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Abstract. The SIR (susceptible-infected-recovered) dif-
ferential equations model for the spread of infectious
diseases is very prominent in mathematical literature.
The key interest of investigations is often to find and
analyse extensions of the basic model structure in or-
der to introduce a more detailed and supposedly real-
istic representation of the underlying disease and popu-
lation dynamics. It is however true that problems and so-
lutions in healthcare and health economics actually tend
to require more and more sophisticated modelling ap-
proaches which are also capable of incorporating larger
data sets as parametrisation in an effective way. This
makes the comparison and combination of different
modelling techniques and results an important research
topic. This paper investigates a probabilistic drift formu-
lation of the basic differential equations model which al-
lows a very fine-grained parametrisation of the progres-
sion of diseases. It is shown that this formulation is ca-
pable of reproducing results frommodels with delay. Ag-
gregation leads directly back to the traditional compart-
ment approach and, in the heterogeneous case, a dis-
crete representation can be interpreted as a system of
local Markov processes. Furthermore some preliminary
results on epidemiological measures like the basic repro-
duction number are presented.

Introduction
The SIR (susceptible-infected-recovered) epidemic

model was originally derived by Kermack and McK-

endrick using a time-discrete scheme with multiple

stages of disease progression [5]. For constant tran-

sition rates this model can be represented as a system

of ordinary differential equations with three compart-

ments, often referred to as the classical SIR(S) ODE

model (1).

∂t s(t) =−as(t)i(t)+ cr(t)

∂t i(t) = as(t)i(t)−bi(t) (1)

∂t r(t) = bi(t)− cr(t)

Among the basic principles of the epidemic model the

following are key to this paper:

(D1) The rates b and c and as well as the force of infec-

tion f := ai(t) determine the (linear) flow or tran-

sition rates between the three compartments.

(D2) Since the force of infection acts on the number of

susceptible individuals in a linear fashion, the inci-

dence rate ai(t)s(t) as a bilinear function implies a

homogeneous mixing of the population.

(D3) For the basic SIRS model, the epidemic threshold

(basic reproduction number) is given by R0 = a
b .

This threshold controls the existence of an endemic

equilibrium.

It is well known that complex dynamic patterns such as

bifurcations or periodic behaviour are more likely to oc-

cur when the spread of infection is constrained by het-

erogeneity or delay [1, 4, 10, 11].

Nevertheless, as a fist step towards a system descrip-

tion which is capable of simulating such behaviour, we

regard the following one-dimensional SIS simplifica-

tion (S = R).

dξ (t) =−bξ (t)dt +a
(
1−ξ (t)

)
ξ (t)dt (2)

The state space of this dynamical system is the continu-

ous bounded disease space Ξ := [0,1], where a disease

state ξ ∈ Ξ indicates the strength or concentration of an

infectious disease in a population, ξ = 1 meaning fully

infected.
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In order to obtain a discrete signal from this model

define a susceptible domain Ξs := [0, 1
2 ) and a infected

domain Ξi := [ 1
2 ,1] such that Ξ = Ξs∪̇Ξi.

In this paper we extend the one-dimensional SIS

model (2) with the periodic disease space Ξ := [0,1)per

and define instead of the susceptible and infected re-

gions, the domains susceptible, infected, exposed, con-
tagious and recovered/immune, Ξs, Ξi, Ξe, Ξc, Ξr, such

that

Ξ = Ξs∪̇Ξi∪̇Ξr, Ξe∪̇Ξc ⊆ Ξi. (3)

It is obvious that the resulting disease space leads to a

model for SEIRS-type epidemics (see Figure 1). The

susceptible

infected

recovered

contagious

susceptible
recovered

infected
contagious

exposed

Figure 1: Periodic disease space (SIRS) compared to
bounded disease space (SIS).

basic structure of the equations investigated in this pa-

per is

dξ (t) = g1

(
ξ (t)

)
dt +g2

(
ξ (t)

)
f
(
ξ (t)

)
dt. (4)

Using a probabilistic approach (Kolmogorov forward

equation) [1] and nonlinear incidence rates [4] it can be

shown that the resulting transport (and diffusion) for-

mulation (4) is a generalisation of the classical com-

partment approach and also of delay models.

For completeness this paper also introduces an arbi-

trary heterogeneity space X and takes into account ran-

dom additive (white) noise such that theoretically we

finally arrive at a stochastic partial differential equa-

tion (SPDE). For simplicity and readability most equa-

tions are written without the noise or respective diffu-

sion term. For noise in the bounded domain Ξ = [0,1]
we have to ensure that the boundaries of the domain are

honoured (compare [11]).

1 Heterogeneity States
The introduction of heterogeneity states in epidemic

models has a long tradition and leads to abstract Cauchy

problems and parabolic PDEs [8] with richer patterns

of behaviour. From a modelling point of view, hetero-

geneity allows to simulate variable rates and parameters

(i.e. heterogeneous populations) and to obtain inhomo-

geneous propagation and spread of a disease.

Let X be a finite dimensional topological vec-

torspace such that ξ (t,x) indicates the abundance of a

infectious disease (think of viral concentration, number

of infected individuals, . . . ) with heterogeneity state

x ∈ X . The topological vectorspace X can for example

represent a spatial domain or the ages of the individu-

als of a population. The most natural idea for epidemic

models with heterogeneous populations is that the force

of infection depends on an aggregated (nonlocal) con-

centration of the disease ξN(t,x) instead of the local

state ξ (t,x).
The aggregated state can for example be a weighted

integral

ξN(t,x) :=
∫

X
λ (x,y)ξ (t,y)dy (5)

with kernel λ (x,y), which allows to model different

types of nonlocal interaction [9]. For example a Gaus-

sian kernel can simulate a diffusive interaction process

and the Taylor series expansion of ξ (t,y) around x al-

lows to find a differential representation ξN = λ1ξ +
λ2Δxξ .

Technically the aggregated state ξN(t,x) replaces

the actual local state ξ (t,x) in the argument of the force

of infection f ( ·).
The epidemic threshold for heterogeneous SIS sys-

tems [11] corresponds under some assumptions (sepa-

rable and symmetric kernel λ , constant population den-

sity) to the integral

R0 =
∫

X
λ (x,x)

a(x)
b(x)

dx. (6)

2 Probabilistic Formulation and
Semilinear Incidence

A probabilistic formulation of homogeneous SIR mod-

els can be found in [1] for example, where the authors

transform the homogeneous SIR model into a transport

problem and derive the Kolmogorov forward equation

from a discrete SIR approach. They also state that the

probabilistic representation with no diffusion has de-

generate distributions as its limit, conforming with the

theory on epidemic thresholds and equilibria.
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2.1 SIS Model

For the heterogeneous SIS model (nonlocal force of in-

fection) the stochastic formulation

dξ (t,x) =−bξ (t,x)dt

+a
(
1−ξ (t,x)

)
ξN(t,x)dt (7)

is (locally) a Itô diffusion since the drift term is Lip-

schitz continuous and the corresponding Kolmogorov

forward equation [7] (probabilistic approach) is

∂
∂ t

p(t,x,ξ ) = (aξN +b)p(t,x,ξ )+

+
(
(aξN +b)ξ −aξN

) ∂
∂ξ

p(t,x,ξ ). (8)

The drift term can be separated into

g1(t,x,ξ ) :=−bξ (9)

g2(t,x,ξ ) := a
(
1−ξ

)
(10)

f (t,x,ξN) := ξN (11)

such that g1 ≤ 0 defines a constant drift towards the

susceptible state ξ = 0 and, depending on the force of

infection f (ξN), g2 ≥ 0 generates drift towards the in-

fected state ξ = 1. Note that all three functions are

linear in ξ or ξN respectively (see Figure 2). In the
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Figure 2: Parameter functions of the SIS model for arbitrary
a and b.

stochastic formulation (7) ξ (t,x) is actually a random

field. In the probabilistic representation (8) it is nec-

essary to replace the aggregated random variable ξN
respectively the force of infection f (ξN) with a statis-

tic [8]. A plausible choice is of course the expectation

value

E
[

f (ξN)
]
=

∫
Ξ

f (η)pN(t,x,η)dη (12)

where pN(t,x,ξ ) =
∫

X λ (x,y)p(t,y,ξ )dy is the distri-

bution of the accumulated random variable ξN .

2.2 SEIRS Model

For the stochastic SEIRS approach, i.e. when the dis-

ease space is periodic, and the corresponding Kol-

mogorov forward equation

∂
∂ t

p(t,x,ξ ) =− ∂
∂ξ

{(
g1(ξ )+

+g2(ξ )
∫

Ξ
f (η)pN(t,x,η)dη

)
p(t,x,ξ )

}
(13)

drift happens in positive direction only (except maybe

for local Ξ areas with negative drift).

Let g1 define a constant drift, which describes nor-

mal disease progression like entering and leaving a con-

tagious phase Ξc, which is a subset of the infected phase

Ξi, or transition from infected to recovered/immune Ξr
and from recovered to susceptible Ξs. The drift from

the susceptible domain to the infected domain however

shall be generated by g2 with strength controlled by the

force of infection f . From a certain point of view, the

function g2 compensates for the lack of drift generated

by g1 in the susceptible domain Ξs. The total drift is

given by

g(ξ ) := g1(ξ )+g2(ξ )
∫

Ξ
f (η)pN(t,x,η)dη . (14)

Figure 3 shows a possible configuration of the parame-

ter functions.

We make the following heuristic (and not fully nec-

essary) but plausible assumptions on the parameter

functions.

(P1) The basic drift term g1 is mostly constant with a

value k ∈ [0,1] except for a region around the inter-

face between the susceptible and the infected do-

main, where g1 vanishes. The value k determines

the speed of disease progression. Of course the ex-

act shape of g1 is a result of modelling decisions.

Also the value k is actually only a scaling variable

which relates disease progression to time (see sec-

tion 3).
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Figure 3: Parameter functions of the SIRS model with peri-
odic disease space. Here g1 actually takes (small)
negative values in the susceptible domain and g2

takes very large values compared to g1.

(P2) The incidence drift term g2 is larger than zero only

in a region around the interface between the sus-

ceptible and the infected domain.

(P3) As a consequence in the infected region the total

drift term is mostly constant g|Ξi ≡ k independent

of the shape of pN (i.e. the force of infection).

(P4) The function f is larger than 0 only in the con-

tagious domain or in other words, the support

of f determines the contagious domain (compare

fuzzy sets). We can assume that f is normalised

‖ f‖L∞(Ξ) = ‖ f‖∞ = 1.

(P5) There exists a configuration pi of pN such that the

force of infection takes a maximum value.

Set F−1 := ‖ f‖1 then this configuration is given by

pi(ξ ) = F f (ξ ) and the inequality

1 = F‖ f‖1 ≤ F‖ f‖2 ≤ F‖ f‖∞ = F (15)

shows that F−1 ≤ ‖ f‖2 ≤ 1.

We can interpret this configuration as a situation in

which locally all susceptible individuals come into

contact with infected individuals and the speed of

spread is at the maximum. In other words pi is

fully infectious.

Note that these assumptions restrict the drift SIRS

model to a small subset of possible configurations.

They however simplify some technical considerations

in the following sections. But still the probabilistic for-

mulation is capable of producing patterns that cannot be

obtained with the stochastic formulation (see Figure 6).

3 Delay Models

As mentioned before delay plays an important role in

the dynamics of epidemiology. In [4] three different

types of delays are distinguished:

• Temporary immunity corresponds to the recov-

ered/immune phase after the infection period.

• Delay caused by the latency in a vector hap-

pens when infection is spread by agents (e.g.

mosquitoes).

• The latent period in a host is the time delay be-

tween infection and the contagious phase.

The following delay differential equation

dξ (t) =−bξ (t)dt +a
(
1−ξ (t)

)
ξ (t − τ)dt (16)

models a latent period in the host [4]. The correspond-

ing Kolmogorov forward equation is

∂
∂ t

p(t,ξ ) =− ∂
∂ξ

{(−bξ +a(1−ξ )ξT
)

p(t,ξ )
}
(17)

where again we replace the stochastic force of infec-

tion f (ξT ) with the expectation E
[

f
(
ξ (t − τ)

)]
. Since

in (P4) it was assumed that the support of the force of

infection f is Ξc, the expectation can be written as

E
[

f
(
ξ (t − τ)

)]
=

∫
Ξc

f (η)p(t − τ,η)dη . (18)

From (P3) it follows that drift (velocity) is constant

g(ξ )≡ k in Ξi and especially in a region around Ξc such

that

∂
∂ t

p(t,ξ )
∣∣∣
Ξi
=−k

∂
∂ξ

p(t,ξ )
∣∣∣
Ξi

(19)

which by the formal argument with scaling ξ = kτ

lim
τ→0

p(t,ξ )− p(t − τ,ξ )
τ

= lim
τ→0

kp(t,ξ + kτ)− kp(t,ξ )
kτ

(20)

leads to

p(t − τ,ξ ) = p(t,ξ + kτ) (21)
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in Ξi. Inserting into (18) results in

E
[

f
(
ξ (t − τ)

)]
=

∫
Ξc

f (η)p(t,η + kτ)dη

=
∫

Ξc+kτ
f (η − kτ)p(t,η)dη . (22)

Setting Ξc′ := Ξc + kτ ⊂ Ξi finally means that the new

contagious domain was shifted to the right by the scaled

time delay kτ and we arrive back at the original model

with different (shifted) force of infection f (ξ ).
This shows that the probabilistic approach is very

suitable for modelling delay in epidemic spread. Or in

other words, the probabilistic formulation is inherently

delayed.

4 Discretisation and Numerical
Scheme

For the sake of regularisation [2, 3] a relatively small

noise respectively diffusion term is added to the equa-

tions. As a numerical scheme for the stochastic equa-

tions the straight-forward explicit Euler-Maruyama

method [6] is used.

4.1 Discretisation of the Probabilistic
Formulation

For the probabilistic formulations (Kolmogorov equa-

tions), a local Markov chain [8] representation can be

constructed.

To that end let p(t,x) ∈ R
n
+ be a discretisation of

p(t,x,ξ ) in the disease space Ξ with ∑n
i=1 pi(t,x) = 1

for all t and x. The local Kolmogorov equation with

discretised disease space is formally given by

∂
∂ t

p =− ∂
∂ξ

{g�p} (23)

where � denotes the element-wise multiplication and g
is the vectorised drift term. From (13) we conclude that

g = g1 +g2(f ·pN) (24)

where f ·pN is the scalar product. The accumulated dis-

crete distribution pN is calculated from a finite number

of discretised heterogeneity states from X .

Define the differentiation matrices

D+ =

(−1 +1
+1 −1

+1 −1
+1 −1

)
, D− =

(−1 +1
−1 +1

−1 +1
+1 −1

)
,

which calculate the derivative in negative and positive

ξ direction respectively (up to discretisation length and

here displayed for the periodic case only), then

∂
∂ t

p = D+(g�p)>0 +D−(g�p)<0 (25)

=
(

D+ diag(g>0)+D− diag(g<0)
)

p (26)

= M(g)p, (27)

where diag(a) is the diagonal matrix with the vector a
as its diagonal.

Accordingly the SIRS model with discretised dis-

ease space, without diffusion and parameters as in Fig-

ure 3 locally corresponds to the Markov model visu-

alised in Figure 4 with transition matrix I+dtM(g) por-

trayed in Figure 5 and also to a system of ODEs with a

finite number of compartments.

susceptible contagiousexposed recovered

Figure 4: Discretised periodic disease space (SIRS) with feed-
back (concentration in Ξc controls force of infection
which determines the flow from Ξs to Ξi).

4.2 Global Explicit Scheme

The corresponding global explicit iteration scheme to

(25)-(27) can be formulated as a cellular automaton [8].

The discretisation of the heterogeneity space X can be

interpreted as a lattice of cells, which leads to a formal

description of a cellular automaton with

(X) a discretisation of X as cellular space,

(S) vectors p ∈ R
n
+ as cell states,

(N) a finite sum (discretisation of (5)) as a discrete

version of the accumulated (neighbourhood-) state

pN ,

(L) and a local iteration rule given by (25)-(27).
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Figure 5: Basic structure of the transition matrix. Concentra-
tion in the contagious domain controls flow from
the susceptible to the infected domain. For simplic-
ity no negative flow is shown.

In a more abstract fashion also the stochastic formu-

lation can be interpreted in the context of cellular au-

tomata.

(S) Instead of discretised distributions (vectors), the

states of the cells shall be random variables in Ξ.

(N) Accordingly the accumulated random state is a

multivariate random variable or defined by a mea-

surable function Ξd → Ξ, which maps “neighbour-

ing” random variables onto a “accumulated” ran-

dom variable.

(L) The local iteration rule is defined by a conditional

probability or Markov kernel.

From a modelling point of view, the cellular automa-

ton approach can be classified as a direct modelling ap-

proach (local Markov model) with discrete heterogene-

ity space, whereas the discretisation of the differential

equation formulations is a numerical scheme. Visuali-

sations of a simulation run can be seen in Figure 6.

5 The Probabilistic Formulation
Extends The Compartment
Approach

For the SIRS model let the dimension of the discretisa-

tion of the disease space be n := 3 and identify the first

dimension with Ξs, the second dimension with Ξi = Ξc
and the third dimension with Ξr. For the discretisation
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Figure 6: Visualisation of the probabilistic heterogeneous
SIRS model (p(t,x,ξ ), colorscale) and the corre-
sponding stochastic model (ξ (t,x), black/white line)
without diffusion. The (periodic) heterogeneity
space X is displayed in horizontal direction.

of the parameter functions g1, g2 and f we conclude the

following from (P1)-(P4).

0 ≈ g11 :=
∫

Ξs

g1(ξ )dξ (28)

b := g12 :=
∫

Ξi

g1(ξ )dξ (29)

c := g13 :=
∫

Ξr

g1(ξ )dξ (30)

a := g21 :=
∫

Ξs

g2(ξ )dξ (31)
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0 ≈ g22 :=
∫

Ξi

g2(ξ )dξ (32)

0 ≈ g23 :=
∫

Ξr

g2(ξ )dξ (33)

0 ≈ f1 :=
∫

Ξs

F f (ξ )dξ (34)

1 ≈ f2 :=
∫

Ξi

F f (ξ )dξ (35)

0 ≈ f3 :=
∫

Ξr

F f (ξ )dξ (36)

Instead of discretisation by integration as shown above,

it should also be possible to use point evaluations at the

interfaces between the different subdomains. Accord-

ing to (P4), in (34)-(36) also the L∞-norm could be used.

Inserting in the evolution equation (25)-(27) leads to

∂
∂ t

( p1
p2
p3

)
= D+ diag(apN,2,b,c)

( p1
p2
p3

)
=

(−apN,2 +c
+apN,2 −b

+b −c

)( p1
p2
p3

)
. (37)

This corresponds to the compartment formulation of

the heterogeneous SIRS model. Additionally setting

pN := p results in the classical homogeneous SIRS

ODE model (1).

6 Outlook – Basic Reproduction
Number

The basic reproduction number R0 can be interpreted

as the number of secondary infections created by one

infectious individual in a fully susceptible population

[11, 1, 10, 4].

In order to find a similar measure for the probabilis-

tic drift formulation we start from a fully susceptible ho-

mogeneous population which can be represented by the

equilibrium distribution ps of (13) when starting from

distributions with support in Ξs or an arbitrary non-

equilibrium distribution ps with support in Ξs. There

also exists a configuration pk with unit force of infec-
tion, which is characterised by

g(ξ ) = g1(ξ )+g2(ξ )
∫

Ξ
f (η)pk(η)dη ≈ k. (38)

For example using (P5) and ps we can set

pk :=

(
1− k

maxg2

)
ps +

k
maxg2

pi. (39)

6.1 Ratio of Infectiousness

If we set pN := pk and assume that the force of infection

stays constant over time, (13) can be written as

∂
∂ t

p(t,ξ ) =−k
∂

∂ξ
p(t,ξ ). (40)

Let us calculate the infectiousness of the solution of

the initial value problem (40) with initial condition

p(0,ξ ) = pk(ξ ) at some later time t and compare it

with the infectiousness of pk. From (21) we know that

p(t,ξ ) = p(0,ξ − kt) = pk(ξ − kt).

Accordingly the function Q1 : [0,1)per → R,

Q1(t) :=
exp

(∫
pk(ξ − kt) f (ξ )dξ

)
exp

(∫
pk(ξ ) f (ξ )dξ

)
=

exp
(
E

pk
[

f (ξ + kt)
])

exp
(
Epk

[
f (ξ )

]) (41)

can be used for measuring the delayed (t) infectiousness

of an initially susceptible population with one unit force

of infection and stores information about the strength

and succession of epidemic waves. Due to the simplifi-

cations made, this measure may not be very accurate in

practice.

6.2 Balance of Infectiousness

From (29) and (31) we may assume that

R0 :=

∫
Ξs

g2(ξ )dξ∫
Ξc

g1(ξ )dξ
(42)

is useful as a measure for secondary infections. This

is motivated by the definition of the basic reproduction

number of the compartment SIRS model, which is the

ratio between the flow rate to the contagious domain a
and the flow rate from the contagious domain b under

the condition of a fully susceptible population with one

unit force of infection.

In- and outflow of the contagious domain under the

same conditions in the probabilistic model at time t is

accessible through the balance equation

∂
∂ t

∫
Ξc

p(t,ξ )dξ =−k
∫

Ξc

∂
∂ξ

p(t,ξ )dξ

= k
(

p(t,ξ0)− p(t,ξ1)
)

(43)

where ξ0 and ξ1 are the boundaries of Ξc. But since the

contagious domain is defined by f , with integration by
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parts we arrive at

∂
∂ t

∫
Ξ

p(t,ξ ) f (ξ )dξ =−k
∫

Ξ
f (ξ )

∂
∂ξ

p(t,ξ )dξ

= k
∫

Ξ
p(0,ξ ) f ′(ξ + kt)dξ = kEpk

[
f ′(ξ + kt)

]
(44)

which yields

Q2(t) :=
exp

(
kp(t,ξ0)

)
exp

(
kp(t,ξ1)

) =
exp

(
kpk(ξ0 − kt)

)
exp

(
kpk(ξ1 − kt)

) (45)

and

Q3(t) := exp
(
kEpk

[
f ′(ξ + kt)

])
(46)

as possible time-dependent measures for secondary in-

fections. As before we must note that these measures

rely on a great number of simplifications.

For the extremely simplified case

g1(ξ ) := I[ 0
4 ,

1
4 )
(ξ ) (47)

g2(ξ ) := kI[ 1
4 ,

4
4 )
(ξ ) (48)

f (ξ ) := I[ 2
4 ,

3
4 )
(ξ ) (49)

pk(ξ ) := 4(1− k)I[ 0
4 ,

1
4 )
(ξ )+4kI[ 2

4 ,
3
4 )
(ξ ) (50)

we obtain (partially in a formal way only) R0 = 1
k and

the functions Q1,Q2,Q3 portrayed in Figure 7. In a next

step numerical tests must be conducted in order to find

information about the reliability of these measures.

−k

−(1− k)

0

(1− k)

k

lo
g
Q

1

0
4

1
4

2
4

3
4

4
4

kt

−4k

−4(1− k)

0

4(1− k)

4k

lo
g
Q

2
=

lo
g
Q

3

Figure 7:With the parameter functions defined in (47)-(50)
the functions Q2 and Q3 coincide in a formal way. In
logarithmic scale the flow-basedmeasureQ2 =Q3 is
the derivative of the delay-based measure Q1. This
figure assumes k ≈ 2

3 .
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