lower triangular form.

5 Flow Equations of a System
Dynamics Model

The last proposition gives a characterisation of the sys-

tem dynamics models whose equations do not form al-

gebraic loops. These models allow for the formation of

a differential equation system which depends only on

the values of stocks and parameters.

Proposition 5.1. If a system dynamics model contains
no causal loops of only auxiliaries, the flow equations
can be written just in terms of stocks and parameters.

Proof. In a system dynamics model, the flow equations

might be given as functions that depend not only on

stocks and parameters, but also on the values of auxil-

iaries. However, according to Proposition 4.4, the aux-

iliaries of a system dynamics model without algebraic

loops can be enumerated such that the link matrix is

of lower triangular form. The value of the first auxil-

iary a1 depends only on stocks and parameters, that is,

there is a function g′1 : D′
g1
→ R such that g′1(x(t),p) =

g1(x(t),a(t),p) for all (x(t),a(t),p) ∈ Dg1
, where the

domain D′
g1

is the restriction of Dg1
to the set Rm×R

kp .

The second auxiliary a2 may depend on a1 as well, but

as the value of a1 is a function of only stocks and param-

eters, so is a2. In general, as ai for 1 ≤ i < ka depends

only on stocks and parameters, so does ai+1 .

Finally, as all auxiliaries can be written as functions

of stocks and parameters, all flow equations are also

only functions of stocks and parameters.

6 The State Transition Map of a
System Dynamics Model

The result from the last section guarantees that it is pos-

sible to find a differential equation system that is equiv-

alent to the system dynamics model. Two problems

could arise:

1. The differential equation system might not have a

solution.

2. The differential equation might have more than one

solution.

In both cases, it is not clear how to define the state tran-

sition mapping of the corresponding dynamical system.

We should thus require the differential equation system

to have a unique solution.
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Is it enough if we allow for solutions in the classical

sense? Consider, for example, the first order system

dy
dt

= u− y

y(0) = 0

(1)

where u is the input function and y is the output func-

tion. If u is continuous, then the right-hand side of

Equation 1 is continuous and therefore the initial value

problem has a solution according to the Peano existence

theorem. (It is even unique because the right-hand side

is Lipschitz continuous in y.) But if u is not continuous,

a solution might not exist, such as in the case where the

input u is the Heaviside step function

H : R→{0,1}

t �→ H(t) :=

{
1 for t ≥ 0

0 for t < 0.

Proposition 6.1. The initial value problem (1) with in-
put u = H, where H is the Heaviside step function, has
no solution in the classical sense.

Proof. A solution y would have to fulfill

dy
dt

(t) =

{
−y(t) for t < 0

1 for t = 0,

and as a differentiable function it must be continuous.

Since y(0) = 0, for ε > 0 there exists a δ > 0 such

that |y(t)| < ε for all t with |t| < δ . In particular, for

δ < t < 0 we have | dy
dt (t)|= |−y(t)|< ε . If we choose,

for example, ε = 1
2 , we can therefore fix a point t1 < 0

such that y(t) < 1
2 for all t with t1 ≤ t < 0. But as a

derivative, dy
dt must have the intermediate value property

according to Darboux’s theorem and, therefore, take all

values between dy
dt (t1) and dy

dt (0) = 1 on the interval

[t1,0], which leads to a contradiction.

This is unsatisfactory, as the Euler method that is

typically used for the simulation of SD models does not

have any problems with this system. Only the first step,

which can be made arbitrarily small, is affected by the

discontinuity. For all further steps, the input function

equals 1.

It is possible to solve the differential equation for

t ≥ 0 with variation of constants and ignore the disconti-

nuity at t = 0, which leads to the solution y(t) = 1−e−t .

For t < 0, we can set y(t) = 0. The “solution” has the

following properties:

1. It is Lipschitz continuous.

2. It fulfils the differential equation for t �= 0.

It seems natural to accept this function as a solution.

This leads to one kind of a generalized or weak solution

concept: a solution in the sense of Carathéodory.

Definition 6.2 (Carathéodory Solution). A function is a

Carathéodory solution of an ordinary differential equa-

tion system on an interval I ⊂ R if it is absolutely con-

tinuous and satisfies the differential equations almost

everywhere on I.

The function y in the example above is absolutely

continuous, because it is even Lipschitz continuous, and

it satisfies the differential equation everywhere apart

from t = 0, that is, almost everywhere, thus it is a

Carathéodory solution. Note that an absolutely contin-

uous function is differentiable almost everywhere. For

comparisons with other generalized solution concepts,

see [3].

Definition 6.3 (State Trajectory of a System Dynamics

Model). Let MSD be a system dynamics model with no

algebraic loop. The differential equation system

dx
dt

(t) = f(x(t),p), (2)

where x(t) is the state vector containing the values of

the stocks, p is the parameter vector, and f is the vec-

tor of flow equations that depends only on the stocks

and the parameters as in Proposition 5.1, is called the

equivalent differential equations system of MSD. For

an initial state x0 at time t0, a Carathéodory solution of

this system is called a state trajectory of the system dy-

namics model.

Through this definition, it is possible to specify a

state transition map that corresponds to the SD model.

For every fixed values of t0 and x0, we can set it to the

value of the state trajectory on the maximum interval

where a unique Carathéodory solution exists. It is per-

missible that this interval contains only t0. Obviously,

the state transition map obeys the other necessary prop-

erties such as consistency. Note that a system dynam-

ics model has no separate input variables. Therefore,

the input space of the corresponding dynamical system

consists only of one element.

There is no single correct choice for an output map.

An SD model usually has no dedicated output variables.
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However, the values of all stocks and auxiliaries can be

seen as output. The output space is then R
m ×R

ka .

7 Conclusions
Systems theory can serve as a rigorous mathematical

foundation for modelling and simulation. In this pa-

per, we have shown that system dynamics is indeed a

method that specifies dynamical systems. While differ-

ential equations are not specified directly, each feasible

SD model has an equivalent differential equation sys-

tem.

We can see an SD model as a collection of stocks,

flows, auxiliaries, and parameters together with rate

equations and auxiliary equations. Additionally, it must

be specified which stocks are coupled by flows (flow

coupling).

SD models are not allowed to have algebraic loops,

where only auxiliary variables depend on each other

without any accumulating stock in between. We have

proposed formal definitions of causal links, causal

chains, and causal loops, which make it possible to

show that if there are no algebraic loops, (i.e., no causal

loops of only auxiliaries) the flow equations of the SD

model can be written just in terms of stocks and param-

eters. Thus, the model has an equivalent formulation as

a differential equation system.

Moreover, the links between auxiliaries form a link

matrix, and the model has no algebraic loops if and only

if it is not possible to transform this matrix into a lower

triangle form by renumbering the auxiliaries.

These findings can serve as a basis for a formal

system theoretical treatment of SD models. They also

show that a generalized solution concept such as the one

of Carathéodory is necessary, because in applications of

SD the right-hand sides can have discontinuities.
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