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Abstract. The work concentrates on combining dis-
crete and continuous data in an algorithm to detect com-
plex activity patterns.With the InvenSense MotionFitTM

Software Development Kit (SDK) accelerometer and gy-
rometer data are recorded with the MPU-9150 sensor.[1]
The raw data consisiting of processed daily acticities are
preprocessed via a shifted window and different features
are calculated. Afterwards activity recognition is done in
MATLAB using the PMTK3 toolbox from Murphy et al. [2],
where the classification algorithms are continuous Hid-
den Markov Models (cHMM).

Introduction

Activity pattern recognition analysis based on contin-

uous sensor data using the MPU-9150 sensor is used

to recognize daily activities in an everyday life envi-

ronment. Activity recognition is currently a subject of

intensive research, because of it’s importance in many

different fields. The motivation of this work lies in spe-

cific in the growing generation of older adults, and the

need to provide them a secure and appropriate living

standard. The continuous sensor data are used to recog-

nize activities with a basic machine learning algorithm.

The demographic changes lead to more people suf-

fering from Alzheimer’s and Parkinson’s disease. The

challenge of the increasing number of dementia patients

can be approached by Ambient Assisted Living Tech-

nologies like activity recognition, as some tasks of care

givers can be eliminated or can be performed easier.

This includes, among other things, sensors which con-

trol kitchen appliances like stoves, and guarantee the

appropriate usage due to activity recognition. [3]

Human activity recognition based on accelerometer

and gyrometer sensor data is an important task in the

field of AAL technologies. The work focuses on the

recognition of complex daily activities like tooth brush-

ing, dinner preparation, changing clothes and others.

The annotated data is recorded with the MPU-9150 sen-

sor and the InvenSense MotionFitTM Software Develop-

ment Kit (SDK). Supervised classification algorithms,

namely continuous Hidden Markov Models (cHMM),

are used to detect different daily activities.

The current attempts to detect human behavior and

activity can be classified by the type of the sensors used

(1) body worn sensors, (2) video cameras and (3) do-

motic sensor networks. [4] This work concentrates on

body worn sensors. The data gained from body worn

sensors consist of accelerometer and gyrometer data.

1 Related Work

There are many research studies over human activity

recognition in different settings.[5, 6, 7, 8, 9] Most of

these works are based on acceleration data and tries to

recognize daily activities like [5, 6, 7, 9]. The main dif-

ference between the works lies in the choice of param-

eters in the different steps of recognition, meaning pre-

processing, feature extraction, and finally training and

classification.

Each study uses different sample frequencies during

preprocessing. Bao et al.[5] used a sample frequency of
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76.25Hz, Ravi et al.[6] and Shoaib et al.[8] used 50Hz.

To get a hint which frequency is accurate in daily activ-

ity recognition, but still doesn’t need too much memory,

Khusainov et al.[9] compared different sampling rates

and inferred that most of the body movements are con-

tained in frequency below 20Hz.

Shoaib et al.[8] record a combination of accelerom-

eter, gyrometer and magnetometer data from a smart-

phone sensor and later six different activities with seven

classifiers are analyzed. Shoaib et al.[8] show that

the combination of accelerometer and gyrometer com-

pletes the system and gives better results during physi-

cal activity recognition. The feature calculation is kept

as simple as possible with two time domain features.

They handle four dimensions x,y,z and the magnitude√
x2 + y2 + z2 and compute mean and standard devia-

tion. On top of the work from Shoaib et al.[8] the fre-

quency domain features are included within this work

and the aim is to find out the performance including

more complex activities.

In [10] a feature dataset is provided. They recorded

eight activities from a group of 30 persons with a

sampling rate of 50Hz. All activities were performed

twice with a smartphone on the waste recording the

accelerometer and gyrometer data. They calculated a

bundle of 561 features and experimented mainly with a

multi-class support vector machine, showing an over-

all accuracy of 96% for test data consisting of 2947

patterns.[10]

This work is mainly based on Bulling et al. [11],

where body-worn accelerometer and gyrometer sensors

are recorded to detect hand gestures which where

commonly used during daily activities. They recorded

12 activities and inbetween non-specific activities, so

called ’NULL’-class, are performed. Data from two

persons with three sensors placed on their arms in

different heights are gathered. The sensor are placed

on top of the right hand, outer side of the right lower

and upper arm. The data comes from a three-axis ac-

celerometer and a two-axis gyrometer, both recording

annotated motion data at a sampling rate of 32Hz.[11]

2 Activity recognition

The activity recognition consists the following steps.

First the sensor is placed and the raw data are recorded.

Afterwards preprocessing is done, which means data

segmentation and filters are applied. During feature

extraction, features are calculated. Finally, the train-

ing and classification is done with a continuous Hidden

Markov Model (cHMM).

2.1 Data

The InvenSense MotionFitTM Software Development

Kit (SDK) is used to record data. The MPU-9150 is

a nine-axis MotionTracking device optimized to fulfill

the purposes for wearable sensor applications.[1]

The MPU-9150 sensor is placed on the left hand

wrist, with which the daily activities are mostly exe-

cuted, because of sinistrality. The recording is done in

different time units in a 59m2 flat. In table 1 common

daily activities [12] are displayed, which are recorded

in this study with a sampling frequency of 50Hz.

Table 1: List of recorded daily activities.

labels activities

1 NULL

2 comb hair

3 wash face

4 wash hands

5 brush teeth electric/ non electric

6 make bed

7 change clothes

8 put blinds up/down

9 prepare food

10 eat with folk/ spoon/ chopsticks

11 open/close window

12 read newspaper/book

13 putting shoes on

14 drink from/with straw/ mug/ cup

Each activity is saved with their 3-axis accelerom-

eter and 3-axis gyrometer data. Inbetween all activi-

ties a ’NULL’-activity is performed, which consists of

preparing the next activity and closing the preceding ac-

tivity. The data gathering extends over days in many

small sessions, which is the reason why the sessions are

put together to one dataset later on.

Data segmentation is performed via annotation dur-

ing recording, saving information over start and dura-

tion of the activity. The annotation is automated via

an app, which allows the recording within specific time
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units, which are determined by the user and the annota-

tion of the data accords to the user’s purpose.

2.2 Preprocessing

Only data which are recorded more than once are used

for analysis. This is done with one of two methods.

The first method cuts out ’read newspaper/read book’,

’putting shoes on’ and ’drink from/with straw/mug/cup’

from the whole dataset, but the ’NULL’-classes be-

tween the activities remain in the dataset. The second

method redefines those classes labels to the ’NULL’-

class label.

Some other activities are put together to one: ’Tooth

brushing electric’ and ’Tooth brushing non electric’ get

label 5 as well as ’Eat with folk’, ’Eat with spoon’

and ’Eat with chopsticks’, which are assigned to la-

bel 10. Each sensor records data in three dimen-

sions and a fourth dimension, describing the magnitude√
x2 + y2 + z2, is added for each sensor.

In the preprocessing step the artifacts and noises are

reduced by filters and the signal is prepared for later

feature extraction.[11] The noise and artifacts are dis-

turbances which can corrupt the human activity recog-

nition. During the study median filter and a 3rd order

low-pass Butterworth filter are tested. These filters are

also used among others in [10]. The 3rd order low-pass

Butterworth filter has a cutoff frequency of 20Hz. This

rate is sufficient, as the frequency of human body mo-

tions is 99% below 15Hz.[10]

The application of the median filter causes a

smoothing of the data compare figure 1. Butterworth

filters are used to cut high frequencies. The function-

ality of a third order low pass Butterworth filter with

20Hz cutoff frequency for a data segment of the orig-

inal dataset can be seen in figure 2. The original data

is displayed in blue and the filtered data is displayed in

red.
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Figure 1:Median filter.
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Figure 2: Butterworth filter.

2.3 Feature Mapping

In the feature extraction step the raw data are converted

into features. This features are calculated for each anno-

tated activity with a shifted window sized 50, contain-

ing 50 data vectors, and an overlap of 50%, which is the

most significant value for overlap in past works.[13, 5]

The mean, standard deviation, correlation [5, 6], energy

[5, 6] and frequency domain entropy [5] are calculated

for this data, as those are the most popular features for

acceleration signals in activity recognition.[7]

The features can be divided into time domain fea-

tures and frequency domain features. Time domain fea-

tures are mean, standard deviation and correlation. Fre-

quency domain features are energy and entropy. The

energy and entropy calculation is much more expensive

in comparison to the time domain features, because of

the Fourier transformation (FFT).[8]

A periodic function in time is described with a di-

rect current (DC) component. The DC component over

the window is the mean value. Standard deviation is

important for the reason of different range of values for

different activities. Periodicity in the data is saved in

the energy feature. Correlation between axes is useful

to differentiate activities with translation in one dimen-

sion. As example, walking and stair climbing can be

distinguished over correlation data.[5, 6]

In table 2 the calculation methods for the different

features are depicted, where w is the window length and

x j are discrete FFT components. It is important to use

a minimum number of features that allow good perfor-

mance and at the same time minimize computational

costs and memory.[11] Experimenting with the features

get to the conclusion that entropy shows no improve-

ment of the results. The best combination of features

are mean, standard deviation and correlation.

2.4 Training

For activity recognition cHMMs are used. This is a

supervised model which needs to get trained before

operating.[11] Therefore the data has to be split into

training and test data.

As some activities are not so common it is not pos-

sible to divide the data in usual 20% test data and 80%

training data. Therefore one activity is cut out from

each activity class, with the ’NULL’-class behind for

the test data set. The remaining part is used as training

data. An example for the structure of training and test

data can be seen in figure 3 and 4.
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Table 2: Features.

Features calculation

mean μ = 1
w ∑w

j=1 x j

x j . . . values

standard dev. σ =
√
( 1

w ∑w
j=1(x j −μ)2)

energy energy= 1
w ∑w

j=1 | x j |2

correlation cov(x,y) = 1
w ∑w

j=1(xi −μx)(yi −μy)

corr(x,y) = cov(x,y)
σxσy

entropy Frequency-domain entropy is calculated

as the normalized information entropy

of the discrete FFT component

magnitudes of the signal.[5]
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Figure 3: Training data.
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Figure 4: Test data.

The training needs a training set {(Xi,yi)}N
i=1 con-

sisting of N pairs of feature vectors Xi with corre-

sponding labels yi. In cHMMs the model parameters

θ = (π,A,B) are learned by minimizing the classifica-

tion error.[11] In this work the transition matrix A, can

be calculated with the labeled training data as well as B,

a list of pairs (μ,Σ) that define the distributions. Only

π has to be guessed.

2.5 Classification

The classification consists of two steps. The first one

maps a set of class labels to each feature vector of the

test data with corresponding scores. In the second step

the scores are used to calculate the maximum score and

take the corresponding class label yi as the classification

output.[11]

2.6 Performance Evaluation

The classification of the activities can be either correct

’True Positive’ and ’True Negative’ or wrong ’False

Negative’ and ’False Positive’. The performance metric

which is used for this model is a confusion matrix, with

accuracy, sensitivity(=recall), specificity and precision.

The confusion matrix gives a breakdown of the mis-

classified activities by the model. The rows show the

instances in each actual activity class and the columns

show the instances for each predicted activity class. The

values in one row are the results from the comparison of

all ground truth instances, from the actual class, to the

predicted class labels.[11] In table 3 a simple confusion

matrix can be seen, where the last column describes the

recall values, the last row the precision values and the

last box describes the accuracy.

If the dataset is unbalanced, for example when the

number of ground truth instances vary significantly, the

overall accuracy is not representative for the whole clas-

sifier. A normalized confusion matrix inhibits this prob-

lem by using percentage of the total number of ground

truth activity instances.[11] This problem occurs also in

small scale during this study, that is the reason why all

parameters are included in performance evaluation and

no normalization is done.

Table 3: Simple confusion matrix.

activity 1 activity 2 activity 3 recall

activity 1 11 2 0 84.62

activity 2 0 4 0 100

activity 3 1 0 5 83.33

precision 91.67 66.67 100 86.96

3 Validation

In the first attempt a validation with the provided data

from Bulling et al. [11] and Anguita et al. [10] is

accomplished to justify the use of continuous Hidden

Markov Models (cHMM).

3.1 Bulling et al.[11]

In [11] data from 2 persons performing 12 activi-

ties are recorded: opening a window, closing a win-

dow, watering a plant, turning book pages, drinking
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from a bottle, cutting with a knife, chopping with

a knife, stirring in a bowl, forehand, backhand and

smash. Additionally, a non-specific activity was per-

formed called ’NULL’-class.[11] The inertial measure-

ment unit (IMU) is placed on 3 positions, the upper arm,

the lower arm and the hand wrist on the right side.[11]

For evaluation, the hand position is used.

Provided data with a 32Hz sampling rate are used

to calculate the features: mean, standard deviation, cor-

relation and energy for all 7 axes. This 7 axes come

from the 3-axes accelerometer and 2-axes gyrometer

gathered data, including one axis for each sensor, rep-

resenting the magnitude. This features are further used

to calculate the cHMM model.

The calculated results from the cHMM are com-

pared with the results in the paper from Bulling et al.
[11]. This circumstances are shown in figure 5, where

precision and recall is compared to the applied cHMM

in this thesis using the same dataset. The same char-

acteristic, namely lower precision than recall, can be

seen. The different values between results of Bulling et
al. [11] and this thesis are mostly caused by the number

of features and the model used in [11]. They only calcu-

lated two features, mean and standard deviation and the

classification algorithm uses a folding step.[11] In com-

parison this thesis takes into account the mean, standard

deviation, energy and correlation features.

Bulling cHMM of this thesis
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Figure 5: Precision and recall for sensor data from Bulling et
al. [11] and this cHMM.

In [11] the precision lies by 87.2% using the sensor

placed on the hand wrist. This relates to the results of

an accuracy of 81.71% and good recall and precision

values for each activity class in the confusion matrix.

Therefore it follows, that the used cHMM is accurate.

3.2 Anguita et al.[10]

Anguita et al. gathered data from 30 volunteers, which

followed a defined protocol of activities, consists of

standing, sitting, laying down, walking, walking down-

stairs and upstairs. This data are collected via a Galaxy

S II. smartphone on the waist, recording accelerometer

and gyrometer data with a sampling rate of 50Hz and 5

seconds break between two activities.[10]

Only a part of the 561 features vector of the pro-

vided data is picked for evaluating the cHMM. The fea-

ture data is already noise reduced by median filter and

3rd order low-pass Butterworth filter with a 20Hz cut-

off frequency and others.[10] In particular the data of

mean, standard deviation and correlation is used for all

three axes X ,Y,Z.

The confusion matrix shows the precision in the last

row, the recall in the last column and accuracy in the

last box. In table 4 the confusion matrix of the cHMM

is depicted. In table 5 the results of Anguita et al.[10]

are reproduced. In contrast to the cHMM applied in this

study, Anguita et al. used a multiclass Support Vector

Machine (MC-SVM). The different accuracy can be at-

tributed to the less used features, the usage of only one

accelerometer and one gyrometer dataset, and the more

complex MC-SVM model in [10].

Table 4: Confusion matrix of cHMM.
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2 1 3 406 68 11 82.69

6 9 5 26 468 18 87.97

0 0 2 298 44 193 35.94

98.14 89.09 71.08 55.62 80.69 86.94 77.03

4 Experiments

In all experiments except ’Continuous/Discrete data’,

the activities which occur only once in the recording pe-

riod are put in the ’NULL’-class activities. In ’Continu-

ous/Discrete data’ the once recorded classes are cut out

of the whole dataset, leading to an one percent improve-

ment. In real environmental applications this makes a

small difference and therefore is not necessary.

SNE 26(1) – 3/2016



14

S Fallmann et al. Human activity pattern recognition

Table 5: Confusion matrix of MC-SVM [10].
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4.1 Training and test sets

Different sort of training and test data partitions are an-

alyzed. For example, the test data includes the third

repetition of each single activity class and takes either

the ’NULL’-class behind or in front of each cut activ-

ity. Another approach uses the second repetitions, again

with either the ’NULL’-class in front of the activities

or behind. This results are compared to each other see

figure 6, 7 and table 6. Out of the table, illustrating

the changes in accuracy, specificity and sensitivity, the

conclusion can be drawn, that the 3rd activities with

’NULL’-class behind, implies the best result.
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Figure 6: 3rd activities with
’NULL’-class behind.
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Figure 7: 2nd activities with
’NULL’-class in front.

Also different feature combinations are constructed

and the accuracies are compared, leading to the most

appropriate combination of mean, variance, correlation

without the magnitude for the 3rd back data set.

4.2 Filters

In this section a median filter and a 3rd order low pass

Butterworth filter with a corner frequency of 20Hz is

Table 6: Accuracy, specificity and sensitivity for different
sets.

Experiment accuracy specificity sensitivity

3rd back 80.24 89.08 63.81

3rd front 79.84 88.35 61.25

2nd back 63.99 82.66 67.91

2nd front 64.67 85.48 56.18

used to remove noise, based on Anguita et al. [10].

For the best combination of features experimented

above accuracy, specificity and sensitivity of filtered

and non-filtered data are represented in table 7. If fil-

ters are applied, the sensitivity gets better, but the accu-

racy and specificity gets worse. Therefore filters seem

unnecessary for this dataset.

Table 7: Accuracy, specificity and sensitivity for filtered and
non filtered data.

Experiment accuracy specificity sensitivity

no filter 80.24 89.08 63.81

filter 79.53 88.26 67.62

4.3 Accelerometer/Gyrometer

This experiment deals with analysis of accelerome-

ter and gyrometer data on their own and combined.

The outcomes of the accelerometer and gyrometer data

on their own are further compared with the results of

Bulling et al. [11].
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Figure 8: Precision and Recall
by Bulling et al. [11].
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Figure 9: Precision and Recall
of this study.

The single accelerometer dataset is more accurate

than the single gyrometer dataset. This results coincide

with those of Bulling et al. [11]. In [11] the gyrometer

data on their own is also worse than the accelerometer
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data on their own. These circumstances are illustrated

in figures 8 and 9, where precision and recall are sym-

bolized as blue and red bars. It can be noticed, that

the results in the study of Bulling et al. [11] reach

higher level of precision and lower level of recall than

the results in this study. This is mostly caused by the

greater dataset in [11]. The results in this study are not

worse, but differ in activities as well as range and sort

of recording.

The combination of accelerometer and gyrometer

data is less accurate, combining accuracy, specificity,

recall and precision therefore the conclusion can be

drawn that gyrometer data is unnecessary in this case.

4.4 Extra cHMM

Activities are now divided in sub-activities with an ex-

tra cHMM. In specific, for each often misclassified

activity-class, a cHMM is applied to divide the activities

in sub-activities. The number of sub-activities depends

on the number of states in the cHMM. Hence an itera-

tion is done, constructing a 2-5-state cHMM, choosing

the cHMM with highest accuracy.

For example the improvement by using the divided

’Tooth brushing’ class comes from the case that electric

tooth-brushing has a higher frequency.

The extra cHMM model is very sensitive. During

the experiments only the parameter, for ’k’-fold cross-

validation and the parameter, number of activity classes

divided, are considered. But also a change in tolerance

and of maximal iterations within the cHMM effects the

outcome. The tolerance is always set to 1e−5 and the

maximal iteration is set to 10.

In figures 10 the basic cHMM is shown, in con-

trast to figure 11, where the results for including sub-

activities for tooth brushing, putting blinds up/down and

prepare food are displayed, symbolized as Viterbi path

(blue) correlating with the original labeled path (red).

The results with sub-activities show a better fit to the

original path. The experiments show that accuracy and

specificity gets better, but do not justify higher runtime.

4.5 Continuous/Discrete data

The combination of continuous and discrete data is an-

alyzed in this section. Test and training data get an

additional column, consisting of the room number, de-

scribing the room where the activities are performed.

The ’NULL’-class activities become half the room la-

bel from the previous activity and half the room label
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Figure 10: Basic cHMM.
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Figure 11: Extra cHMM.

from the following activity. The process represents the

usage of smart home sensors in combination with wear-

able sensors. An improvement of the results can be rec-

ognized. The outcomes in table 8 show that accuracy

improves about 9% and sensitivity about 10%, while

specificity stays nearly the same. This justifies the ef-

fort of collecting both data, continuous and discrete.

Table 8: Accuracy, specificity and sensitivity for continuous
and continuous & discrete data.

Experiment accuracy specificity sensitivity

continuous 81.21 99.66 79.03

continuous & discrete 88.75 100 91.39

A great improvement can also be seen in the com-

parison of the Viterbi path (blue) and the original la-

beled path (red) in figure 12 and 13. Figure 12 shows

results with continuous data and figure 13 with the com-

bined dataset.

Overall the classes are not so likely misclassified

as ’NULL’-class anymore, but one drawback is that

the ’NULL’-class is much more likely misclassified as

other activities.

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

Figure 12: Continuous data.
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Figure 13: Con. & disc. data.
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5 Conclusion and Outlook
Human activity recognition in Ambient Assisted Liv-

ing (AAL) using a 3-axis gyrometer and a 3-axis ac-

celerometer is performed. This raw data are prepro-

cessed and split into test and training data sets. Later on

features are extracted. Based on these features a contin-

uous Hidden Markov model (cHMM) is constructed.

The cHMM model is validated with provided data

and results from Bulling et al. [11] and Anguita et
al. [10]. Afterwards different experiments were ac-

complished. The outcome shows, that using only ac-

celerometer data with mean, variance and correlation

leads to the best results. The conclusion is that gyrome-

ter data are not necessary for good results and filters do

not really contribute to significant improvement. The

most important outcome is, that the combination of dis-

crete and continuous data considerably improves the re-

sults.

The experiments have to be treated with caution, as

the dataset is not big enough to get general statements

and is only recorded from one person. Another draw-

back of the data is the recording sessions. It is recorded

in different sessions with breaks inbetween, but still is

applicable to real environments.

Research should focus on the combination of dis-

crete data from binary sensors and continuous data from

wearable sensors. This will lead to more robust and

trustable models. A broader consideration, meaning a

bigger dataset with more activities and people included,

would lead to results which allow to imply more general

statements.
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