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Abstract. The development of anatomical models both
for individuals and groups are important for applica-
tions in animation, medicine and ergonomics. Recent
approaches have utilised unit quaternions to represent
orientations between limbs which eliminate singulari-
ties encountered in other rotational representations. As
a result a number of unit quaternion based joint con-
straint validation and correction methods have been de-
veloped. Recent approaches harness machine learn-
ing techniques to model valid orientation spaces and
has included the use of Kohonen’s Self Organizing Maps
(SOMs) to model regular conical constraints on the orien-
tation of the limb. Recent work has considered a deriva-
tive of the SOM, the Rigid Map, applied in the same con-
text which we extend here.

Introduction

Anatomically correct joint models are essential to en-

sure realistic movement during simulation for applica-

tions in animation, medicine and ergonomics [1, 2, 3].

Many current approaches are limited by their underly-

ing representation of rotation or abstraction of the joint

function [4], while in others, accuracy is linked to com-

pulational cost [5]. This work builds on previous re-

search exploring the use of machine learning to model

joint constraints; specifically using unsupervised neural

networks to model unit quaternion based phenomeno-

logical [6] joints (whose behaviour can be modelled

without reference to the underlying joint anatomy).

Rigid Maps [7], similar to Kohonen’s Self Organ-

ising Map (SOM), are used to implicitly model the

boundary between valid and invalid orientations by

modelling a group of valid rotations, expressed as unit

quaternions. The SOM produces a topography preserv-

ing projection of the prototypes from the n-dimensional

input space onto an m-dimensional output space [8],

while the Rigid Map [7] uses a fixed output space of

uniformly distributed unit quaternions. Competitive

learning is employed to train a Rigid Map to represent a

group of valid unit quaternion orientations. In response

to an input orientation, the output is the weight of the

output node which best matches the input, this can be

used to provide a target for correction.

This paper considers constraints on the rotation of

the limb (or swing [9]) with regular (circular) bounded

constrained regions. Irregular boundaries and rotation

around the limb (or twist [9]) are the subject of future

work.

1 Background

Joint constraints can be expressed using Euler angles:

this box-limit model is popular in animation tools and

file formats [4]. Such course representations fail to cap-

ture inter-dimensional dependencies [10] and can en-

counter singularities [11]. Inter-dimensional dependen-

cies can be represented by geometric functions fitted to

a given data set e.g. spherical [12] and conical polygons

[1]. Alternative rotational parameterisations have been

deployed to overcome singularities including special or-

thogonal matrices [2] and unit quaternion e.g [13].

Quaternions are an extension of complex numbers,

a subgroup where all quaternions are of unit length (the

unit quaternion group) and their associated algebra al-

lows the representation of rotation without the presence

of gimbal lock [11]. Unit quaternions occupy a three di-

mensional surface (a hypersphere) in four dimensional

space. This mapping is redundant as the unit quater-

nion represent 4π rotations, polar opposites (q and −q)

describe the same orientation [11].

Unit quaternion joint constraints can be modelled by

decompositing the limb origination, as a unit quater-

nion, into conical and axial components (also unit
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quaternions) constrained independently [13] or related

by a simple function fitted to sampled data [14]. A

number of approaches remove the reduncancy in quater-

nion space and project one hyper hemisphere to three

dimensional space. Sampled groups of valid orienta-

tions can then be represented and used as targets for cor-

rection. Approaches include bounded volumes created

from sphereical primitives [15] and voxels [16] with an

implicit surface representing the rotational limit. An it-

erative approach was employed in both cases to resolve

invalid joint configurations, by rotating toward the near-

est primitive (sphere or voxel,) until the orientation was

valid. An alternative approach used the maximum de-

viation from the mean of the projected points [17] as

a constraint. Iterative correction towards the mean, to

within the constraint and reverse projection could then

be used to correct an invalid orientation [17].

Artificial Neural Networks (ANNs) have been em-

ployed to model anatomical joint constraints repre-

sented using unit quaternions. Here, unlike other ap-

proaches [13, 15], unit quaternions can be used as in-

put without decomposition or projection. ANNs have

been trained using supervised learning approaches to

implicitly model a joint constraint boundary [18]. Such

approaches are difficult to apply to recorded data as

they require both valid and invalid patterns for train-

ing. To overcome this issue, ANNs trained using unsu-

pervised techniques such as competitive learning have

been proposed. SOMs have been trained using com-

petitive learning to implicitly model joint constraints

using only valid orientations expressed as unit quater-

nions [19, 20]. The weights of the output nodes are

trained via competative learning to represent the train-

ing data while preserving the topography of the input

space. The network responds to a given input orienta-

tion with the closest orientation in its model of the input

data. This can be used directly for correction [19] or as

a target for an iterative approach [20].

The Rigid Map Network is a modified SOM pro-

posed for pose estimation problems by Winkler et al
[7]. In their approach self-organisation is abandoned,

the output node topology is fixed and the nodes are

uniformly distributed over the orientation space, in this

case the S3 hypersphere using regular polyhedra. The

learning algorithm is modified such that during training

the winning node is based on the proximity between the

input pattern and the position of the output node, rather

than its weight (as in the SOM), determined by the in-

ner product. The updating of weights, however, remains

unchanged with the weight of the winning node and its

neighbours being moved some distance toward the input

according to the learning rate [21]. Both the learning

rate and the radius of the neighbourhood decay expo-

nentially with time [21]. When fired, the network re-

sponds with the weight which is the shortest Euclidean

distance from the input [21].

It is hypothesised that the Rigid Map Network will

produce superior results to the earlier SOM approach as

the orientation space is known and self-organisation can

be abandoned. Exploratory work has considered the ca-

pabilities of the Rigid Map in modelling the orientation

of the limb with a regular rotational boundary and no

constraint on the rotation around the limb. Future work

will explore more complex constraints including irreg-

ular boundaries and rotation around the limb.

The remainder of this paper is structured as follows:

Section 3 provides a description of our methodology

with reference to the techniques employed. Section 4

reports the results of the experiments undertaken with

these discussed in Section 5. Finally Section 6 draws

conclusions from this work and highlights areas for fu-

ture investigation.

2 Methodology

The Rigid Map used consists of four input nodes and a

number of output nodes joined by a weighted connec-

tion. The output nodes are placed into a topology each

having a position on the unit quaternion hypersphere,

arranged using a selection of regular polytopes in 4D-

space, in this case the polydodecahedron and polytetra-

hedron. The polytetrahedron has 120 vertices and 600

tetrahedral cells, while its reciprocal, the polydodecahe-

dron has 600 vertices and 120 dodecahedral cells [22].

Combining these results in the vertices of the polydo-

decahedron being placed at the center of the polytetra-

hedron [21].

The Rigid Map was trained according to the process

defined by Winkler et al [21, 7]. Each experiment was

repeated ten times to ensure the consistency of the re-

sults. The Rigid Map used in this work was based on

that presented by Winkler [21] modified such that the

output nodes occupy the whole hypersphere rather than

a single hemisphere.

Experiments were undertaken with output nodes ar-

ranged as polytetrahedron, polydodecahedron and a

combination of both with on datasets of between 500

and 6000 patterns. In experiments where the range was
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not varied, a constant range of 90◦ was used with other

training parameters identified though experimentation.

The training dataset contained only valid patterns, sim-

ilar to those recorded from the movement of a human

arm. A set of ‘ideal’ corrections (no correction for

valid orientations and the nearest valid orientation for

invalid,) were generated using Lee’s [13] approach and

provided a measurement of the Rigid Maps capabilities.

3 Results
The results show the effect of correcting the orientation

to that suggested by the Rigid Map (the unit quaternion

represented by the weight of the winning node), indicat-

ing successful training of the Rigid Map. An increase in

the range (angle between the virtual limb and the z-axis)

of the constrained region results in a decrease in perfor-

mance, as shown in Figure 1. The resulting corrections,

however, are inferior to those of the SOM (from our

earlier work [19]) using the same training data, training

iterations and a similar number of output nodes (625) as

shown in Figure 1.

Figure 1: Performance of the Rigid Map with increasing
constraint range compared to a similar SOM.

Increasing the number of training epochs produced

an increases in performance, which attenuates rapidly

as the number of epochs increases. The network error

decreases as the number of output nodes is increased

while the error appears independent of the number of

training patterns.

4 Discussion
The results demonstrate that Rigid Maps are capable

of identifying the nearest unit quaternion representing a

valid orientation of a virtual anatomical limb, providing

a representation of a region occupied by valid orienta-

tions in unit quaternions space. The Mean Squared Er-

ror (MSE) on the test set (containing invalid and valid

orientations) is reasonably low, but higher than those

for the SOM (shown in Figure 1). As in earlier work

overcorrection is a problem; the limb is corrected to

the orientation provided by the weights of the winning

node, these being inside the valid region, while the test-

ing process measures the MSE based on the distance

from the boundary.

The results provide an insight into the effects of

problem, network and training attributes on perfor-

mance. It is clear that the network is capable of learning

constraints of varying sizes, although larger constraints

appear to demonstrate a higher error. This suggests

an increase in overcorrection of valid points as output

nodes are more dispersed over the valid region and an

increase in overcorrection of invalid points as fewer out-

put nodes occupy spaces near the boundary. Improve-

ments resulting from the increase in output nodes can

be ascribed to an increase in the density of output nodes

over the valid region, reducing correction errors. Win-

kler [21], recommends an even distribution of output

nodes, however no further polytopes exist [22]. This

has implications for both small networks and large con-

straints due to the low density of output nodes in the

valid region.

Previous results with the SOM [19] network show-

ing improved results with an increase in the data set

size are not echoed in the results for the Rigid Map,

suggesting that the other factors (possibly the limited

output node density) limit further improvements in per-

formance.

5 Conclusion

Rigid Maps have been shown to be capable of rep-

resenting a group of valid orientations in unit quater-

nion space to a degree of accuracy. However, this re-

quires that the output nodes are uniformly distributed

in the output space [21]. This initial research shows

them to demonstrate inferior performance to the tradi-

tional SOM. Both approaches have similarities to non-

machine learning based solutions [16, 17] with the ad-

vantage that no decomposition or reformatting of the

unit quaternion orientation is required. Comparisons

with other popular approaches in terms of accuracy and

speed are now required.

Research is required into the tuning of the Rigid
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Maps training parameters, along with the distribution

and density of nodes in the output layer. A key limi-

tation of this work, highlighted by the results, is an in-

ability to explore larger output layers. Subdivision of

the regular polytopes [7] along with other techniques

[23] are being explored as part of our ongoing research.

Current results are encouraging and suggest that

Rigid Maps are able to implicitly model constraints on

the rotation of the limb with regular boundaries in unit

quaternion space. They may have potential for mod-

elling similar constraints with irregular boundaries and

rotation around the limb while providing advantages

over current approaches.
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