
S N E T E C H N I C A L N O T E

 SNE 26(2) – 6/2016 67

Equation-Based Modeling with Modelica –
Principles and Future Challenges

Dirk Zimmer

Inst. of System Dynamics and Control, German Aerospace Center DLR, Münchener Straße 20,
82234 Weßling, Germany; dirk.zimmer@dlr.de

Abstract. Modelica is a well-established, open standard for
the modeling and simulation of cyber-physical systems.
Since it is based on equations, this modeling language is
applicable to a multitude of physical domains and especially
suited for complex physical systems and their control. This
paper provides a brief introduction on the kind of equation-
based modelling promoted by Modelica and its underlying
core principles. The paper then describes its current state in
development and outlines the most important technology
trends for its future development.

Introduction
Modelling and simulation is today one of the most prev-
alent methods for the design of systems and their con-
trol. A large variety of specialized tools have been de-
veloped and are continually improved that take into
account the specifics of each physical domain.

However, many systems combine components of
different physical domains. Their design consequently
represents an optimization process that cannot be mas-
tered by any domain-specific tool alone. Fortunately,
many methods for modelling and simulation of physical
systems build on the same principals and can be shared
across different physical domains. This is what has led
to a multitude of generic simulation languages for phys-
ical systems such as MIMIC, ACSL, CSMP, gPROMS,
VHDL-AMS, Matlab-Simulink, etc. [16].

This paper presents one of the more recent and
meanwhile well-established languages: Modelica. This
is an openly standardized modelling language, primarily
aimed at the modelling and simulation of physical sys-
tems and their control.

From its founding in 1997, the language developed
with a steadily growing user-base both in academia and
industry.
Being a discussion paper, this text presents the author’s
view on Modelica:
• How to introduce Modelica with its basic principles?
• How has Modelica matured and established itself?
• What will be the future challenges and main devel-

opment trends?
Each of these questions is addressed in a separate sec-
tion. Going through these questions aims at providing a
concise overview on Modelica.

1 Basic Principles of Modelica
There are five core principles that define the design of
the Modelica modelling language:
• It is an equation-based language.
• It enables the acausal formulation of systems.
• It uses physical connectors to connect different

components of a model.
• It is an object-oriented language that enables the

reuse of once developed models.
• Although being a textual language, it embraces a

second layer of graphical modeling.
This list represents the author’s choice. There are many
other factors that have influenced Modelica and that
need to be taken into account when designing a lan-
guage. Nevertheless, these 5 principles cover the most
vital aspects. Let us go through them one by one.

1.1 Equation-based Modeling

As an equation-based language, Modelica enables the
modeller to formulate the system directly by the means
of differential algebraic equations (DAEs). The follow-
ing Listing represents the equations of a simple RC
circuit in a corresponding Modelica model.

Simulation Notes Europe SNE 26(2), 2016, 67 - 74
DOI: 10.11128/sne.26.on.10332
Received: June 20, 2016 (Invited Overview Note);
Accepted: June 25, 2016;

 Zimmer Equation-Based Modeling with Modelica – Principles and Future Challenges

 68 SNE 26(2) – 6/2016

TN
A Modelica model has a header that contains decla-

rations of parameters (constant over simulation time)
and variables. The subsequent equation part then con-
tains algebraic and differential equations. The operator
der() represents the time derivative:

model SimpleCircuit
 parameter Real C;
 parameter Real R;
 parameter Real V0;

 Real i;
 Real uC;
equations
 V0-uC = R*i;
 der(uC)*C = i;
end SimpleCircuit;

Listing 1: A simple Modelica model for an RC circuit.

Listing 1 presents basic elements of a Modelica model:
parameter, variables, and equations. None of these ele-
ments is bound to physics in any way. Yet, it is mean-
ingful, to use variables of physical quantities where
applicable and to add description texts. This makes the
code far easier to understand and safer to use:

model SimpleCircuit
 ”A simple RC circuit”
 import SI = Modelica.SIunits;
 parameter SI.Capacitance C=0.001
 ”Capacity”;
 parameter SI.Resistance R = 100
 ”Resistance”;
 parameter SI.Voltage V0 = 10
 ”Source Voltage”;
 SI.Current i ”Current” ;
 SI.Voltage uC ”Capacitor Voltage”;

initial equation
 uC = 0;
equations
 V0-uC = R*i;
 der(uC)*C = i;
end SimpleCircuit;

Listing 2: Polished version of listing 1, using description
texts and physical units.

The equations in the examples of this paper are only
used to describe continuous processes but Modelica also
contains means to deal with events and conditional
expressions which enable the formulation of discrete
processes.

1.2 Acausality
Modelica uses acausal equations and not causal assign-
ments. This means that the modeller can focus on what
he wants to model and does not need to state how to
compute the system. For instance, Ohm’s law of List-
ing 1 can also be formulated in either of the following
forms:

• uC + R*i = V0;
• (uC-V0)/R = -i;

Acausality is however more than the freedom on how to
form an equation. It becomes an essential feature as
soon as equations are reused, as typical for object-
oriented modelling. Let us consider the following elec-
tric circuit that contains two instances of Ohm’s law
(Figure 1)

Figure 1: An electric circuit with two resistors R1 and R2

both representing Ohm's law.

and its corresponding computational realization in
Matlab Simulink® (Figure 2):

Figure 2: Computational realization of the electric circuit in a
Simulink Block Diagram.

Evidently, R1 is used to compute the voltage out of the
current, while R2 is used to compute the current out of
the voltage. In Modelica, you do not have to care about
this. Ohm’s law is valid for both resistors.

ground

C
=0.001

C

R=50

R1

R
=200

R
2

L=
0.

01

I

ground

C
=0.001

C

R
=100

R

V
0=

10

+
-

 Zimmer Equation-Based Modeling with Modelica – Principles and Future Challenges

 SNE 26(2) – 6/2016 69

T N
More formally, within Modelica you describe sys-

tems according to the implicit DAE form:

It is then the task for a Modelica tool to bring this
implicit DAE form into an explicit ODE form, typically
more suitable for simulation:

where is a subset of . This transformation is

called index-reduction [3], with the index denoting the
complexity of the transformation. Many physical sys-
tems, such as multibody systems typically are higher-
index systems.

Index reduction is also useful for more advanced ap-
plications. It enables model inversion: instead of pre-
scribing the forces and computing the trajectory, the
modeller can prescribe the trajectory and compute the
required forces. Such inverted models can then be used
in a non-linear control loop to derive modern model-
based control laws [12].

1.3 Physical connectors
The example of listing 2 contains a complete model,
with as many equations as variables. This approach
however is only feasible for very small models. For
larger models with thousands of equations, an object-
oriented approach is mandatory. Here, a model is com-
posed out of sub-models, also denoted as components.
The sub-models contain fewer equations than variables.
The missing equations then are added by connecting the
components. For example, Figure 3 displays the model
diagram of an electrical actuated inverted pendulum.

Figure 3: Modelica model diagram of an electric driven in-

verse pendulum.

The individual components of this diagram feature do-
main-specific connectors (green squares for translatory
mechanical hinges, blue squares for electric pins, etc.).
These connectors are declaring pairs of potential and
flow variables. By connecting them with lines, a junc-
tion is formed. For each of these junctions, equations
are generated: potential variables are all set to be equal
whereas the sum of flow variables has to be zero.

The modeller is free to use whatever variables for po-
tential and flow as desired. For many physical domains
however, Table 1 already provides suitable pairings:

Domain Potential Flow

Translational
Mechanics

Velocity: v
[m/s]

Force: f [N]

Rotational
Mechanics

Angular veloci-
ty: [1/s]

Torque: [Nm]

Electrics Voltage
potential v [V]

Current i [A]

Magnetics Magnetomotive
force: [A]

Time-derivative of
magnetic flux: [V]

Hydraulics Pressure p [Pa] Volume flow rate V
[m3/s]

Thermal Temperature
T[K]

Entropy flow rate S
[J/Ks]

Chemical Chem. poten-
tial: [J/mol]

Molar flow rate v
[mol/s]

Table 1: Pairs of potential and flow variables for different
physical domains inherited from bond graphs

These pairings of potential and flow variables are
known from bond graph modelling [7]. The product of
each this pairs represents the flow of energy. Hence the
connection via these pairings will represent flows of
energy going in and out of components.

The typical use in Modelica may partly deviate from
this table. For instance position may be favoured over
velocity, and specific enthalpy maybe more practical
than temperature. Modelica is hence less dogmatic than
bond graphs but nevertheless still profits from the same
underlying thermodynamic principles.

1.4 Object Orientation
The combination of physical connectors with pairs of
potential and flow and the ability to formulate acausal
DAEs then enables a fully object-oriented modelling
approach.

The equations are distributed over several compo-

planarWorld

x

y

carriage

fixed

pendulum
rod

revolute

prismatic

dcpm

ground

idealGearR2T
ratio=100

signalCurrent=0.2

 Zimmer Equation-Based Modeling with Modelica – Principles and Future Challenges

 70 SNE 26(2) – 6/2016

TN
nents. Components of any domain such as resistors,
dampers, wheels, joints, batteries can be declared in the
same way as simple variables. Listing 3 presents the
object-oriented code corresponding for the following
electric circuit.

Figure 4: An example electric circuit.

model Circuit
 import E = Modelica.Electrical.Analog
 E.Basic.Resistor R1(R=100);
 E.Basic.Resistor R2(R=20);
 E.Basic.Capacitor C(C=1e-6);
 E.Basic.Inductor L(L=0.0015);
 E.Sources.SineVSource S(Ampl=15, Freq=50);
 E.Basic.Ground G;
equations
 connect(G.p,S.n)
 connect(G.p,L.n)
 connect(G.p,R2.n)
 connect(G.p,C.n)
 connect(S.p,R1.p)
 connect(S.p,L.p)
 connect(R1.n,R2.p)
 connect(R1.n,C.p)
end Circuit;

Listing 3: Modelica Model of Figure 4.

Models for one domain can be collected in packages,
Modelica’s name for its software libraries. The package
for analogue electrical components is imported in the
listed example. The components of this package are
then accessed by dot notation and declared just as varia-
bles. The equation section does not contain direct equa-
tions anymore but just the connect statements.

There is more to object-orientation than the basic
use of components and its collection in packages. Mod-
elica supports concepts of inheritance, even multiple
inheritance. Partial models are the counterpart to ab-
stract classes in equation-based models and can be used
to define component interfaces.

The structural type system then enables a flexible
replacement of models or model classes.

1.5 Graphical modelling
The manual coding of physical systems as presented in
Listing 3 is a laborious and potentially error-prone task.
Instead, engineers prefer to model graphically. Most
Modelica modelling tools hence offer a diagram editor
that can be used to compose systems such as in Figure
1, 2, or 4 in a purely graphical way by using drag and
drop.

Figure 5: GUI of Dymola, one possible Modelica tool, used

to model the circuit of Figure 4.

The Modelica language provides annotations that act as
a container for the resulting meta-information. These are
used to store the graphical information about the posi-
tion, orientation and scale of the components in the
diagram layer. Most Modelica editors hide the content
of annotations by default so that the modeller can focus
on the essential parts.

1.6 Resulting modelling style
What results of the 5 principles is a declarative model-
ling language that enables the creation of self-contained
models.

Declarative means that the modeller can focus on
what he wants to model rather on how to compute it.

Self-contained means that the models alone are val-
uable information source, even without any simulation
tool at hand.

 Zimmer Equation-Based Modeling with Modelica – Principles and Future Challenges

 SNE 26(2) – 6/2016 71

T N
2 Establishment of Modelica
2.1 Language and tools
Modelica is not the first language to be based on the
outlined principles. Many academic predecessors or
tools such as OMOLA, or 20-sim have helped to path
the way. Yet it is one of the few openly specified lan-
guages that meanwhile found significant industry ac-
ceptance and tool support. Table 2 provides an incom-
plete list of commercial and free tools supporting the
Modelica standard.

Tool Developer Type
Dymola Dassault Systèmes commercial

OpenModelica OSMC /Linköping
Univ.

free

SystemModeller Wolfram commercial
JModelica.org Modelon AB / Lund

Univ.
free

SimulationX ITI GmbH commercial

MapleSim MapleSoft commercial

LMS Imagine Lab
Amesim

Siemens PLM commercial

MWorks Suzhou Tongyuan commercial

CyModelica CyDesign Labs /ESI commercial
Modelicac SciLab Enterprises free

Table 2: List of Modelica simulation environments. Complete
tool list available at [1].

Whereas Listings 1-3 only presented toy examples,
many realistic models of various application fields have
been created, often with more than 100,000 equations.

Automotive companies were among the early
adopters. Models for vehicle dynamics but also for
cabin climatization and powertrain modelling are in use
at the automotive industry. Also motorcycles, trucks,
trains and heavy equipment of all kinds are frequently
modelled in Modelica.

Meanwhile also the conservative aviation business is
increasingly using Modelica. Especially the design of
energy systems for modern more electric aircraft is a
demanding application field.

The energy sector in general is highly relevant for
Modelica. Models of various power plants (from solar
thermal to coal fired) have been created and their inte-
gration into a common energy grid is studied. In this
way, a substantial amount of intellectual property has
meanwhile been encoded in Modelica.

It would, however, be wrong to reduce Modelica just
to the language and its tools. Equally important are the
available Modelica libraries, especially the extensive,
free Modelica Standard Library (MSL). Furthermore
there is the Modelica Association. This is a non-profit
association that engages in development of the standard,
corresponding libraries and the scientific and industrial
community.

The Modelica language, the Modelica libraries and
the Modelica Association consequently form a powerful
triangle that has enabled the recent success of this tech-
nology.

Figure 6: Illustration of Modelica's version of trinity: combin-

ing an open language, with open libraries and an
open association.

2.2 Modelica Standard Library
Most modelling tasks do not start from scratch but build
upon pre-existing models. The Modelica Standard Li-
brary provides therefore suitable building blocks. For
the most relevant domains in physics and control it
offers ready-to-use components, corresponding docu-
mentation and explanatory examples.

The recent development of the MSL has undergone
steady growth. So has the number of code lines doubled
to more than 250,000 from MSL v2.2.2 (2008) to MSL
v3.2.1 (2013) (including comments and meta-data).

Where the MSL proves to be insufficient, the model-
ler can choose from a long list of free and or commer-
cial Modelica libraries. The Modelica website [1] lists
all these libraries together and offers compliance check-
ers. For the collaborative development of free libraries,
GitHub offers a popular and well suited platform.

 Zimmer Equation-Based Modeling with Modelica – Principles and Future Challenges

 72 SNE 26(2) – 6/2016

TN
2.3 Modelica Association
The Modelica Association is a non-profit organization
formed out of more than 20 organizational and more
than 100 individual members. This community organiz-
es its work in internal projects. Two of them are devoted
for refinement and development of the language specifi-
cation and for the development of the MSL.

Since both the specification as well as the MSL have
meanwhile reached a high level of complexity, further
development or request for changes or clarification
build upon dedicated processes. To illustrate this, Fig-
ure 7 shows the size of the specification document (in
terms of page number). From roughly 50 pages the size
almost 6-folded to 300. The specification of Modelica is
in plain text and in most parts not formal. Hence, the
rise of specification length does not only express the
growing complexity of the language but also the strong-
er need for clarifications. The larger number of tools
supporting Modelica fortifies this need.

Figure 7: Length of the Modelica Specification Document in

number of pages from 1997 (v1.0) to 2014
(v3.3rev1).

Furthermore, the Modelica Association is also organiz-
ing the development of the FMI Standard which goes
beyond Modelica in its applicability (see chapter 3).

Internal meetings are organized in form of regular
design meetings, roughly 4 times a year. To reach out to
a larger community, international Modelica conferences
are organized every one or two years. These confer-
ences bring together industry and academia. Their scope
ranges from concrete modelling applications to new
language concepts. For newbies to Modelica, these
conferences are an excellent learning and networking
opportunity.

3 Modelica – Future Challenges
Being a naturally readable and openly standardized
language, Modelica has established itself as an excellent
storage format for mathematical models. This alone is
of major importance. Model libraries often contain the
result from years of development, validated data from
expensive test rigs and in general models often represent
key intellectual property of industrial companies.
Hence, it is vital that the format of these models is a
tool-independent and mature standard that guarantees
ongoing usability.

This usability of a system dynamics model is also
what generates the upcoming demands on the Modelica
language and its tools. The primary and established
application fields are the early design optimization of
systems and the corresponding design of controllers.

These two fields form the seeds for two correspond-
ing development trends in today’s industry. The first
trend is the increasing use of models within systems
engineering also frequently denoted as model-based
systems engineering (MBSE). The second trend of
cyber-physical systems is where controllers and the
physical system are modelled as a whole and the models
are used more directly for the controller development.

Figure 8 provides an overview of typical tasks aris-
ing from a stronger integration of Modelica in either
systems engineering or cyber-physical systems.

3.1 Towards MBSE
In system engineering, the use of Modelica and its mod-
els is not an isolated activity but part of a larger product
development process. The trend is to use more and more
models for this. This confronts Modelica with new de-
mands for the use of its models such as the formulation
of requirements or the need for failure analysis.

Additionally, the term systems engineering corre-
lates often with the on-going bureaucratization of engi-
neering. The trend is hence driven by large industrial
companies, often part of even larger conglomerates in
the need to cooperate with each other. Since these large
entities, are strongly bureaucratic [6], so their engineer-
ing processes become. For Modelica, this means that
generic interfaces are needed to integrate the models or
the tools within the foreseen (if not prescribed) industri-
al tool-chains. The key development in this direction
was the development of the functional mock-up inter-
face (FMI) standard [2].

 Zimmer Equation-Based Modeling with Modelica – Principles and Future Challenges

 SNE 26(2) – 6/2016 73

T N

FMI offers a tool independent standard for model
exchange and co-simulation. The difference between
these two forms is whether or not the code of the nu-
merical ODE solver is included or not. Model-exchange
is (simplistically) based on the mathematical form:

with being the continuous states, the discrete
states, the input, the output and the time. The FMI
then offers a suitable application programming interface
that enables the connection to other models and the
application of any hybrid ODE solver. In co-simulation,
the numerical solver for the advance of time is already
included in the exchanged code. This is suitable for non-
stiff couplings between sub-systems and is also an op-
tion to combine classic tools for system simulation with
3D tools for fluid dynamics or finite elements.

One important aspect of FMI is that models do not
need to be exchanged as white boxes. The model code
can be obfuscated either by compilation or even by
more effective means. In many cases, this represents a
sufficient level of protection of intellectual property that
companies are willing to mutually exchange some of
their models, a process needed for the early design of
today’s systems. For instance, within the research pro-
ject Clean Sky, the environmental control system model
of an aircraft, the corresponding cabin model and the
electrical system model could be exchanged by FMI and
a total system simulation was performed [14].

The exchange of models is also important for other
reasons. Models can also represent requirements.

In this way a company can communicate its specifica-
tion to a supplier and the supplier can test his models
against these specifications.

Ready-to-use libraries [8] help the Modelica develop-
er to formulate its requirements and future language ex-
tensions [4] may ease the binding of requirements to the
corresponding models in the near future.

The FMI does not only offer a standardized API, it
also contains a standardized XML format for the de-
scription of hierarchical, object-oriented models. This
format can be used to import or export meta-information
for the corresponding models. Enhancements of the
Modelica standard enable to include this or other meta-
information directly within Modelica models [15]. In
combination this allows advanced model-based methods
to be performed using multiple tools.

For instance, models can be tagged with possible
fault modes and corresponding failure rates. A tool can
then extract this information and perform a series of
simulation for a safety and reliability analysis. By ex-
tracting information about the connection structure of
the model, this analysis can cover all relevant fault cases
within reasonable effort [10]. Special Modelica libraries
for fault modelling may help the modeller perform such
a task [13].

In summary, the integration of Modelica into the
processes of MBSE is an on-going process. However,
the formulation of interface standards such as FMI has
led to significant higher industry acceptance. New,
practically explored language concepts support this
development by enabling a better handling of meta-data
within models.

Figure 8: Illustration of two major development trends and their sub-topics.

 Zimmer Equation-Based Modeling with Modelica – Principles and Future Challenges

 74 SNE 26(2) – 6/2016

TN
3.2 Towards Cyber-Physical Systems

Cyber-Physical systems denote mechanisms in interac-
tion with model-based algorithms. The goal is hence to
develop model-based algorithms such as controllers,
health-monitoring, fault-detection, etc. within Modelica,
test these algorithms (also in discretized form) in a vir-
tual environment with Modelica models. Ideally, code
for the distributed embedded control units shall then be
automatically generated in a certified form similar to
standards such as DO-178. In its entirety this represents
hence a challenging goal.

In order to better support this trend, Modelica 3.3
has been extended by Modelica Synchronous [5]. This
language extension enables the modelling of clocked
synchronous processes. In this way, controllers can be
modelled in a discrete form and discrete control effects
can properly be taken into account.

To generate code for the embedded control units,
code generation of Modelica tools may require im-
provement. Also here the FMI standard may be useful
to serve as a container for light-weight model and simu-
lation code. The use of FMIs on rapid-prototyping
hardware has meanwhile substantially improved [2].

Finally, for many safety critical applications in avia-
tion, transport or energy, the certification of the applied
controller code is of key importance. This will only be
realistically possible with a well-defined subset of the
Modelica language. First definitions in these directions
have been undertaken by [9] and [11]. Nevertheless, the
vision to automatically generate certified code for em-
bedded systems out of Modelica models is still a far
reaching goal but definitely worth pursuing.

4 Conclusions
Being solely based on equations with no pre-
implemented physics, Modelica is a truly generic and
universal modelling standard. Much freedom is given to
the modeller and after almost 20 years of establishment,
it is fair to say that modellers of many different back-
grounds have endorsed this freedom. For the future
development of Modelica, the resulting amount of varie-
ty in its usage and the rising complexity represents a
vital challenge – a challenge worth to be taken.

About the author
Dr. Dirk Zimmer received his PhD from ETH Zurich in
2010. He is now research group leader at the German

Aerospace Center DLR for the modelling and simula-
tion of aircraft energy systems.

He is using Modelica since 2005 and is teaching as
guest lecturer at the TU Munich since 2010. Also since
then, he is regular member of the Modelica Association.

References
[1] www.modelica.org
[2] www.fmi-standard.org/literature
[3] Bujakiewicz P. Maximum weighted matching for high

index differential-algebraic equations. PhD Thesis,
Technische Universiteit Delft, 1993,147p.

[4] Elmqvist H, Olsson H, Otter M. Constructs for Meta
Properties Modeling in Modelica. In Proc. of the 11th In-
tern. Modelica Conf; 2015 Sep, Paris, France.

[5] Elmqvist H, Otter M, Mattsson SE. Fundamentals of
Synchronous Control in Modelica. Proc. of the 9th In-
tern. Modelica Conf; 2012 Sep, Munich, Germany.

[6] Graeber D. The Utopia of Rules, Melville House, 2015
[7] Karnopp DC, Margolis DL, Rosenberg RC. System Dy-

namics: Modeling and Simulation of Mechatronic Sys-
tems. 4th edition, John Wiley&Sons, 2006, New York,
576p.

[8] Kuhn M, Giese T, Otter M. Model Based Specifications
in Aircraft Systems Design. In Proc. of the 11th Intern.
Modelica Conf; 2015 Sep, Paris, France.

[9] Satabin L, Colaço JL, Andrieu O, Pagano B. Towards a
Formalized Modelica Subset. Proc. of the 11th Intern.
Modelica Conf; 2015 Sep, Paris, France.

[10] Schallert C. Automated Safety Analysis by Minimal Path
Set Detection for Multi-Domain Object-Oriented Mod-
els. Proc. of the 11th Intern. Modelica Conf; 2015 Sep,
Paris, France.

[11] Thiele B, Knoll A, Fritzson P. Towards Qualifiable Code
Generation from a Clocked Synchronous Subset of Mod-
elica. Modeling, Identification and Control; 2015
36(1):23-52

[12] Thümmel M, Looye G, Kurze, Otter M, Bals J. Nonline-
ar Inverse Models for Control In: Proc. of the 4th Intern.
Modelica Conf, 2005, Hamburg, Germany

[13] van der Linden F. General fault triggering architecture to
trigger model faults in Modelica using a standardized
blockset. Proc. of the 10th Intern. Modelica Conf; 2014
Mar, Lund, Sweden.

[14] Zimmer D, Giese T, Crespo M, Vial S. Model Exchange
in Industrial Practice, Geener Aviation 2014; 2014
Brussels, Belgium

[15] Zimmer D, Otter M, Elmqvist H, Kurzbach G. Custom
Annotations: Handling Meta-Information . Proc. of the
10th Intern. Modelica Conf; 2014, Mar, Sweden.

[16] Zimmer D. (2010), Equation-Based Modeling of Varia-
ble Structure Systems; PhD Dissertation, 2010, ETH Zü-
rich, 219 p.

