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Abstract.  Modelling and simulation of state events and of 
structural-dynamic systems is getting more and more im-
portant in advanced modelling theory and application. 
Therefore, the requirements regarding flexibility on model-
ling and on implementation in simulators is increasing.  
To investigate, how modelling approaches and simulation 
environments deal with state events and structural-dynamic 
systems, the new ARGESIM Benchmark C21 ‘State Events 
and Structural-dynamic Systems’ is defined. Three case 
studies should compare modelling and implementation of 
state events in dynamic systems, up to structural-dynamic 
systems governed by state events. The first case study, the 
almost classical bouncing ball dynamics investigates differ-
ent kinds of bounce modelling and implementation with 
associated events. In the second case study, Switching RLC 
Circuit, different diode models result in simple switching 
state events or in in DAE systems. The third case study is 
structural-dynamic by itself: the rotating pendulum with 
free falling phase changes dynamics from swinging to falling 
(an vice versa) – switching between different degrees of 
freedom. These three case studies invite simulationists for 
providing ‘solutions’ – reports on modelling, implementation 
and specific investigations by of suggested experiments 
with the implemented model, to be published in SNE Simu-
lation Notes Europe. 

Development - Background 
In, 1990, ARGESIM started in the journal SNE Simula-
tion News Europe the comparison series Comparison of 
Simulation Software in order to compare features of 
simulators for classic system simulation. Since that, 
system simulation has developed further on (physical 
modelling, structural-dynamic systems, state charts, ...), 
and consequently also the comparisons developed fur-
ther on towards Benchmarks for Modelling Approaches 
and Simulation Implementations.  

Development of System Simulation 
The classic explicit state space modelling has partly 
been replaced by ‘higher’ modelling techniques. Mainly 
the Modelica standard and the competitive VHDL-AMS 
standard have introduced physical modelling – compo-
nent-based modelling with a-causal relations. Thereby, 
the components may be part of textual or graphical 
libraries in various domains [1], Figure 1. From mathe-
matics’ viewpoint, instead of explicit state models now 
implicit ‘law-oriented’ model descriptions have become 
basis for subsequent simulation, resulting in implicit 
differential-algebraic systems (DAEs).  

In principle, the simulator now must translate the a-
causal model description into a DAE system with proper 
structure of differential and algebraic equations, so that 
a ‘modern’ DAE solver can handle the implicit state 
space model with sufficient accuracy and sufficient 
convergence (index reduction problem).  

Furthermore, more and more discrete elements were 
used in system simulation – not only sampled data, but 
also conditions and structural changes - so that also 
modelling techniques for discrete dynamic structures 
have become necessary – e.g. state charts with discrete 
and continuous dynamics. 

Figure 1: Modelica physical modelling for analog electrical 
domain and mechanics multibody domain. 

Development of Comparisons / Benchmarks 
ARGESIM / EUROSIM started in 1990 the series Com-
parison of Simulation Software in the journal Simula-
tion News Europe (SNE). These comparisons are based 
on relatively simple, easily comprehensible processes. 
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In the beginning, simulationists were invited to pre-

pare a ‘solution’ and to publish in SNE (1-page solu-
tion). Along with development of system simulation, 
also the comparisons developed further on. This devel-
opment can be seen in definitions and solutions pub-
lished from 1990 to 2016 in 87 SNE issues: 23 defini-
tions (some revised), and about 350 comparison ‘solu-
tions’. The following list of comparisons and bench-
marks shows also the broad variety of the applications 
(including this new benchmark): 
• C1 Lithium-Cluster Dynamics, SNE 0(1), 1990 
• C2 Flexible Assembly System, SNE 1(1), 1991 
• C3 Generalized Class-E Amplifier, SNE 1(2), 1991 
• C4 Dining Philosophers I, SNE 1(3), 1991 
• C5 Two State Model, SNE 2(1), 1992 
• C6 Emergency Department SNE 2(3), 1992 
• C7 Constrained Pendulum, SNE 3(1), 1993 
• CP1 Parallel Simulation Techniques, SNE 4(1), 1994 
• C8 Canal-and-Lock System, SNE 6(1), 1996 
• C9 Fuzzy Control of a Two Tank System,  

SNE 6(2), 1996, revised SNE 16(3), 2006 
• C10 Dining Philosophers II, SNE 6(3), 1996 
• C11 SCARA Robot, SNE 8(1), 1998 
• C12 Collision of Spheres, SNE 9(3), 1999 
• C13 Crane Crab and Embedded Control,  

SNE 11(1), 2001; rev. SNE 17(1), 2007 
• C14 Supply Chain, SNE 11(2-3), 2001 
• C15 Clearance Identification, SNE 12(2-3), 2002 
• C16 Restaurant Business Dynamics, SNE 14(1), 2004 
• C17 Spatial Dynamics of SIR Epidemics,  

SNE 14(2-3), 2004; revised SNE 25(2), (2015) 
• C18 Neural Networks vs. Transfer Functions,  

SNE 15(1), 2005 
• C19 Pollution in Groundwater Flow, SNE 15(2-3), 

2005, revised SNE 16(3-4), 2006 
• CP2 Parallel &4Distributed Simulation, SNE 16(2), 2006 
• C20 Complex Assembly System, SNE 21(3-4), 2011 
• C21 State Events and Structural-dynamic Systems,  

SNE 26(2), 2016 
In 2006, a re-organisation of the comparisons has been 
started [2]. The comparisons developed towards Bench-
marks for Modelling Approaches and Simulation Imple-
mentations: 
• Revised definitions: SNE is publishing revised defi-

nitions of previous comparisons, updating models 
and tasks in order to continue them as benchmark. 

• Extended solution documentation: SNE allows two 
(or more) pages for solutions of classic benchmarks. 

• Extended Benchmarks: SNE introduces extended 
benchmarks, comparing modelling and simulation 
paradigms, or dealing with more complex models 
and experiments – as with benchmarks C19, CP2, 
C20 and C21.  
Documentation and publication in SNE of ‘solutions’ 
may take more pages – up to 10 pages SNE.  

1 State Events and Structural – 
dynamic Systems 

This section reviews some necessary mathematical 
background and modelling notations, in order to allow a 
better and comparable documentation of the investiga-
tions in this new benchmark C21. 

1.1 DAE systems and state events 
Mainly because of physical modelling techniques like 
sketched in Figure 1, the classical ODE state space 
description  

 
with  state vector,  derivative vector,  input 
vector,  initial state vector and  parameter vector, 
was replaced by the (semi-) implicit state space descrip-
tion of DAE system type 

 
 

The algebraic equations, e.g. constraints, are coming 
along with another new challenge, with structural dy-
namic systems. Constraints are very often coupled with 
state-dependent conditions for their validity – like loss 
of freedom, etc., requiring a conditional change of the 
model description.  

Consequently the problem of state event description 
and state event handling becomes much more complex 
than in classic ODE models and raises new questions 
for proper model description. 

Although mathematically incorrect, in models from 
application it is often necessary to model discontinuities 
in the model description, because a certain system phe-
nomenon can only be described approximatively by a 
(discontinuous) change in the model,  

These discontinuous changes are called events; if the 
time instant of the change is known in advance, the 
event is called a time event; if the event depends on a 
certain value or threshold for a state variable (which is 
not known in advance), it is called state event. 
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A state event is defined 
• by an event function , whose 

zero determines the time instant  of the next occur-
rence of the event, 

• and by an event action , which 
performs the discontinuous change.  

An event function  can cause the associated event 
action  several times, and there may be more than one 
event scheduled by an event function: 

 

 

 

The symbol in equation (3) means, that the zero 

of the event function  respon-
sible for the event ‘ ’, is to be determined (‘!’), where-
by crossings in both direction cause the event (‘±’), or 
only crossings in negative direction (‘-’), or only cross-
ings in positive direction (‘+’). Event functions can be 
seen as classical output functions, but sometimes they 
are only locally defined, or sometimes the algebraic 
function becomes an event function and vice versa. 

The associated event action  must 
now handle the discontinuous change in the model de-
scription, which ranges from simple to very complex. It 
makes sense to classify events with respect to their 
‘quality’ of action of change [3], [4]: 

• Parameter change event – SE-P 
• Input change event – SE-I 
• State change event – SE-X 
• Function change event – SE-F 
• Structure change event – SE-S 
• Output trace event  – SE-O 
• Algorithm event  – SE-A 

A simple state event is a parameter change event SE-P. 
One or more parameters of the parameter vector  
change to a new value: 

SE-P:    
The input change event SE-I is not a state event, it is 
‘only’ a time event – in order to synchronize discontinu-
ities in input  with the stepsize of the DAE solver. 

A state change event –SE-X- is a strange construct – 
one or more components of the differential state vector 
change discontinuously. From viewpoint of mathemat-
ics, that cannot happen, because the state vector  

results as ‘integration’ of the continuous derivative 
function. But usually events of this type itself model a 
dynamic behaviour, which for simplicity or other rea-
sons is ‘concentrated’ into a timeless event. 

     SE-X:   

                     (5) 

A function change event SE-F changes at event time 
components of the derivative function or of the algebra-
ic function, not only with a jump in values, but with a 
new description: 

SE-F:      :               (6) 

 

State events of type SE-F and SE-X are ‘simple’ cases 
of structural model changes. The structure change event 
SE-S is the most complex one: in case of the event, 
another model is to be used; this new model may have a 
state space  of different dimension and type: 

 SE-S:                                 (7) 

 

 

 

State events of type SE-D and SE-S are strongly related 
to structural-dynamic systems, which require dynamic 
change of state vector dimensions, e.g. cause by loss or 
addition of degrees of freedom. 

A simple state event is the output trace event SE-O. 
At event time, a certain value given by an output func-
tion  is to be traced: 

 

SE-O:    

For completeness, the algorithm event SE-A is men-
tioned. Although model description and implementation 
should be independent, it can happen, that under some 
circumstances (mainly because of problems with accu-
racy) the algorithmic calculations must be ‘influenced’ 
– e.g. by changing ODE solver parameters: 
 

SE-A:    
appropriate action  
influencing the       (9)
algorithm 

In general, an event function  can cause more 
than one event, so that an event ‘E’ can belong to more 
than one type. 
 



 Körner et al.     State Events and Structural-dynamic Systems: Definition ARGESIM Benchmark C21 

120 SNE 26(2) – 6/2016 

BN
1.2 State Event Handling 
The primary task for event handling are the synchroni-
sation of the state event with the ODE/DAE solver, and 
the ‘execution’ of the event – i.e. the discontinuous 
change of parameters, inputs, and states, and the choice 
of new derivatives or new models.  
State event algorithm requires the following steps: 

• Detection of the event  
• Localisation of event and solver stopping 
• Event Action 
• Restart of solver 

Event detection is usually done by observing the alge-
braic sign of the event function during the time advance 
of the ODE/DAE solver. Localisation is usually super-
imposed to the DAE solver, by using an appropriate 
algorithm (iterative methods, interpolative methods). 
Iterative methods can give more accurate results. But in 
case of event functions with nearby roots, iteration may 
cause a deadlock, may let events vanish, etc. State event 
functions can be given by a state value itself – here the 
event localisation could be integrated into the DAE 
solver – but only few DAE solver implementations 
make use of this possibility. 

1.3 Structural-dynamic systems 
Systems with state events of essential types SE-F (5) or 
SE-S (6), often come together with a change of the 
dimension of the state space, then called Structural-
dynamic Systems. In principle, for modelling structural-
dynamic systems two approaches are meaningful: 
• maximal state space: in a maximal state space, state 

events switch on and off algebraic conditions, which 
freeze certain states for certain phases, and state 
events ‘act’ within in the model (Figure 2, at left). 
hybrid decomposition: a global discrete state space 
controls local models with fixed state spaces, or with 
newly composed state spaces; state events ‘schedule’ 
different models (state chart in Figure 2, at right).  
 

  

Figure 2: State chart model for -  
maximal state space approach (at left)  
and hybrid decomposition approach (at right) 

The hybrid decomposition approach must be supported 
by a framework, which allows the switching between 
different models, and within one model – caused by 
state events – convenient are sate charts.  

2 Case Study Bouncing Ball 
When observing a bouncing ball, the ball is falling and 
jumping quite high, but bit by bit, position amplitude is 
decreasing, and bounce frequency is increasing. This 
physical process is well known as bouncing ball dynam-
ics, met also in other applications. Figure 3 shows three 
classical examples – bouncing balls of different sizes, 
and a non-classical example, the pogo stick. 

 

 
Figure 3: Various bouncing ball dynamics – football, ping 

pong, pogo stick 

The bouncing ball dynamics allow various modelling 
approaches and incorporate events, where the dynamics 
change or the description of the dynamics must change. 

2.1 Bouncing Ball Model - Event Contact 
Following e.g. [6] the bouncing ball dynamics consist of 
two different phases, the free falling phase with or with-
out air resistance, and a ‘timeless’ contact phase, where 
the bouncing ball hits the ground, and changes direction 
of movement (Figure 4). 

 
Figure 4: Idealized bouncing ball dynamics, sketch. 

Free falling phase. The motion of a free falling 
mass in a gravitational field is given by the following 
two differential equations for position  and velocity : 

                    (10) 

with  acceleration of gravity,  air resistance coeffi-
cient, and state space  . 
Neglecting air resistance gives the simple linear model 
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Event contact model. The contact phase can be 
implemented using different models. The event contact 
model is a quite simple approach, using Newton’s 3rd 
law, and a coefficient  to describe the loss of energy in 
case of a ‘timeless’ bounce, neglecting any deformation, 
- modelled the event ‘B’ Bounce. 

The velocity  of the ball right ‘before’ the 
contact (impact) with the ground ‘jumps’ to the velocity 

 by means of ‘reflection’ and energy loss, being 
a state change event SE-X (5) with event action : 

                 (12) 

The event function (13) for event action  (12) is 
simply the position : the (bottom) position of the ball 
reaches ground, crossing zero into negative direction: 

(13) 

Mathematical analysis. The linear model (11) 
allows analytical calculation of the impact time instants 

. The linear model has a solution of type 

      (14) 

With initial values  and , the first impact 
can be calculated using (14) as   
Starting flight at with  and  

 

gives the next impact time . Contin-
uing with the analytical solution (14) derives a recursion 
for impact time: . 
This recursion allows calculating the time instant  of 
the -th bounce by means of the geometric series 

 

As , the above series (15) converges and gives 
the limit for the series of bouncing time instants : 

(16) 

- being a finite number! These considerations proof, that 
in finite time infinite many bounces take place.  

2.2 Bouncing Ball Model - Dynamic Contact  
The model (10) or (11) with event contact phase works 
considerably good in case of contact with very little 
deformation and very short (neglectable) contact time, 
i.e. for a rather stiff bouncing on a rigid surface. 
 

 
Figure 5: Ball deformation during contact phase,  

Kelvin-Voight model. 

In case of a ‘significant’ contact phase, a more realistic 
model is necessary, which takes into account the elastic-
ity in the contact region. The deformation can be mod-
elled in first approximation by a spring-damper-element 
in parallel to the flying phase, as given in Figure 5, 
Kelvin-Voigt model, [5]).  

Again the dynamics consist of two phase – free fall-
ing phase (or flying phase), and contact phase, but the 
contact phase is not any longer an isolated event, it 
consumes time and begin and end are controlled by state 
events; additionally, in both phases deformation is taken 
into account! In both phases three state variables charac-
terize the dynamics: (bottom) position  of the not 
deformed ball, velocity , and deformation . 

Free falling phase. For position and velocity again 
equation (10) or (11) is used, and a damping of first 
order describes the deformation  – during flight not 
coupled with position and velocity, but active: 

      (17) 

Figure 5 shows, that in model (17) the variable  is still 
the velocity, but   is now the distance from the 
ground to the virtual bottom point of the (not deformed) 
ball, which may become negative.  represents the 
deformation, so that the actual bottom position of the 
deflected ball, the distance  from the deflected ball 
bottom to ground is given by output equation 

                                  (18) 

Output equation (18) becomes now also the event func-
tion which terminates the free falling phase reaching the 
ground, i.e. reaching the threshold zero, causing event 
‘ ’ (Contact): 

 

The associated event action  is switching to contact 
phase. 
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Dynamic Contact. In the contact phase, the (normal-
ized) contact force  determines the dynamics: 

 
In case of contact the dynamic equation (17) for veloci-
ty  gets the contact force  added as counterforce to 
gravity, and , change of deflection, equilibrates to 
velocity . The dynamic equations in the continuous 
contact phase are consequently: 

   (21) 
The contact phase finishes, as soon as the contact force 

 get negative, and the ball starts flying again – event 
‘F’ – Fly Restart with contact force as event function: 

 

Following the event classification in Section 1.1, the 
events ‘C’ Contact and ‘F’ Fly Restart are function 
change events SE-F. But as in contact phase the equa-
tion for deformation  is dependent on the others in 
(21), dimension – and consequently also structure of the 
model change – so that the events can be seen as struc-
ture change events SE-S. On the other side, the equa-
tions (17) and (21) are relatively simple and can be 
formulated together by using a boolean parameter, 
which switches parts in the derivative functions - so that 
a boolean parameter is controlled by simple parameter 
change events SE-P.  

Figure 6 summarizes the evolving dynamics of the 
ball movement until second bounce: deformation hap-
pens also in the flying phase, except in the first flying 
phase (but only because of because of zero deflection at 
begin). After the first bounce, the deformation never 
goes down to zero, and the ball restarts flying in de-
formed status.  

As deflection never reaches zero after the first im-
pact, the number of bounces must be limited – after 
some bounces the ball stops flying and continues 
movement with decreasing deflection. 
 
 

 
Figure 6: Phase sequence Flying – Contact – Flying for 

bouncing ball dynamics. 

For both models it makes sense to define an addi-
tional event ‘M’ Maximium Height, which determines 
the time instants where the ball reaches maximal height 
(zero velocity) – on first glance only an output trace 
event SE-O, but eventually of help in case of accuracy 
problems in the algorithm (algorithm event SE-A): 

 

2.3 Bouncing Ball Model – Benchmark Tasks 
Generally, the tasks are model description, especially of 
event functions and event action, time domain analysis 
with model comparison and parameter studies, and 
especially of event handling, and comparison.  

Modelling / Handling State Events with 
Event Contact Model 
These tasks investigates modelling methods for state 
events of type SE-S - state change event (5), (12) in the 
event contact model and tests state event handling espe-
cially when handling frequent events and by comparing 
with analytical solutions. 
Description of model implementation. Document im-
plementation of continuous model parts (10) and (11), 
and of the event ‘ ’ –Bounce (12), (13), (textual model 
code snippets, (parts of) graphical model diagrams, etc. 

Simulation until last bounce – scattering prevention. 
Simulate the event contact model (10-13) using the 
simulations system’s event mechanism with and without 
air resistance and following parameters: 

        
     

Event time for the ‘last’ bounce  should be deter-
mined – by (16) and by simulation. 
Straightforward implementation of events often have 
problems with event scattering – which happens defi-
nitely near to  (16), Figure 7 – the ball ‘falls’ into 
the ground. Workaround is to stop bouncing before 
‘last’ event, e.g. if maximal height of the flight period 
becomes too small.  

 
Figure 7: Scattering of Bounce events near the ‘last’ 

bounce due to missing error prevention. 
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In each flight period, the event ‘M’ Maximal Height 
(23) can determine the maximal height, and below a 
critical maximal height further Bounce events are 
stopped by parameter change or by model change, or by 
change of solver parameters or accuracy of event detec-
tion, etc. Event ‘M’ Maximal Height (23), first a simple 
output trace event, SE-O, becomes at a parameter 
change event SE-P or a function change event SE-F, or 
an algorithm change event SE-A. 
Implement and document a proper strategy against 
event scattering, if necessary. 

Testing accuracy of event handling. Using the linear 
model (11), the solution calculated by (14) gives the 
exact bounce times  (15). Simulate the linear model 
with parameters given before (air resistance  
tracks the ‘numerical’ bounce time instants . 
Document results by comparison of entry times of the 
first 100 bounces by plotting bounce time differences 

 over number of bounces. Number of 
bounces can be determined easily in each bounce event 
by increasing a discrete output variable, so that ‘B’, the 
state change event SE-X Bounce becomes also an out-
put trace event SE-O. Again it might be necessary to 
prevent from event scattering! 

Compensation of linear model deviation. In any case, 
air resistance is evident – but very small. Due to missing 
air resistance in the linear model, the event times are 
‘too late’. Simulate nonlinear and linear model with 
standard parameters below and try to compensate the 
‘too late’ bounce times in the linear model by giving an 
initial velocity  

        
     

Modelling/Handling State Events and 
Parameter Studies with Continuous Contact  
These tasks investigate modelling approaches for 
events, tests cooperation of event location with different 
ODE solvers, and performs parameter studies. Standard 
parameters are: 

 

 

Description of model implementation. Document im-
plementation of continuous model parts (17) and (21), 
and of the events ‘ ’ –Contact (20), and ‘ ’ –Fly Re-

start (22), (textual model code snippets, (parts of) graph-
ical model diagrams, etc.). Discuss the general model-
ling approach – maximal state space, hybrid decomposi-
tion, or switching model parts. 

Dependency of results from algorithms. It might be 
necessary to choose specific ODE solvers or to tune 
ODE solver parameters and event detection parameters.  
Simulate the dynamic contact model using different 
ODE solvers, and / or tune parameters for ODE solvers 
and event detection, with  and standard 
parameters. 
Document of simulation results with plots or with tables 
indicating deviations for different algorithms, and dis-
cuss appropriateness of specific algorithmic properties 
(e.g. stepsize control vs event detection, or scattering 
prevention). 

Investigation of contact phase. The proper implementa-
tion of the model (17), (21) and of the events ‘C’ Con-
tact (20) and ‘F’ Fly Restart (22) can be seen in detail in 
the contact phase which is much shorter than the flying 
phase. Simulation results with standard parameters for 
first contact phase, the second flight phase, and the 
second contact phase should be given in separate time 
plots over , , and 

, resp. (  and  being about a 
tenth of the length of the phase), showing all state vari-
ables, output variables, and the contact force (20) (in 
contact phase). Additionally, maximal height (event ‘M’ 
Maximal Height (23)) in flying phase, and maximal 
deviation   in the contact phases – additional output 
trace event SE-O– should be determined. 

Parameter studies. Variation of the spring constant k 
has big influence on the systems behaviour. Calculate 
simulation studies varying the stiffness-parameter 

 by a factor 100 while concurrently setting the 
damper constant to d = 500. Afterwards, vary d and 
finally document the relation of the parameters k and d 
by appropriate time plots and / or parameter plots (use 
standard parameters before). 

Bouncing ball on Mars. It might be nice, to now about 
bouncing ball behaviour on Mars and to compare with 
behaviour on Earth. Let’s simulate for 30 seconds, 
whereby for Mars we must use the different parameter 
values for gravity constant and air resistance:  ‘

. Document results as com-
parative plots for position and velocity. 
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3 RLC Circuit with Diode 
The second cased study is the well-known classic serial 
RLC circuit, with a diode in parallel – Figure 8. Diode 
models are partly discrete models, and events control 
the switching of the diode. Physical modelling systems 
usually provide a library with circuit elements, but it is 
worth to have a closer look at diode implementation and 
consequence of the type of implementation. 

 
Figure 8: Serial RLC with diode in parallel 

3.1 RLC model equations 
Kirchhoff’s laws and node equation first allow setup the 
physical model equations for the voltages:  

               (23) 
                              (24) 

Inductor and capacitor have the constitutive equations, 
                   (25) 

Classic ‘manual’ derivation of the system equations 
using (23), (24), and (25) will usually choose a differen-
tial state vector  with RLC current  and capacitor 
voltage , and an algebraic state vector  consisting 
of diode current  and diode voltage  and 
result in the following ‘general’ a state space, with 

,  
  

                                              (26) 

        (27) 
                       (28) 

The diode is described by a ‘switching’ functional rela-
tion between current and voltage, in general 

,                     (29) 
The diode has a locking phase with  for , 
and a conducting phase for with given by  

                      (30) 

3.2 Diode models and phase change 
A diode is a mixed continuous – discrete element. It has 
two operational phases- a locking phase and a conduct-
ing phase, dependent on the diode voltage.  

The mode change may be seen as simple switch 
(shortcut), or a conducting phase can be described by 
specific diode models. 
Chang of phases - events 
In any case, the diode voltage  controls the switching 
between locking phase and conducting phase due to 
equation (28). In locking phase with  and 

equation (29) changes to . A switching 
to conducting phase happens, if  becomes positive, 
which can be described by a state event ‘C’ Conducting 
Phase Start with event function due to (3) 

                (30) 

with crossing from negative to positive diode voltage. In 
conduction phase, the diode voltage is given by equa-
tion (28) with nonzero diode current, calculating  as  

       
A switching to locking phase happens, if  becomes 
negative, which can be described by a state event ‘L’ 
Locking Phase Start with event function due to (3) 

         (31) 

with crossing from positive to negative diode voltage. 
Clearly, calculation of  depends on the choice of di-
ode function description (29). 

Shortcut diode model 
The shortcut diode model, a simple diode model mimic-
ries the dynamic behaviour as an ideal switch for the 
current depending on diode voltage  (Figure 9), so 
that the diode functional description, and also the model 
description (27-29) becomes simple.  

 

 

 
             (32) 
 
Figure 9: Diode model  
as ideal switch 

 

In locking phase, the general model description (27-29) 
simplifies to an explicit linear state space following (27) 
with  – the model for the RLC circuit alone. 

In conducting phase, the shortcut simplifies the 
model descritption to a decoupled linear state space:  

               (33) 
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The algebraic equations (29) and (29) become obso-

lete, the event functions (30), (31) become simple linear 
threshold function    and  

The events ‘C’ Conducting Phase Start and ‘L’ 
Locking Phase Start generally are state events of type 
function change event SE-F; but as the model is linear, 
the changes are parameter changes in the state matrix, so 
they can be seen also as parameter change event SE-P. 

Shockley diode model 
A diode is a nonlinear element, and indeed the switch-
ing dynamics evolve nonlinear dynamics. One nonlinear 
model is known as Shockley diode model. The mathe-
matical description is given by an exponential-like func-
tional relation between diode current and diode voltage 
(Figure 11) given by 

                   (34) 

 

 
Figure 10: Diode model with 
        Shockley characteristic 

 
Figure 11: Diode model with
     interpolated Shockley  
     characteristic 

Inserting the description (34) into the algebraic equation 
(30) results in one algebraic equation for diode voltage: 

         (35) 

Following notation in (3)  is an algebraic state 
 and equation (35) is the corresponding 

algebraic equation due to (3). Alternatively, the func-
tional relation in (34) can be inverted, so that  can be 

expressed as , resulting in an alge-

braic equation for : 

     (36) 

With Shockley diode model, the model description in 
conducting phase is governed now by a nonlinear DAE 
systems.  

The state equation (27) becomes nonlinear when in-
serting the nonlinear expression (34) for . The alge-
braic equations (35) or (36) are in any case nonlinear. 
The model description in locking phase is again the 
RLC model. 

The events (30) and (31) for changing the modes 
remain unchanged – but they switch now between mod-
els with different number of states: in locking phase, an 
explicit model with two differential states, in conducting 
phase, a DAE model with two differential states and one 
algebraic state. Consequently, the events are of type 
structure change event SE-S, and the system is a struc-
ture-variable system.  

Interpolated Shockley diode model 
Characteristic curves are a classic way-around for alge-
braic equations. The curve for the diode’s operation 
(Figure 10) can be made a linear interpolated table func-
tion (  with adequate break-
points . Inserting this interpolation 
into the algebraic equation (35) allows resolving with 
respect to , giving a linear relation of type 

( . 
As result, the state equations in conducting phase 

become a piecewise linear explicit system, and no alge-
braic equation is necessary: 

                           (37) 

The model description in locking phase is again the 
RLC model. 

Explicit Shockley diode model. 
In Shockley diode model, in conducting phase a DAE 
system has to be solved. DAE solvers require iteration 
and state event detection requires backstepping in time, 
which is not suitable in case of real time simulation.  

The DAE system (26), (27), (35) is an index-1 sys-
tem. Index reduction can transform the algebraic equa-
tion (35) to an explicit ODEs. A straightforward method 
is to differentiate the algebraic equation (35) directly 
with respect to time, resulting in a relatively complicat-
ed ODE for  with initial value  at event 
‘C’ Conducting Phase Start: 

              (38) 

The model description in locking phase is again the 
RLC model. 
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The events (30) and (31) for changing the modes 

remain unchanged – but again they switch between 
different state dimensions: in locking phase, an explicit 
model with two differential states, in conducting phase, 
an explicit model with three differential states. Conse-
quently, the events are of type structure change event 
SE-S, and the system is a structure-variable system.  

3.3 RLC circuit with diode – tasks 
Generally, the tasks are model description, especially of 
event functions/actions, and comparison of diode models. 
Description of model implementations. Document 
implementation of the RLC model (26-30) and especial-
ly of the diode models (32), (33-36), (37), (38) with the 
phase changes and events (30), (31) (textual model code 
snippets, (parts of) graphical model diagrams, etc.). 
Discuss the general modelling approach – maximal state 
space, hybrid decomposition, or switching model parts, 
and possible model modifications for efficient model-
ling e.g. for comparing different diode models. 
Dependency of results from algorithms. It might be 
necessary to choose specific ODE solvers or to tune 
ODE/DAE solver parameters and event detection pa-
rameters.  
Simulate the diode shortcut model (32), (33) and the 
Shockley diode model (34), (35) using different 
ODE/DAE solvers, and / or tune parameters for ODE 
solvers and event detection, with standard parameters. 
Give plot results, indicate sensible solver parameters. 
Comparison of shortcut and Shockley diode model.  
Compare results for diode shortcut model (32), (33) and 
for Shockley diode model (34), (35), with standard pa-
rameter, but timespan only two switching periods.  
Document results with plots, and give a relative com-
parison of computation times. 
Approximation of Shockley diode model. Investigate the 
approximation of the Shockley diode model (34), (35) 
by the interpolated Shockley diode model (37) with 3, 5 
and 10 breakpoints for the interpolation (standard pa-
rameters, but timespan only two switching periods, 
Document results with appropriate plots and with nu-
meric deviation. 
Relevance of choice of algebraic state. In case of Shock-
ley diode model, either equation (34) for  or (35) for 

 can be used as algebraic state equation.  
Simulate Shockley diode model with both variants, and 
check eventual differences – documented by plots or 
numeric deviations (standard parameters). 

Investigation for real-time simulation. For real-time 
simulation, fixed step sizes and simplified event detec-
tion (without backstepping) must be used. With this 
premises, and with standard parameters, compare results 
for diode shortcut model (32), (33), interpolated Shock-
ley diode model (37) and explicit Shockley diode model 
(38) by appropriate simulations. Document the imple-
mentation of the ODE for the diode voltage  . 

Standard parameters (SI units): 

 
 

 
 

4 Rotating Pendulum with Free 
Flight Phase 

This case study describes a classical idealized pendulum 
on a rope with damping. The pendulum body, which is 
considered a point mass, is connected to a fixed point in 
the space by a rope of given length. The rope is assumed 
to be non-elastic and without mass. As a simplification, 
it is presumed that the mass can move freely only in the 
plane, i.e. the area of a circle with a radius equal to the 
length of the rope.  
The movement of the mass shows two phases: 
• If the rope is tight, the mass is classically swinging 

(phase swinging); Figure 12a. Movement has one 
degree of freedom, usually described in polar coor-
dinates. 

• If the rope is loose, the mass is free falling (phase 
falling) until the rope is tight again (changing back 
in phase swinging; Figure 12b. Movement has two 
degrees of freedom, usually described in Cartesian 
coordinates 

 

Figure 12: Left: Swinging pendulum – phase swinging  
(mass , length ; angle  as degree of freedom;  
Right: Free falling pendulum mass (phase falling) 
and Cartesian coordinates as degrees of freedom. 
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4.1 Model description 
Equations for movement in phase swinging can be de-
rived by using the angular momentum balance, resulting 
in the classic pendulum equation: 

                        (39) 

with damping factor , the mass , rope length  and 
earth acceleration . An explicit state space is given by  

or    (40) 
with  angular velocity,  tangential velocity 

The pendulum is swinging, as long as the force on 
the rope is bigger than zero.  

                           (41) 
If this force , an output equation, becomes lower 
than zero, the gravitational force outweighs the centrif-
ugal force: the pendulum is changing into phase falling.  

In phase falling, the movement of the body has two 
degrees of freedom. The motion of the mass is derived 
by conservation of momentum in - and - direction: 

                                 (42) 

An explicit state space is given by  

            (43) 
The distance  from rotation center  

                                  (44) 
indicates whether the rope is loose ( ) or whether it 
gets tight again ( ), forcing the body back on the 
circular path: the mass switches to phase swinging. 

Figure 13 shows an overview of the two phases with 
the different models and with the criteria for the chang-
es of phase. The overall system is a typical structural-
dynamic system, and in modelling the change of de-
grees of freedom – the change of the dimension of the 
model – has to be mastered. 
 

 
Figure 13: Summary of the two state models with criteria 

for the state changes 

4.2 Change of phases – events 
The change from phase swinging to phase falling can be 
described by the state event ‘F’ Falling, which is given 
by a state event function using the formula (41) for the 
force on the rope: 

        (45) 

A crossing into negative direction activates the event. 
The associated event action requires a 
change of the model – with change of degress of free-
dom, with calculation of new initial values. The state 
event therefore is a typical structure change event SES.  

The change from phase falling to phase swinging is 
modelled by the event ‘S’ Swinging which is activated, 
when the rope gets tight – measured by the distance (44) 
and described by the event function  

          (46) 

A crossing into positive direction activates the event: 
the associated event action  
requires a change of the model – with change of degrees 
of freedom. The state event therefore is a typical struc-
ture change event S-ES.  

Structural-dynamic models can be implemented by 
hybrid decomposition, or by a maximal state space. A 
hybrid decomposition for this case study is sketched in 
Figure 13. A maximal state space approach would re-
quire a state space of dimension 6 

 
where then depending on the event functions (45), (46) 
states are ‘frozen’ in the respective phases. 

From physical modelling an alternative approach is 
suggested. The movement in the phase swinging can 
also be described in polar coordinates: the mass is mov-
ing freely, but a force  forces the movement on a 
circle: 

                             (47) 

                                   (48) 
The above DAE system indeed describes the swinging 
of the mass, and it could be used instead of the model in 
polar coordinates (31). The events given by (45), (46) 
could now switch easier between the phases, because 
the differential state space is almost the same – so one 
state space with internal switching could be used (the 
model for the phase swinging must additionally solve an 
algebraic equation – with algebraic state . 
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Interestingly, the algebraic state equation (48) in 

phase swinging is the same than the event function (46) 
(output equation) in phase falling. Unfortunately the 
DAE system (47), (48) is difficult so solve, because it 
has a differential index of 3 – which makes index reduc-
tion necessary. 

4.3 Rotating pendulum – tasks 
Tasks in this case study concentrate on the modelling 
approach and model implementation, and on few simu-
lation. 
Description of model implementations. Document 
implementation of the structural-dynamic system with 
phase swinging (39) and phase falling (42) the sate 
events (45), (46) which switch the phases. Alternatively 
describe the implementation of the ‘common’ DAE 
system (47), (48) (textual model code snippets, (parts 
of) graphical model diagrams, etc.). Discuss the general 
modelling approach – maximal state space, hybrid de-
composition, DAE system with switching model parts, 
and possible modifications for efficient modelling. 

Basic simulation of phases. Calculate and visualize a 
basic simulation run with the following parameters: 

 

and the initial conditions 

 

Simulate beginning until the maximal oscillation does 
not exceed  any longer (indicate time instant) – could 
be determined by adding an output event! 

Dependency of results from algorithms. It might be 
necessary to choose specific ODE solvers or to tune 
ODE/DAE solver parameters and event detection pa-
rameters.  
Perform simulations with standard parameters, timespan 
until begin of second phase swinging using different 
ODE/DAE solvers, and / or tune parameters for ODE 
solvers and event detection. Give plot results and indi-
cate sensible solver parameters. 

 
 
 
 
 
 
 

External energy supply. Due to physical constraints, 
only one phase falling can occur because of energy loss. 
In order to ‘restart’ the alternating movements, energy is 
supplied – as increase of the angular velocity (a ‘kick’). 
Following the basic simulation of the second task, the 
angular velocity is increased by a factor, so that the 
pendulum reaches again the phase falling. 
At the first zero crossing after angle did not exceed , 
the angular velocity multiplied by a factor  – a state 
event of type state change event SE-X 
Determine factors  so that  
(i) the same movement than before results,  
(ii) the next falling phase starts at  , and 
(iii) the swinging phase makes two rotations  

5 Conclusion 
This benchmark is a challenging one. We hope, that 
‘solution’sent in enrich the variety of modelling ap-
proaches and clarify some inconsistencies in state event 
modelling. We invite simulationist to provide a ‘solu-
tion’ – with publication of a Technical Benchmark Note 
(up to 10 pages) in SNE. Furthermore we ask for model 
source codes, for download by readers. 
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