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Abstract. Described is a simulation model of cruis-
ing for garage parking, intended both for the calibra-
tion and evaluation of real-time parking recommenda-
tion methods, and as a base for predictive guidance to
available parking. The model combines the event-based
and agent-based simulation approaches to represent the
parking garage and the driver behavior. It is validated
by simulating a real-world parking garage and compar-
ing the model’s output with observations. The validation
results show the model’s capability to predict a garage’s
state over the course of an operational day, even though
specific results are not yet precise enough for the in-
tended use.
After an introduction to scope and aims, the paper
shares some background on garage parking and related
work, followed by a description of the simulation model,
and its validation based on a representation of a real-
world parking garage.

Introduction

With a significant part of inner city traffic consisting

of drivers cruising for parking (on average 30%, see

[1]), and with ever growing parking garages contain-

ing 2,000 or more individual parking slots (see fig-

ure 1), computer based systems providing predictive

recommendations to find available parking in these

major structures are significantly beneficial to users,

and also improve resource utilization for infrastructure

providers. One way to predict availability of parking

slots is by simulation, starting out from the real-time

state of the garage. Even if a parking guidance system

is not predictive, but only considers real-time informa-

tion, its strategies have to be carefully calibrated and

evaluated before their application in the field. Another

use of a garage parking model is therefore to evaluate

recommendation strategies in a simulated environment.

Figure 1: A parking garage with approx. 2,000 parking
spaces on six levels.

This paper presents a simulation model of cruising

for parking in parking garages, which will serve both as

a prediction model, and as a virtual testbed for calibrat-

ing and evaluating garage parking guidance algorithms.

The model applies a combination of two simulation ap-

proaches: while the basic mechanics, e.g. the arrival of

cars, are modeled in an event-based fashion (see [2]),

the agent-based paradigm (see [3]) is utilized for mod-

eling the drivers’ decision making behavior.

The paper continues with sharing some background

of garage parking modeling and related work (section

1), followed by the presentation of the simulation model

(section 2), representing both the parking garage and

the individual driver’s behavior. Then, the model’s out-

put is validated based on a real-world example (section

3). The paper closes with a summary of the lessons

learned and a short outlook on future work (section 4).
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1 Background

1.1 Garage Parking

The term garage parking refers to the process of enter-

ing a building at least partially designated for car park-

ing, finding and navigating to an available parking slot,

leaving the car unoccupied at that slot for a while, and

then de-park by finding the shortest or most convenient

path from the parking slot to a vehicular exit. As the

intended application for the developed model is to test

recommendation algorithms which are concerned with

reducing the time spent cruising for available parking,

the last part of the process, de-parking, is beyond the

scope of this paper and will not be discussed further.

The described buildings are often referred to as parking

garages, but also as multistorey car parks, parkades, or

parking structures.

Garage parking, together with parking lot parking,

is often described by the more general term off-street

parking. This contrasts with on-street parking with its

diverse modes, e.g. parallel parking, angular parking,

perpendicular parking.

The parking garage usually consists of a number of

connected levels, which are themselves composed of a

number of areas. Each area contains a set of parking

slots fit for individual cars. The readers will know this

decomposition from their own experience: “I parked

my car in a slot on level 3, in area C.”

Vehicular access to the parking garage is granted,

often at the ground floor, by entry and exit lanes,

which are usually unidirectional. Pedestrians access the

garage via elevators or stairways, or on the ground floor

by doorways. Pedestrian access ways are usually bi-

directional.

1.2 Related work

Corresponding to its importance in planning and design

of public spaces, on-street parking has seen a lot of re-

search attention, both in general modeling (see e.g. [4],

[5], [6], [7], [1], [8], [9], [10]) and in simulation mod-

eling (see [11], [12], [13], [14], [15], [16]). Most of

the more recent simulation models are at least partially

agent-based (see [11], [12], [14], [15]). Dieussaert et

al. (see [12]) and Horni et al. (see [14]) combine agent-

based modeling with the cellular automata paradigm,

while Gallo et al. (see [13]) construct a multi-layer net-

work supply model. Some authors (see [12], [15]) uti-

lize the described models to evaluate pricing and other

policy considerations, while others (see [11], [13], [14],

[16]) apply them to analyze technical methods to reduce

cruising time and thereby traffic in general.

Only a few models (see [17], [11], [12], [8]) con-

sider off-street parking: Asakura and Kashiwadani (see

[17]) apply a model to examine the effect of different

types of on-street and off-street parking availability in-

formation on overall system performance, but do not

examine the drivers’ behavior inside of individual park-

ing lots. Benenson et al. (see [11] and also [6]) develop

a spatially explicit model of parking search and choice,

with simulated drivers cruising through an artificial or

real-life city center model, giving them both on-street

and off-street parking options. Dieussaert et al. (see

[12]) also are interested in the traffic patterns generated

by cruising for parking. They model on-street parking

as well as parking lots and garages, but consider park-

ing lots and garages as simple sinks, not modeling their

interior. Van der Waerden et al. (see [8]) develop a

simple cellular automata based sub-model for choos-

ing parking spaces inside a parking lot, but clearly set

their focus on modeling traffic patterns resulting from

the whole, city-wide process of traveling and parking.

None of the described models considering off-street

parking is detailed enough for the evaluation of garage

parking recommendation systems.

2 Modeling Garage Parking

An agent-based model usually includes two compo-

nents (see [3]): the agents themselves, and the environ-

ment they interact with.

The agents are usually self-contained and au-

tonomous; they have attributes whose values change

over the course of a simulation run. Their behavior is

determined by a set of rules, and they interact dynam-

ically with other agents and the environment they ex-

ist in. In more complex models, agents are often goal-

directed and adaptive, and may even be heterogeneous.

Individual agents usually only interact with a local sub-

set of the environment and other agents, and therefore

consider only local information.

In addition to their communication with their set of

neighbors, agents interact with their environment. This

information might provide only basic information, e.g.

the agent’s position in the environmental model. It may

also provide more detailed information, e.g. the capac-

ity and real-time rate of occupancy of parking garage

areas. While in many cases the environment might be
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modeled as an attributed graph structure, it sometimes

is built as a complex simulation itself, e.g. based on

cellular automata.

In the proposed model (which is based on a simpler

model described in [18]), drivers and their cars are mod-

eled as agents adhering to a set of rules and acting on

local information, while the parking garage is modeled

as an attributed neighborhood graph, and constitutes the

agents’ environment.

2.1 Modeling parking garages

The parking garage is modeled as an attributed graph

G(A,E) representing the garage’s layout and the inter-

nal neighborhood relations. A node a ∈ A represents an

area of the parking garage, an edge e(ai,a j) ∈ E with

ai, a j ∈ A represents a direct connection between two

areas ai and a j which is traversable by car. If all lane

segments in the parking garage are two-way, the garage

can be modeled as an undirected graph. If some or

all segments only allow for one-way traffic, a directed

graph can be established. As it is the garage planner’s

basic objective to ensure reachability of each parking

area, the graph consists generally only of one connected

component.

Each node a ∈ A is attributed by its total number of

parking slots za, the number of currently occupied slots

oa(t) at time t, by extension also the number of free

slots fa(t) = za − oa(t) at time t, and the average time

ra a car needs to traverse and search the area. The rec-

ommendation methods to be tested (see [19]) explicitly

consider only these areas, and do not depict individual

parking slots. Therefore, a spatially explicit modeling

of these individual slots is not necessary.

Each edge e(ai,a j) ∈ E is attributed by a time re
a car needs to move from area ai to area a j. In cases

where areas are directly adjoining, re = 0 can be as-

sumed.

In this simplified model we assume an infinite

traversal capacity for nodes and edges, therefore ignor-

ing congestion resulting from multiple cars cruising the

same area.

The garage’s entry lanes are modeled as special

nodes ae ∈ Ae ⊂ A with zae = 0, which serve as sources

for the transient car agents. As is customary in discrete

modeling (see [2], pp. 209-210), interarrival times are

approximated with an exponential distribution with an

arrival rate of λae(t). The distribution parameter is es-

tablished for each entry lane ae and each period t by

input data analysis. Technically, the agents are gener-

ated by the event-based framework at each entry node

at appropriately distributed simulation times.

Figure 2 shows a simplified layout of a parking

garage level, while figure 3 shows the corresponding

partial model graph.

Figure 2: Simplified parking garage level with two pedestrian
exits, two bi-directional ramps, and nine areas.

Figure 3: Partial model graph of a parking garage level.

2.2 Modeling driver behavior

Agents enter the model from one of the entry lane nodes

ae ∈ Ae, and in the course of the simulation move itera-

tively from node ai to node a j along edge e(ai,a j) ∈ E.

On any given node ai ∈ A the agent, after spending a

time of rai searching the area for available parking, has

to take two decisions: It has to decide whether to park

in the current area (parking decision), and, if not, where

to go next (routing decision).
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To enable the agents to take these decisions, the

model considers a number of aspects:

Basic routing: To avoid moving in an infinite loop,

an agent administers a counter v(ai) representing the

number of times an area ai has been visited by that

agent. If an agent always chooses one of the routing

options a j with the lowest v(a j), every loop will even-

tually be broken. In addition, as cars are rarely seen to

turn on the spot in a parking garage, agents can never

move onto the area they just left.

Attractiveness: The model assumes that a driver

prefers to park in a slot which is as attractive as possi-

ble. The model therefore assumes an order of attrac-

tiveness on a parking garage’s areas: 1.0 ≥ c(ai1) ≥
... ≥ c(ain) ≥ 0.0 (see figure 4). Agents prefer areas

with greater values of c(ai) to areas with lower attrac-

tiveness. Attractiveness orders are individual to classes

of drivers, i.e. customers with distinct destinations. For

example, during the day 40% of customers might de-

sire to park as close to a supermarket as possible, while

60% might be attracted by parking slots near a hospi-

tal. These distributions could change over the time of

day, e.g. when the hospital closes for the evening, but a

neighboring cinema starts to attract parking visitors in

another region of the parking garage. As these classes

of preferences are generally shared by many drivers,

only a few different orders of attractiveness represent

all drivers’ intentions for any given garage.

Figure 4: Parking garage level with attractiveness values.

Real-time availability: Drivers also consider real-

time availability: if they observe that no spaces are

available in a specific area, they are not attracted to

it. Obviously, without technical measures the drivers

cannot have total knowledge of the current state of the

garage, but can look ahead only locally. To model this,

we assign a look-ahead set Lai ⊆ A for any current area

ai. An agent has access to c(a) and fa(t) only if a ∈ Lai .

Classes of parking decals: Some parking

providers offer different classes of parking decals,

with some classes having more options then others: at

a university campus, administrative and faculty/staff

might be allowed to park at any given area, while

students might only park at labeled student parking.

A business park’s parking provider might distinguish

executive, employee, and visitor parking. This is

modeled by assigning each agent a decal class, and by

assigning each slot to one of these classes. The number

of slots visible to an agent is then defined by that class.

Non-compliant parking is thus not permitted to the

agent.

Long-term experience and expectations: In-

stead of having to explore an area’s attractiveness while

driving through a specific garage, a driver with long-

term experience already knows the attractiveness of

each area, and can also estimate the individual areas’

occupancy to a certain degree. These experience and

expectations can be modeled by extending the look-

ahead set to the whole graph, and by replacing the ex-

act knowledge fa(t) by a “guessing function” ha(t) =
fa(t)± random which includes a small random compo-

nent. The agent now knows the attractiveness of each

area, and has imprecise knowledge of the areas’ avail-

ability.

Based on these considerations, and starting out from

the current position ai as root, an option tree is con-

structed. This is accomplished by considering all neigh-

boring areas a j reachable from ai via an edge e(ai,a j)∈
E, and from thereon iteratively to succeeding neighbors

with a maximum depth of d (see figure 5). The branch

starting with the area last visited is removed from the

tree, adhering to the no-turn-around rule.

For each node a j in the option tree, a conditional at-
tractiveness g(a j) is calculated: if a j ∈ Lai and ha j(t)>
0 then g(a j) = c(a j), else g(a j) = 0. Thus, if the agent

assumes an area to have zero slots currently available, it

is not at all attracted to that area. In a next step, for each

immediate neighbor a j of ai an assumed utility u(a j) is
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Figure 5: A simplified option tree, with the selected option
being highlighted.

calculated by assigning u(a j) = max
a∈Ta j

g(a), with Ta j be-

ing the partial option tree with root a j (again see figure

5).

At each simulation step, the agent takes a parking

decision, followed by a routing decision if necessary.

To take a parking decision, it selects the a∗ with the

maximum u(a∗) out of the current area ai’s immediate

neighbors. If fai(t) > 0 and c(ai) ≥ u(a∗), the agent

decides to park at the current area ai. If not, it moves on

with the routing decision.

To take the routing decision, the agent only consid-

ers the options with the lowest v(a). From these, the

agent selects the option a j with the maximum u(a j).
It moves to that area via edge e(ai,a j), completing the

movement after a time of re(ai,a j).

If all areas have been visited, i.e. all v(a) > 0, and

no available parking slot has been found, the agent con-

cludes that the parking garage is full, stops searching,

and is subsequently removed from the simulation.

3 Validation

3.1 Modeling Florida International
University’s Parkview Housing Garage

The Florida International University (FIU) Parkview

Housing Garage provides students living in adjacent

dorms with 282 parking slots on three levels. Access

to the garage is controlled; students swipe an identity

card for the entry and exit barriers to open. The build-

ing consists of 16 areas with an average of 17.6 slots.

Its layout is translated to a model graph as described in

section 2.1 (see figure 6), with the attractiveness values

being assigned by considering the areas’ distances to

both the vehicular entry and the pedestrian exits in ac-

cordance with information gathered from local experts.

The traversal time for each area a ∈ A is set to an aver-

age of ra = 10sec. As all areas are immediately adja-

cent, the time necessary to move between areas is set to

re = 0 for all e ∈ E. The agents’ interarrival times are

modeled based on a typical day’s observed entry events

per hour. By correlating the registered entry and exit

events over a longer period, the average parking dura-

tion (and its standard deviation) based on entry times is

modeled. As Housing Garage parking is only available

to students living nearby, a high degree of experience

can be assumed. The agents’ look-ahead set is there-

fore extended to include the whole model graph.

The model was implemented utilizing an in-house

event-based modeling and simulation framework. To

validate the model’s results, the individual areas’ occu-

pancy was measured in the Parkview Housing Garage

over the course of two weeks at 10:00, 13:00, 17:00,

and 20:00.

3.2 Results and Discussion

The described model was applied to simulate 100 oper-

ational days, with output measurement beginning after

a 72 hour initialization phase. A simulation run gener-

ates approx. 1,700,000 events of nine event types. An

average operational day thus consists of approx. 17,000

events, with the majority of these considering searching

areas and moving through the graph (see figure 7).

The simulation’s results are shown in table 1 and fig-

ure 8. At 10:00, the average number of simulated cars is

1.7% higher than the average number of observed cars.

The average deviation of simulated to observed occu-

pancy ratios is 8.7%. The other measuring points at

13:00, 17:00, and 20:00 show comparable results: On

average, 2.5 more agents (1.4%) are simulated than cars

were observed, while the average occupancy ratio over

all areas and all measurement points deviates by 9.1%.

The model’s validation shows its capability to pre-

dict a garage’s state over the course of an operational

day, even though specific results with their deviation

of 9.1% are not yet precise enough for a feasible rec-

ommendation system. One major weakness of the de-
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Figure 6: FIU Housing Garage: Model graph and
attractiveness levels.

scribed validation process is that the occupancy mea-

surement was executed on different days than the reg-

istration of entry and exit events. There was therefore

no way to calculate the number of cars already present

in the garage at the start of the registration period. Cur-

rently, FIU’s parking data collection is being converted

from batch processed reports to real-time data streams,

in addition to replacing the parking garage’s card swip-

ing mechanisms with license plate recognition cameras

at entry and exit lanes. As these new data streams will

be continuously available, occupancy rates can be mea-

sured for periods with available entry and exit events.

By utilizing these improved data sources, higher qual-

Figure 7: Number of simulation events per operational day.

Time Obs. cars Sim. cars Dev. n/o cars Deviation
occu-
pancy

10:00 194.5 197.9 1.7% 8.7%

13:00 164.5 161.7 1.8% 9.8%

17:00 164.2 166.5 1.4% 8.1%

20:00 169.3 176.4 4.2% 9.9%

Average 173.1 175.6 1.4% 9.1%

Table 1: Validation results.

ity input data distributions can be modeled. We there-

fore expect the model’s precision to be improved signif-

icantly.

4 Conclusions
This paper presented an agent-based simulation model

of cruising for parking in parking garages. Beyond

the parking structure’s layout and attributes, the model

considers basic routing, an order of attractiveness on

the garage’s areas, local knowledge of real-time avail-

ability, different classes of decals, and a driver’s long-

term experience and expectations regarding attractive-

ness and expected availability. The model’s validation

shows its general capability to predict a garage’s state

over the course of an operational day based on layout

data, attractiveness values, interarrival times, and park-

ing durations. All these values can be easily collected

for controlled access garages.

After further validation based on improved data

streams, the model will be applied to the evaluation of

parking recommendation methods. It will also be ex-

tended to accept real-time input data, and then be uti-

lized as a base of a predictive parking information and

recommendation system.
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Figure 8: Validation results.
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