SNE TECHNICAL NOTE

Expressing Requirements in Modelica

Lena Buffoni”, Peter Fritzson

Linkdping University, SE-581 83 Linkdping, Sweden; * lena.buffoni@liu.se

Simulation Notes Europe SNE 25(3-4), 185 - 189

DOI: 10.11128/sne.25.tn.10314

Received: Sept.10, 2015 (Selected SIMS 2014 Postconf. Publ.);
Accepted: October 20, 2015;

Abstract. As cyber-physical systems grow increasingly
complex, the need for methodologies and tool support
for an automated requirement verification process be-
comes evident. Expressing requirements in a computa-
ble form becomes a crucial step in defining such a pro-
cess. The equation based declarative nature of the Mod-
elica language makes it an ideal candidate for modeling a
large subset of system requirements. Moreover, model-
ing both the requirements and the system itself in the
same language presents numerous advantages. Howev-
er, a certain semantic gap subsists between the notions
used in requirement modeling and the concepts of
cyber-physical modeling that Modelica relies on. To
bridge this gap, in this paper, we illustrate through the
use of dedicated types, pseudo function calls and func-
tion block libraries, how the Modelica language can be
tailored to fit the needs of requirement modeling engi-
neers

Introduction

Functional safety is a key concern in all industry sec-
tors, be it nuclear plants, medical appliance manufac-
tures or the automotive industry. The functional correct-
ness of a component is the guarantee that the component
behaves the way it should and fulfils all the functional
requirements of the system. As the complexity of cyber-
physical systems increases, maintaining coherent re-
quirement specifications and using them to verify mod-
els of physical systems requires the formalisation of the
requirements in a computable manner [2, 4]. In this
paper, we propose an approach to formalising the re-
quirements in the same language as the model of the
physical system.

For this purpose we choose Modelica, an object-
oriented equation-based language for modeling multi-
domain physical systems [5, 1]. Expressing require-
ments in the same language as the physical model has
numerous advantages. It improves the maintainability of
the overall model, ensures that the requirements stay
coherent as the model changes and simplifies the verifi-
cation pro cess, as the requirements can be simulated
together with the system model. However, engineers
expressing requirements use domain specific terms and
concepts [6]. Although requirement-specific notions can
be expressed directly in Modelica, writing them from
scrach every time manually can be complicated, and the
resulting requirements can be harder to understand at
first glance.

To bridge the gap between the requirement designer
vision and the Modelica world, we define a set of types
and pseudo functions, presented in the following sec-
tion. A pseudo function is not a real function, since it
allows side-effects and the use of time-dependent opera-
tors and equations in its body, which are disallowed in
normal declarative Modelica functions. We extend
Modelica with a mechanism for calling these pseudo
functions, to simplify the readability of requirements.
We illustrate these concepts on a simple example of a
backup power system.

The paper is organized as follows. Section 1 intro-
duces the notions used to map the requirements, Sec-
tion 2 illustrates how the requirement verification is
done, Section 3 discusses related works and finally
Section 4 summarizes the article and discusses future
works.

1 Modelling Requirements

In order to make the expression of requirements in
Modelica as intuitive as possible in this section we in-
troduce an approach of mapping concepts from the
requirement modeling domain, such as those defined in
[6] to the Modelica language.

SNE 25(3-4) — 12/2015

Buffoni, Fritzson

Expressing Requirements in Modelica

1.1 Requirement type

To treat requirements in a systematic manner, we need
to define a dedicated requirement type. A requirement
model should not influence the execution of the physical
model, but only access the information from the physi-
cal model necessary for the requirement verification.
Requirements are defined as special types of blocks:
they have several inputs and a single output that repre-
sents the status of the requirement. A status can take the
following values[11, 8]:

e violated when the conditions of the requirement are
not fulfilled by the design model;

e not violated when the conditions of the require-
ment are fulfilled by the design model;

e undefined when the requirement does not apply, for
instance a requirement that describes the behaviour
of a power system when it is switched on, cannot be
verified when the system is off.

If we take the example of a simple backup power sys-
tem, which consists of several blocks connected in par-
allel and operates when the main power supply is lost,
we can model a simple requirement ‘“When the power is
on, the backup power-supply must not be activated’, as
follows in standard Modelica:

block R1
extends Requirement;
input Boolean powerOn;
input Boolean bPSOn;
equation
status = if powerOn then
if bPSOn then
violated
else not_violated
else undefined;
end R1;

In the case of such a simple requirement, no additional
construct are necessary.

1.2 ‘Pseudo function’ library

To bridge the semantic gap between the concepts used
in requirement modeling and Modelica, we propose to
define a set of Modelica function blocks to represent
basic requirement modeling constructs. As mentioned,
function blocks are a modified version of standard
Modelica blocks, with a single output that can be called
using a function syntax.

SNE 25(3-4) — 12/2015

In particular, the time locator properties as defined
in [6], such as after, WithinAfter, until, everyFor
can be defined as Modelica function blocks. These con-
structs are used to which define a period in time when a
requirement should be verified.

For instance everyFor (durationl,duration2), is
a time locator that is used to define a requirement that
must hold every durationl seconds, for duration2
seconds.

Such constructs cannot be modeled as simple func-
tions, as they are not context free and rely on time.
Therefore to represent this everyFor, we can define the
following Modelica function block:

function block everyAfter
parameter Real everyT;
parameter Real forT;
output Boolean out;
protected
Real tmp(start = 0);
equation
when sample (0, everyT) then
tmp = time;
end when;
if time > tmp + forT then
out = false;
else
out = true;
end if;
end everyAfter;

Requirements can then be expressed in terms of these
basic building blocks in a more readable fashion. A set
of predifined time locators based on the FORM-L speci-
fication is available, but the user can also define his own
components.

1.3 Anonymous function blocks through
function calls

If we take another simple requirement for a backup
power unit, ‘Within 40 seconds of the power being lost,
at least two sets must be powered’ and attempt to
express it in Modelica, we will need to use the function
block withinAfter, which is defined as follows:

Buffoni, Fritzson

Expressing Requirements in Modelica

function block withinAfter
parameter Real withinT;
input Boolean event (start = false);
output Boolean out;
protected
Real time event (start = -1);
equation
when event then
time event = time;
end when;
if time event > (-1) and
time event + withinT < time
then
out = true;
else
out = false;
end if;
end withinAfter;

If we use standard Modelica blocks, then we need to
explicitly create an instance of an withinAfter block
and connect it to the corresponding inputs and outputs,
which reduces the readability of the model. Therefore
we propose to define a syntax for pseudo functions,
where a function block can be called like a function by
it’s name and with parameters and input variables as
arguments. We have implemented an extension in
OpenModelica [7], that will automatically generate an
instance of the required function block and the corre-
sponding connection equations. With this syntax, we
can define the above requirement in Modelica as fol-
lows:

block R2
extends Requirement;
input Boolean[5] isOn;
input Boolean powerLoss;
output Integer status(start = 0);
Boolean wA;
equation
wA = withinAfter (40, powerLoss) ;
when wA then
status = if countTrue(isOn) >= 2 then
not violated else violated;
elsewhen not wA then
status = undefined;
end when;
end R2;

In this example, the function block withinAfter, is
called as a function, and the arguments of the call repre-
sent the values that the function block should be instan-
tiated with. The parameter withinT should take the
value 40, and the signal powerLoss should be connect-
ed with the input event.

To generate this transformation we call the function
rewriteFunctionBlockCalls (modelToRewrite,
libraryPackage) in the OpenModelica API. This
function will take two arguments, the model that needs
to be rewritten and a package containing the function
block definitions. It will then parse all the function calls,
and replace all the calls to functions with the same
names as the function blocks in the package passed in
parameters with instantiations of the corresponding
function blocks in the declaration section, and the result
of pseudo function call will be the single output of the
function block. The updated model is then reloaded into
memory and can be simulated.

The argument passing works in the same way as for
normal function calls, the positional instantiation will
bind the values passed to the function call to the param-
eters and input variables of the function block in the
order in which they are defined. Arguments can also be
named explicitly, in which case the corresponding input
value or parameter will be instantiated with the expres-
sion passed to the function. Saving a model after re-
writeBlockCalls was called on it will generate stand-
ard Modelica code, for instance for the example above:

block R2
extends Requirement;
input Boolean[5] isOn;
input Boolean powerLoss;
output Integer status(start = 0);
Boolean wA;
withinAfter agen withinAfterl(
withinT=40) ;
equation
_agen_withinAfterl.event = powerLoss;
wA = withinAfter (40, powerLoss) ;
when wA then
status = 1f countTrue(isOn) >=
2 then 1 else -1;
elsewhen not wA then status = 0;
end when;
end R2;

SNE 25(3-4) — 12/2015

Buffoni, Fritzson

Expressing Requirements in Modelica

The extra step of generating standard Modelica code
is important, as it allows to export the resulting models
in standard Modelica, compatible with any Modelica
tools, therefore function blocks are mapped to standard
Modelica blocks.

It is improtant to destinguish between a requirement
and a function block. The requirement maps to a system
requirement, such as the one defined by R2 (‘Within 40
seconds of the power being lost, at least two sets must
be powered’) and can contain one or more function
blocks to represent time locators. As illustrated in the
previous section, a requirement can also be independent
of time and should then hold continuously.

2 Requirement Verification

Once the the requirement model and the system model
are combined, they can be simulated together in order to
verify the requirements. Each requirement has a status
value which can subsequently be plotted to see at which
times the requirement is violated.

The advantage of having the requirements in the
same language as the system model is that no additional
work is necessary to simulate the system. In the verifi-
cation scenario in our example, the power is lost at time
20, and the back-up units 1 and 2 are turned on at time
40 (Figure 1). Therefore the requirement is not violated.
The units 1 and 2 are turned off again at time 80, how-
ever since this behaviour does not affect the require-
ment, it remains not violated (Figure 2).

If we modify the verification scenario so that unit 2
is turned on at time 70, the requirement will be violated
as illustrated in Figure 3.

= isOn[1] =—— isOn(2] r.powerLoss

— et — T T Y | — T e —

time

Figure 1. The power loss of the main power system and
the switching on/off of backup units 1 and 2.

SNE 25(3-4) — 12/2015

—r.5tAtUS

time

Figure 2. The requirement status, where 0 represents
undefined, -1 violated and 1 not_violated.

risOn(1]

risOn[2] r.powerLoss r.status

96.1379, -1.0000

1
0 20 40 60 80 100
time

Figure 3. The requirement is violated because the power
block 2 not turned on time.

3 Related Work

In this paper we have shown how textual require ments
can be formalised in Modelica, however when dealing
with large numbers of requirements and sim ulation
scenarios, there is a need for an automated approach for
composing the requirements with a given system design
for the purpose of verification. In [9, 10] an approach
for automating this process through the use of binding is
proposed with an implementation in ModelicaML, a
Modelica profile for UML. In [8] the requirement veri-
fication methodology is adapted to Modelica syntax.
This work complements the work on formalising re-
quirements in Modelica presented in this paper.

FORM-L language (FOrmal Requirements Model-
ling Language) is a language specification developed by
EDF dedicated to expressing requirements and proper-
ties in a clear and concise manner [6]. In the work pre-
sented in this paper, concepts from FORM-L were
mapped to Modelica function blocks in order to use
them when modeling requirements in Modelica.

Buffoni, Fritzson

Expressing Requirements in Modelica

4 Conclusion

In this paper we have illustrated how through a minimal
set of extensions, we can use Modelica to formalise
requirements and then verify them with respect to a
specific system design.

Expressing requirements in the same language as the
physical model brings the advantages of a modular,
object-oriented language for system design to the pro-
cess of requirement formalisation, and allows for a
runtime verification of requirements. This work is part
of a larger ongoing research project aiming to develop
tool and methods [3] for model-driven, integrated sys-
tem verification and fault analysis. Moreover, express-
ing the requirements in Modelica allows to formalise
them and remove the ambiguity present in a verbal
description.

The next step in this work is the integration with the
work in [8] for an automatic generation of verification
scenarios as well as tool support for batch processing of
requirements.

Acknowledgement

This work is partially supported by the ITEA 2
MODRIO project.

References

[1] Fritzson P. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. Wiley IEEE Press, 2004.

[2] Hull E, Jackson K, Dick J. Requirements Engineering.
Springer, 2005.

[3] ITEA 2 Projects. MODRIO. http://www.itea2.org/.

[4] Leucker and M, Schallhart C. A brief account of runtime
verification. The Journal of Logic and Algebraic Pro-
gramming, 78(5):293 — 303, 2009.

[5] Modelica Association. Modelica 3.2 revision 2 specifica-
tion, 2013. www.modelica.org.

[6] Nguyen T. FORM-L: A MODELICA Extension for
Properties Modelling Illustrated on a Practical Example.
In Proceedings of The 10th International Modelica Con-
ference, 2014.

[7] Open Source Modelica Consortium. Openmodelica pro-
ject, 2013. www.openmodelica.org.

[8] Schamai W. Model-Based Verification of Dynamic Sys-
tem Behavior against Requirements. PhD thesis, Method,
Language, and Tool Linkdping: Linkdping University
Electronic, PressDissertations, 1547, 2013.

[9] Schamai W, Buffoni L, Fritzson P. An Approach to Au-
tomated Model Composition Illustrated in the Context of
De-sign Verification. Modeling, Identification and Con-
trol, 35(2):79-91, 2014.

[10] Schamai W, Fritzson P, Paredis CJ. Translation of UML
State Machines to Modelica: Handling Semantic Issues.
Simulation, 89(4):498-512, April 2013.

[11] Tundis A, Rogovchenko-Buffoni L, Fritzson P, et al.
Requirement verification and dependency tracing during
simulation in modelica. In Proceedings of EUROSIM
Congress on Modelling and Simulation, September
2013.

SNE 25(3-4) — 12/2015

.~ .+ EUROSIM 2016
6 9" EUROSIM Congress on Modelling and Simulation

City of Oulu, Finland, September 12 — 16, 2016

QOULUN YLIOPISTO

Linnanmaa

EUROSIM Congresses are the most important modelling and simulation events in Europe.
For EUROSIM 2016, we are soliciting original submissions describing novel research and
developments in the following (and related) areas of interest: Continuous, discrete (event)
and hybrid modelling, simulation, identification and optimization approaches. Two basic con-
tribution motivations are expected: M&S Methods and Technologies and M&S Applications.
Contributions from both technical and non-technical areas are welcome.

Congress Topics The EUROSIM 2016 Congress will include invited talks, parallel,
special and poster sessions, exhibition and versatile technical and social tours. The
Congress topics of interest include, but are not limited to:

Intelligent Systems and Applications Bioinformatics, Medicine, Pharmacy Simulation Methodologies and Tools

Hybrid and Soft Computing and Bioengineering Parallel and Distributed
Data & Semantic Mining Water and Wastewater Treatment, Architectures and Systems
Neural Networks, Fuzzy Systems & Sludge Management and Biogas Operations Research
Evolutionary Computation Production Discrete Event Systems
Image, Speech & Signal Processing Condition monitoring, Mechatronics Manufacturing and Workflows
Systems Intelligence and and maintenance Adaptive Dynamic Programming
Intelligence Systems Automotive applications and Reinforcement Learning
Autonomous Systems e-Science and e-Systems Mobile/Ad hoc wireless
Energy and Power Systems Industry, Business, Management, networks, mobicast, sensor
Mining and Metal Industry Human Factors and Social Issues placement, target tracking
Forest Industry Virtual Reality, Visualization, Control of Intelligent Systems
Buildings and Construction Computer Art and Games Robaotics, Cybernetics, Control
Communication Systems Internet Modelling, Semantic Web Engineering, & Manufacturing
Circuits, Sensors and Devices and Ontologies Transport, Logistics, Harbour, Shipping
Security Modelling and Simulation Computational Finance & Economics and Marine Simulation

Congress Venue / Social Events The Congress will be held in the City of Oulu, Capi-
tal of Northern Scandinavia. The main venue and the exhibition site is the Oulu City Theatre
in the city centre. Pre and Post Congress Tours include Arctic Circle, Santa Claus visits and
hiking on the unique routes in Oulanka National Park.

Congress Team: The Congress is organised by SIMS - Scandinavian Simulation Society,
FinSim - Finnish Simulation Forum, Finnish Society of Automation, and University of Oulu.

Esko Juuso EUROSIM President, Erik Dahlquist SIMS President, Kauko Leiviska EUROSIM 2016 Chair

Info: eurosim2016.automaatioseura.fi, office@automaatioseura.fi

