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Abstract. Active and Assisted Living (AAL) aims at pro-
viding services for elderly or disabled people in their
homes using modern smart home technology and AAL
software. The accessibility of user interfaces for such
systems is of particular interest. This article proposes a
model-based solution for selecting the best device and
modality for user interactions of AAL services using the
Ambient Assisted Living user interfaces (AALuis) frame-
work. The best device and modality for a given situ-
ation depends on context information provided by the
AAL system. An exemplary household was modeled as
a Bayesian Network, incorporating a selection of devices
and their modalities, together with relevant context in-
formation regarding the user and the environment. Each
entity of the network is assigned with a probability. For
devices and modalities these probabilities represent a
measure of their suitability for output for the user, given
the context. This model was then used to simulate dif-
ferent scenarios, in order to review the results of this se-
lection mechanism.

Introduction

Active and Assisted Living (AAL) Environments use

modern technology to provide services specifically tai-

lored to elderly or disabled people and their caretakers

[1]. Those services include telecare, telecommunica-

tions, comfort services and emergency prevention and

detection [2]. They have, in general, the objective of

promoting and maintaining physical and psychological

health, and assistance in daily life. AAL middleware

unites common household electronics and specialized

smart home hardware components with AAL service

software. AAL services are meant to be integrated into

the live of the user as seamlessly as possible. There-

fore the user interfaces (UIs) are of particular interest in

AAL environments [3]. The project Ambient Asssisted

Living User Interfaces (AALuis) [4] is concerned with

the flexible creation of accessible UIs for AAL services.

The model-based Automatic IO Device and Modal-

ity Selection for AALuis has the objective of selecting

the best device and modality combination for any AAL

service, given the context. Context information, regard-

ing the user, the devices and the environment is pro-

vided by the AAL framework and serves as a basis for

the selection. A user interaction typically consists of

input and output. This work is concerned with the se-

lection mechanism for only the output part of UIs.

This paper first describes the problem of the Auto-

matic IO Device Selection for AALuis and follows with

a brief introduction to the chosen method, Bayesian

Networks. Then, the modeling process is presented, fol-

lowed by the results of evaluating this method for solv-

ing the given selection problem. Next, the results are

discussed and finally the paper closes with a conclusion

and a brief outlook on further topics of interest in this

context.

1 Automatic Output Device
Selection for AALuis

New devices, each with their individual features, are

constantly being introduced. It is desirable to also make

them available to AAL systems. However, AAL ser-

vice developers cannot anticipate all device’s possibil-

ities and constraints regarding the UIs at design time.

AALuis can help to use them to their full potential.

The idea of AALuis is to provide open AAL systems

with innovative UIs. It frees service developers from
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Figure 1: The AALuis middleware [4].

the task of designing the specific UIs, by linking the

AAL system with the available devices and generating

accessible interfaces for the services. The AALuis mid-

dleware operates from between another AAL middle-

ware platform and the devices, as shown in Figure 1.

Each device supports one or more modalities. A

modality is the communication channel used to trans-

port a message between a human and a computer. Au-

dio or text are output modalities, speech or text would

be the corresponding input modalities [5].

AAL services initiating a user interaction contact

the AALuis middleware with an abstract description of

the task. It describes one user interaction and does not

make references to a specific device or modality. Dur-

ing the following step AALuis shall automatically se-

lect the best combination of device and modality avail-

able, based on context and device information provided

by the AAL middleware, and create an abstract UI de-

scription. On this basis, a concrete UI is created and

sent to the selected device for rendering. Figure 2 shows

this process and highlights the part of selecting a device

and modality, which is the main focus of this article.

The context of an AAL system includes the user,

the user’s capabilities and constraints, personal prefer-

ences, the available devices, and the situational context,

like surrounding noise, ambient light, temperature and

current activities [6]. In different contexts, some modal-

ities and devices might be preferable over others, for

example, text output on a small device is not ideal for a

person with visual limitations.

A number of additional requirements for the Auto-

matic IO Device and Modality Selection for AALuis

were identified. Input data from sensors, providing con-

text information, might not be available at all times.

Figure 2: The device and modality selection problem in
context of the AALuis UI creation process.

Also, new devices can be added to a smart home at any

time, others might become unavailable. Still, the selec-

tion mechanism has to produce a result every time.

Due to this flexible nature of the target systems, it is

not possible to collect any training data for a classifier.

2 Bayesian Networks

Bayesian Networks were chosen as a method to solve

the selection problem given the constraints stated

above.

A Bayesian Network [7] is a directed acyclic graph

and constitutes a compact representation of a probabil-

ity distribution. The graph’s nodes stand for discrete

random variables and its edges represent causal rela-

tionships between them. Each node is assigned with the

probability for each value the random variable can take.

Bayesian Networks can incorporate the subjectivist

interpretation of probability, as opposed to the com-

monly known frequentist interpretation.

Traditionally, probability is based on the frequency

at which certain events occur during repeated statistical

experiments. There are situations however, where it is

not possible to conduct an experiment multiple times in

order to determine the frequencies of its outcomes. In

the subjectivist interpretation of probabilities [8], prob-

ability is a numerical value, representing the degree

of belief in the occurrence of an event A, given prior

knowledge E (Evidence). This definition enables one

to utilize expert domain knowledge and assign proba-

bilities to events that are conditioned on E.

In a single Bayesian Network, both interpretations

can be used conjointly.
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2.1 Independence Assumption in Bayes
Networks.

In a Bayesian Network, an edge connecting two nodes

represents a causal relationship between them. There-

fore, two nodes that are not connected are considered

independent. This property is essential for using a

Bayesian Network to compactly represent a probabil-

ity distribution of n random variables. Expanding the

definition of conditional probability P(A|B) = P(A∩B)
P(B)

to multiple variables leads to the Chain Rule, shown in

Equation 1, to calculate the joint probability distribution

of the variables.

P

(
n⋂

k=1

Ak

)
=

n

∏
k=1

P

(
Ak

∣∣∣∣∣
k−1⋂
j=1

A j

)
(1)

For two independent random variables the following

holds: P(A|B) = P(A).
This property, together with the assumption that

there is no causal relationship between two not con-

nected nodes, is utilized in a Bayesian Network, result-

ing in the Chain Rule for Bayesian Networks [8], shown

in Equation 2.

P(A1, ...,An) =
n

∏
i=1

P(Ai|PaG(Ai)) (2)

where PaG(Ai) denotes the parent nodes of Ai in the

graph G.

This means that after assigning each node of the

Bayesian Network with the Conditional Probability of

the represented random variable, given its parents, the

Network contains all the information needed to calcu-

late the joint probability function of all random vari-

ables.

2.2 Inference on Bayesian Networks

The states of some of the modeled random variables in

a Bayesian Network can be observed in the real world.

Using an inference algorithm, the graph structure can

be exploited, to calculate the posterior probability of

any random variable P(A|E = e), given the observed

evidence.

For this work, the junction tree algorithm by Shenoy

and Shafer [9] was used for inference. This algorithm

uses techniques of graph theory to convert the graph to a

a simpler structure, the eponymous junction tree. After

Evidence was observed, the probabilities in the model

are updated. When the algorithm has completed, the

probability of each single variable can be found through

marginalization of a relatively small table. There is no

need to calculate the entire joint probability distribution

using the Chain Rule for Bayesian Networks, shown in

Equation 2, to obtain the value for a single variable any-

more.

3 Modeling

In order to solve the Output Device and Modality Selec-

tion for AALuis using a Bayesian Network, an exam-

ple household was modeled as a template for any real

household using AALuis. This section gives a brief in-

troduction on the included elements and how they were

combined in this model.

3.1 Elements of the Bayesian Network

Devices. For each known device, one node with the

possible states yes and no, representing the subjective

probability that the device is a good choice, was in-

cluded. Each device has a parent node, indicating the

device’s current availability. Battery operated devices

were additionally assigned a parent node, indicating the

battery status of that device, with the possible values

low and OK. In the modeled sample household, motion

sensors provide the AAL middleware with information

about the user’s proximity to each device. To incor-

porate this information into the Bayesian Network, for

each device node a proximity indicator was added as

a parent. The subjective probability of every possible

state of each node was assigned during the modeling

process. These probabilities are used during inference,

if the real value of the corresponding node was not ob-

served. Figure 3 shows an example for a device called

smartphone. Table 1 shows the corresponding condi-

tional probability table for the device. It holds a proba-

bility for the values yes and no, for each possible state

of the parent nodes.

For all entries, where the node available takes the

value no, signaling that the device is currently not avail-

able to the system, the probability for the device node

evaluating to yes was set to 0, thereby excluding the de-

vice from the selection process.

Modalities. Each modality supported by any of the

known devices is represented as a single node in the
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Figure 3: The nodes for a smartphone, with its properties
battery status, availability and user’s proximity.

available battery proximity
smartphone
yes no

yes

OK
same room 1.0 0.0

different room 0.5 0.5

low
same room 0.1 0.9

different room 0.1 0.9

no

OK
same room 0.0 1.0

different room 0.0 1.0

low
same room 0.0 1.0

different room 0.0 1.0

Table 1: The Conditional Probability Table for the
smartphone node of Figure 3.

Bayesian Network. The instance values yes and no rep-

resent how well the use of this modality would suit the

current situation. The parents of a modality node are all

the influencing factors from sensors or the user profile

that have the potential of reducing the suitability of this

modality.

User Profile and Sensor Data. For the modeled

template household and AAL system, it was assumed

that there was a user model, retrieving information

about the user from a user profile. Four exemplary prop-

erties, indicating the user’s abilities were included in the

model: hearing, visual acuity and sensitivity, field of vi-
sion and language reception. Two items of sensor data

were also included: noise and ambient light.

Result Nodes. Finally, for each possible combina-

tion of modality and device, a so called result node was

added. It merges the probabilities of its parents so that

the probability assigned to its value yes reflects the level

of agreement for that combination, given the evidence.

A minimal working example including only one device

and one modality is shown in Figure 4.

Figure 4: A minimal example of a household with only one
device, which supports exactly one modality.

3.2 Inference on the model

When a selection is initiated by AALuis, evidence is

set for all nodes which have been observed and infer-

ence can be performed. After completion, each result

node is queried for the probability now assigned to its

instance value yes. By ranking the result nodes accord-

ing to their updated level of agreement, the best device

and modality combination is found.

4 Results

To review the described approach’s suitability to solve

the Automatic IO Device Selection for AALuis, the ex-

ample household was used to simulate different situa-

tions. Two example scenarios, will be presented below.

Scenario 1. A graphical summary of Scenario 1 is

shown in Figure 5. It includes a user with good vi-

sual acuity and impaired hearing abilities. A TV is

available in another room, and a touchtable is situated

near the user. The level of noise is currently high,

and the ambient light is of medium intensity. In this

scenario, combinations using the touchtable are rated
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Figure 5: Scenario 1

overall higher than the options for the TV. The com-

bination of touchtable and text output receives 100%

agreement, while audio output on the TV receives only

16.5% agreement.

Scenario 2. The second scenario represents a user

with severe impairments in hearing and their field of

vision. Their visual acuity is also impaired, while the

language reception was rated as normal. There are four

devices present, including a TV in a different room, a

laptop with good battery status in a different room, a

smartphone with low batteries in the same room and a

touchtable in the same room. The sensors report high

noise and low ambient light. In this scenario, no result

combination receives an agreement of more than 34%.

Audio output on the smartphone scores only at 0.33%.

Figure 6: Scenario 2

5 Discussion

This section will review the simulated scenarios pre-

sented above and provide a short interpretation of the

individual results.

Scenario 1. Scenario 1 was shown in Figure 5. The

results show that all modalities, including an audio

component, namely audio, avatar and video, were pe-

nalized because the user was observed to have impaired

hearing abilities. All combinations including the TV

were rated significantly lower than the ones including

the touchtable. This result is plausible because the TV
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is in a different room. Output on this device would

require the user to move closer to it, which should be

avoided if possible.

Scenario 2. Scenario 2, shown in Figure 6, stands

out because of the overall low agreement for all

possible output combinations. The numerous negative

influences present in this scenario influence all options

heavily. This behavior, while being undesirable for

successful user interactions, is in accordance with the

concept applied during the modeling process. If one

of the possible output combinations would receive a

good score under these disadvantageous conditions, it

would mean that none of the possible influences are

connected to it. Regardless of the observed conditions,

such a combination would always receive the exact

same agreement level and possibly distort the selection

mechanism. An occurrence like this could indicate that

the model might not include causal relationships that

should be considered.

The scenarios show that overall changes in the simu-

lated input lead to plausible changes in the results. Sin-

gle negative influences affect specific result combina-

tions. The output of the selection mechanism in general

reflects the intentions and assumptions that were the ba-

sis for the assignment of the probabilities for each node.

6 Conclusion and Outlook

The presented work described one possible approach

to solve the Automatic Output Device Selection for

AAluis with the use of Bayesian Networks. This

method is capable of producing a result, even when the

input data is incomplete, because it relies on the prob-

abilities assigned during the modeling process in those

cases. The use of subjective probabilities also elimi-

nates the need for training data. If training data were

obtained, it can easily be used to adjust the assigned

probabilities.

The results confirm that Bayesian Networks in this

setting produce satisfactory results in general. The spe-

cific probabilities assigned to the individual nodes how-

ever are crucial to the success of this method in real-

world applications. To validate the assumptions made

during the modeling process, the model has to be tested

in a live setting by users belonging to the target audi-

ence of AAL systems.

Moreover, a successful user interaction typically

consists of both output and input. So far, this work has

only covered the selection of output device and modal-

ity. It remains to be seen, if the same method proves

to be practical applied to the selection of an input de-

vice and modality, and if both parts can be joined in a

meaningful way.
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