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Abstract. The linguistic equation (LE) approach uses
the same compact structures are used for models and
control systems. Inverse, internal and predictive con-
trol can be combined with switching and fuzzy set sys-
tems. Measurement levels, interactions and compos-
ite local models are analysed in a gradually refined way
in the data-based modelling. In the applications, spe-
cific models and indicators are selected and constructed
from similar building blocks. Intelligent analysers pro-
duce informative indirect measurements and indices for
the controller which operates like an agent-based so-
lution where all the actions are available for activation
when needed. All subsystems are presented as paramet-
ric systems which can be tuned for wide operating areas
by using a balanced set of process situations. The control
solution has been tested in three different applications
which use the same blocks in a process specific way.

Introduction

Model-based control is widely applied in industry [1].

Phenomenological models provide a useful process in-

sight and understanding of the interactions and time de-

lays inherent in the process [2]. However, the control

of an industrial kiln requires adequately accurate mod-

els which are not easy achieve [3]. Feedforward con-
trol (FF) can be based on models, e.g. most of the

controllers tested in the solar collector field use model-

based feedforward control based directly on the steady

state energy balance relationships [4]. A FF controller

has been combined with different feedback controllers,

even PID controllers operate for this purpose [5], and

FLCs could be improved considerably [6, 7].

Internal model control (IMC) uses inverse modes to

remove the difference between the measured and pre-

dicted outputs. The feedback controllers should cope

with modelling errors and disturbances. In principle

any types of models can be used, e.g. fuzzy mod-

els [8], models based on partial differential equations

[9], and nonlinear models based on local linear mod-

els [10]. The classical IMC can operate efficiently in

varying time delay conditions [9]. The IMC approach

is a good solution if the model is not too complicated.

The scheme can also contain on-line adaptation, e.g. a

fuzzy model can be adapted and the consequent param-

eters are transferred to the inverse model [8].

In model predictive control (MPC), models are used

for predicting the process output over a prediction hori-

zon [11]. Intelligent methods can be used at the mod-

elling level, in optimisation and in the specification of

the control objectives [8]. Stages in the development

of modelling algorithms and incorporating fuzzy mod-

els into controllers are described in [12]. Fuzzy internal

models have been used in the MPC approach [13]. A

MPC using fuzzy TS models is discussed in [14].

Multiple model adaptive control (MMAC) allows

different control structures, i.e. each mode corresponds

to one model and one controller. Switching control

strategies are based on selecting a controller from a

finite set of fixed controllers, e.g. heuristic rules or

predictions with models [15, 16, 17]. A combination

of a switching algorithm and model predictive con-

trol (MPC) is presented in [18]. Event based con-
trol, also known as aperiodic or asynchronous control,

uses sampling which is event-triggered rather than time-

triggered [19, 20, 21]. It is close to a way a human be-

haves as a controller, and suits for distributed control

systems.

Normal feedback (FB) and feedforward (FF) con-

trollers can be extended to changing operating condi-

tions with adaptation, model based approaches and high

level knowledge based systems. Intelligent methods
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provide a good basis for handling nonlinear multivari-

able control systems, e.g. a large number of highly suc-

cessful fuzzy logic control (FLC) applications are im-

plemented in process industry. Fuzzy logic controllers

can use normal state variables, (x1, . . . ,xn), instead of

error, change of error and sum of error. Then the con-

troller is presented by rules. An example of a FF con-

troller based on an inverted fuzzy model is presented

in [22]. For wide operating areas, accurate models are

more difficult to develop than introducing intelligent

controllers to run in the whole are. Fuzzy logic con-

trollers are good examples of this.

Fuzzy controllers can be converted to linguistic

equation form by replacing the symmetric parts of the

rules with linguistic equations where linguistic levels

for the error, error derivative and change of control are

represented by linguistic values [23].

This paper classifies combined linguistic equation

models and control methodologies and discusses about

their applicability in three applications. The solution in-

cludes data-based LE modelling, intelligent LE control

and model-based tuning.

1 Data-based LE modelling

Directions of interactions can usually be understood on

the basis of domain expertise but the nonlinear effects

may become hidden by various nonlinear effects. In

the LE approach, the nonlinearities of the process are

handled by the nonlinear scaling of the variables, which

reduces the complexity of the models drastically [23].

Composite local models provide useful extensions for

the linear models [24].

1.1 Data analysis

The parameters of the scaling functions are obtained by

data analysis based on generalised norms and moments.

The generalised norm is defined by

||τ Mp
j ||p = (Mp

j )
1/p = [

1

N

N

∑
i=1

(x j)
p
i ]

1/p, (1)

where the order of the norm p ∈ R is non-zero, and N
is the number of data values obtained in each sample

time τ . The norm (1) calculated for variables x j, j =
1, . . . ,n, have the same dimensions as the corresponding

variables. The norm ||τ Mp
j ||p can be used as a central

tendency value if all values x j > 0, i.e. ||τ Mp
j ||p ∈ R.

[25]. The norm can be extended to variables including

negative values [26].

The orders, p, focus on different statistical proper-

ties of the dat distributions. The specific orders are cho-

sen by using the generalised skewness,

(γ p
k ) j =

1

Nσ k
j

N

∑
i=1

[(x j)i −||τ Mp
j ||p]k. (2)

The standard deviation σ j is the norm (1) with the order

p = 2. [27] The parameters can be recursively updated

by using the norms with the spefied orders [26].

1.2 Nonlinear scaling

Scaling functions are monotonously increasing func-

tions x j = f (Xj) where x j is the variable and Xj the

corresponding scaled variable. The function f () con-

sist of two second order polynomials, one for the neg-

ative values of Xj and one for the positive values, re-

spectively. The corresponding inverse functions x j =
f−1(Xj) based on square root functions are used for

scaling to the range [-2, 2], denoted linguistification. In

LE models, the results are scaled to the real values by

using the function f ().
The parameters of the functions are extracted from

measurements by using generalised norms and mo-

ments. The support area is defined by the minimum and

maximum values of the variable, i.e. the support area

is [min(x j),max(x j)] for each variable j, j = 1, . . . ,m.

The central tendency value, c j, divides the support area

into two parts, and the core area is defined by the central

tendency values of the lower and the upper part, (cl) j
and (ch) j, correspondingly. This means that the core

area of the variable j defined by [(cl) j,(ch) j] is within

the support area.

1.3 Interactions

The basic form of the linguistic equation (LE) model

is a static mapping in the same way as fuzzy set sys-

tems and neural networks, and therefore dynamic mod-

els will include several inputs and outputs originating

from a single variable [23]. External dynamic mod-

els provide the dynamic behaviour, and LE models are

developed for a defined sampling interval in the same

way as in various identification approaches discussed

in [28].

Dynamic LE models use the parametric model struc-

tures, ARX, ARMAX, NARX etc., but the nonlinear
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scaling reduces the number of input and output signals

needed for the modelling of nonlinear systems. For the

default LE model, all the degrees of the polynomials

become very low:

Y (t)+a1Y (t −1) = b1U(t −nk)+ e(t) (3)

for the scaled variables Y and U .

1.4 Composite local models

The composite local model approach constructs a global

model as a weighted sum of local models, which usu-

ally are linear approximations of the nonlinear system

in different neighbourhoods.Linear parameter varying
(LPV) models, where the matrices of the state-space

model depend on an exogeneous variable measured dur-

ing the operation, are closely related to local linear

models. The models can be state-space models or para-

metric models. The model switches between different

modes as the state variable varies over the partition [24].

Fuzzy set systems can be used when the operating

areas of the local models can be overlapping (Figure 1).

Also additional special phenomena can be added with

fuzzy set systems [29]. The LE approach can be com-

bined with several fuzzy modelling methodologies: the

fuzzy arithmetics and extension principle introduce un-

certainty processing and fuzzy inequalities can be used

in selecting local models [30].

Figure 1: Composite local models of a solar collector field.

2 Intelligent LE control
The first direct LE controller was implemented in 1996

for a solar power plant [31, 32], and later the multi-

level LE controller was installed in an industrial lime

kiln [33]. The feedback LE control is enhanced with

working point control and intelligent actions (Figure 2).

Figure 2: Adaptive LE controller.

2.1 Feedback control

Feedback linguistic equation (LE) controllers use error

e j(k) and derivative of the error Δe j(k). These real val-

ues are mapped to the linguistic range [−2,2] by non-

linear scaling with variable specific scaling functions in

the same way as in LE models. The linguistic values of

the inputs, ˜e j(k) and ˜Δe j(k), are limited to the operat-

ing range: outside the scaled values are -2 and 2 for low

and high values, respectively.

A PI-type LE controller is represented by

˜Δui j(k) = KP(i, j) ˜Δe j(k)+KI(i, j) ˜e j(k), (4)

which contains coefficients KP(i, j) and KI(i, j). The

strengths of effects of ˜e j(k) and ˜Δe j(k) can be tuned by

membership definitions ( fe) j and ( fΔe) j, respectively.

However, the direction of the control action is fixed in

(4). Different directions and strengths can be handled

with this controller.

The output i of a single input single output (SISO)

controller is calculated by adding the effect of the con-

trolled variable j to the manipulated variable i:

ui(k) = ui(k−1)+Δui j(k). (5)

2.2 Intelligent analysers

The LE control included predictive braking and asym-

metry actions (Figure 2) already in the first implementa-

tions. The efficient handling of cloudy conditions intro-
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Figure 3: Intelligent analysers and control.

duced a fluctuation indicator [34]. Braking and asym-

metry actions are not activated when fluctuations are

high. There are additional safety actions for both drastic

and accumulating effects. The intelligent analysers pro-

duce informative calculated variables for the controller

(Figure 3). The indices can be interpreted in natural

language.

Predictive braking indication. Braking is acti-

vated when a very large error is detected. The calcu-

lated braking coefficient, bc j(k) is used to emphasise

the influence of the derivative of the error by means of

the following equation:

KP(i, j) = (1+bc j(k)) KP(i, j) (6)

A new solution has been introduced to detecting the

large error.

The realisation of the braking action is process spe-

cific. In the solar plant, the control actions are large at

the beginning of the correction and the braking is used

in stopping the fast change. In the lime kiln, the braking

is used in the beginning to start the correction with care.

Asymmetry detection. The action is activated

only close to the set point if there are no strong fluc-

tuations of the controlled variable evaluated by e j
− and

e j
+. The earlier calculation based on the solar noon

operated well on clear days but they do not take into ac-

count actual irradiation changes in the solar application.

Fluctuation indicators. Detecting cloudiness and

other varying situations is important in avoiding oscil-

lations. The fluctuations are detected by calculating the

difference of the high and the low values of the cor-

rected irradiation as a difference of two moving gener-

alised norms:

ΔxF
j (k) = ||Ksτ Mph

j ||ph −||Ksτ Mpl
j ||pl , (7)

where the orders ph ∈ ℜ and pl ∈ ℜ are large positive

and negative, respectively. The moments are calculated

from the latest Ks +1 values, and an average of several

latest values of ΔxF
j (k) is used as an indicator of fluctu-

ations. [34]

2.3 Adaptive control

Adaptive LE control takes into account process situa-

tion, manipulating variables and previous control ac-

tions in a predefined procedure. The correction factor

is a weighted sum of the following scaling coefficients:

• working point wpi is the deviation from the normal

operating conditions;

• control power is calculated by a specific LE model

for each manipulating variable;

• cumulative rate of control actions is used for avoid-

ing the accumulation of a very large control action

in slow processes.

Invidual scaling coefficients and the correction factor

are are within the range [−2,2]. The correction factor
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modifies the final scaling of the change of control. Each

manipulating variable needs to be constrained into the

acceptable ranges defined by the physical constraints.

The adaptation uses indirect measurements provided

by the intelligent analysers and weight factors and con-

straints defined by the high level control (Figure 3).

2.4 Model-based control

The LE model types summarised in Section 1 have lin-

ear interactions and can thus be used in the control as in-

verse process models. Feedforward controllers can also

be based on heuristic LE systems and manually con-

structed scaling functions. The linear interactions make

the highly flexible solution includes both switching be-

tween inverse models and using the weighted sums of

inverse models.

The compact LE controllers can be used in the

model-based predictive control if the operation is fairly

smoothly. Strong fluctuations are harmful also for this

kind of model-based control. Mainly the modelling part

is embedded in the development of the intelligent anal-

yses from measurements and open data (Figure 3). On-

line LE modelling could also be implemented, but it is

not feasible in applications which have a lot of strong

disturbances and fluctuations. The online modelling is

restricted in performance and risk analysis.

3 Applications
Three applications of different kind are discussed in this

section. Fast adaptation to changing operation condi-

tions are needed in the solar plant. Several controlled

and manipulating variables are needed in the lime kiln

control where the FF actions are important. Two differ-

ently operating chemicals are essential in the control of

water treatment which combines FF and FB actions.

3.1 Solar thermal power plant

Solar power plants should be designed to collect all the

available thermal energy in a usable form within a de-

sired temperature range. In cloudy conditions, the col-

lector field is maintained in a standby mode ready for

full-scale operation when the intensity of the sunlight

rises again. Control is achieved by means of varying the

flow of oil pumped through the pipes during the plant

operation. For the solar collector field, the goal is to

reach the nominal operating temperature 180 - 295 oC
and keep it in changing operating conditions. The main

challenge is to extend the operation to less favourable

operating conditions.

Feedforward control. The energy balance of the

collector field can be represented by expression [5]:

Ie f f Ae f f = (1−ηp)FρcTdi f f , (8)

where Ie f f is effective irradiation (Wm−2), Ae f f effec-

tive collector area (m2), ηp a general loss factor, F flow

rate of the oil (m3s−1), ρ oil density kgm−3, c specific

heat of oil (Jkg−1K−1) and Tdi f f temperature difference

between the inlet and the outlet (oC). The effective irra-

diation is the direct irradiation modified by taking into

account the solar time, declination and azimuth. The

volumetric heat capacity increases very fast in the start-

up stage but later remains almost constant because the

normal operating temperature range is fairly narrow.

Feedback control. The feedback controller is a PI-

type LE controller (4) with one manipulating variable,

oil flow F , and one controlled variable, the maximum of

the outlet temperatures of the loops, or shortly denoted

as the outlet temperature Tout . The original controller

was defined by the coefficients KP(i, j) = KI(i, j) = 1

[31, 32] and extended to real-valued coefficients in [35].

The basic LE controller is defined for the normal work-

ing point wpi = 0.

Adaptive control. The LE controller is adapted to

different operating conditions by using a working point

LE model

wp = Ĩe f f − T̃di f f , (9)

where Ĩe f f and T̃di f f are obtained by the nonlinear scal-

ing of variables: efficient irradiation Ie f f and temper-

ature difference between the inlet and outlet, Tdi f f =
Tout −Tin. The working point, wp, represents a fluctua-

tion from the normal operation.

The working point variables already define the over-

all normal behaviour of the solar collector field, wp= 0,

where the irradiation Ĩe f f and the temperature differ-

ence, T̃di f f , are on the same level. A high working point

(wp > 0) means low T̃di f f compared with the irradia-

tion level Ĩe f f . Correspondingly, a low working point

(wp < 0) means high T̃di f f compared to the irradiation

level Ĩe f f . The normal limit (wpmin = 0) reduces oscil-

lations by using slightly lower setpoints during heavy

cloudy periods. Higher limits, e.g. (wpmin = 1), shorten

the oscillation periods after clouds more efficiently.
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Intelligent analysers. The working point (9) is an

important intelligent analyser which is used all the time.

Predictive braking indication (6) is activated when a

very large error is detected, e.g. after a drastic set-

point change. The asymmetry detection is activated

only close to the setpoint. Cloudy conditions detected

with the indicator (7) are taken into account in selecting

a suitable working point wpi = 0 when needed. This

overrides the manual settings of the working point to

avoid oscillations. Since this set of indicators operate

very well, the indicators for fast changes of tempera-

tures (inlet, outlet and difference) or too high tempera-

tures activate in the current system very seldom [36].

Intelligent analysers are essential in transforming

the complex control system into an agent-based solu-

tion where all the actions are available for activation

when needed.

3.2 Lime kiln

Feedforward LE controllers are important in the lime

kiln control in keeping good operating conditions when

process input changes: draught fan speed, kiln rota-

tional speed and fuel feeds are controlled by an inverse

model. The fuel feeds are adjusted with the feedback

LE controllers. The FB control, which is required in

order to maintain the hot-end temperature within the

most favourable range for the lime quality, is used for

the fuels: sawdust and oil. The controllers are PI-type

LE controllers based on two controlled variables: the

hot end temperature and the cold end temperature with

weights 0.7 and 0.3, respectively. The error is calcu-

lated as difference of two moving average [33].

Adaptive scaling, braking action and the fuel quality

analyser are the key parts in the FB control. The fuel

quality indicator is the most important for the biofuel.

Another important requirement is the need to cope with

the long time delays. The cumulative rate of control

actions is essential in avoiding excess control actions

to one direction. The working point is defined by the

production rate and the draught fan speed.

The more efficient control solutions reduce the fluc-

tuations of the product quality and minimise the envi-

ronmental impact through smooth operation close to the

process operation constraints. This brings the process

optimisation into real practise.

3.3 Water treatment

The adaptive FB controller of the faster effecting chem-

ical reacts efficiently to the change of the water qual-

ity and to the halving of incoming flow: the setpoint

is kept, and there is no offset. The FF controller of

the slowly affecting chemical (Chem1) is needed for

the fast changes of flow and water quality (Figure 4).

LE controllers have been successfully implemented at

a mill [37]. Pre-tuning facilitates a fast operation in

changing process conditions: the controller does not

need time for finding correct parameters, since the

changes are detected by the water quality indicator.

Figure 4: Dosing control in water treatment.

4 Model-based tuning

Dynamic LE models have been used for developing,

testing and tuning the controllers in changing process

conditions without disturbing the process.

A balanced set of different operating conditions is

needed since the multilevel LE control system should

operate in a wide operating area. The optimisation

based on genetic algorithm can be used simultaneously

for a large number of parameters, including

• parameters of the scaling functions for variables,

errors and changes,

• model coefficients (working point, quality indices,

cumulative rate, FF),

• correction factors, and

• weight factors.

In the applications, the number of parameters is from

40 to 100. Model-based predictive control is suitable

for the tuning of the braking action.
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In the water treatment, the dynamic simulator con-

tains a dynamic LE model for the flotation basin, con-

trollers for two chemicals and a soft sensor for the de-

tection of incoming water quality. Simulation made the

implementation faster without any re-tuning of control

parameters was needed. [38]

5 Conclusions

The linguistic equation (LE) approach is an efficient

solution for model-based intelligent control. Measure-

ment levels, interactions and composite local models

are analysed in a gradually refined way and the mod-

els and indicators are constructed from similar building

blocks. The controller operates like an agent-based so-

lution where all the actions are available for activation

when needed. The parametric systems can be tuned for

wide operating areas.
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