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Abstract. This paper is focused on modeling, simulation
and validation of the mathematical model of a loading
bridge by comparison to the real system. A Lagrangian
modeling method is presented to define a mathematical
model of the loading-bridge dynamical system. Using the
Matlab-Simulink simulation environment we have esti-
mated the parameters and validated the model with
regard to the experiments on the real device. The dis-
crepancy between the simulated and the measured
responses was adequate. Hence, we can conclude that
the developed nonlinear model provides a satisfactory
description of real system behaviour. Using the model,
we designed a fuzzy controller for controlling load posi-
tion and load height. The obtained controller has also
been tuned and tested on the real device.

Introduction

In everyday engineering practice we are often faced
with the problem of process-control design. When deal-
ing with processes expressing relatively complex dy-
namic properties that are difficult to control or even
dangerous when not taken care of properly, it is general-
ly sensible to first describe the process as a mathemati-
cal model so as to be able to carry out the possibly prob-
lematic experiments and conduct the first stages of the
control-design in a safe simulation environment. In this
regard, we deal with a loading-bridge dynamical sys-
tem. In order to be able to design a suitable controller
and, in addition, to test the dynamical properties of the
loading bridge, we have described the dynamics of the
real device with a mathematical model, developed a
simulator of the system and designed a fuzzy controller
for the device.

1 Description of the Loading
Bridge

The loading bridge Amira PS600 (see Figure 1) consists
of an aluminium frame covered with sheets of plexi-
glass. Inside the frame, there is a guiding bar, along
which the cart is driven by means of a DC-motor, a
clutch, a tooth wheel and a tooth belt. The length of the
bar is approximately 1.5 m. Two proximity switches are
mounted close to both ends of the guiding bar. They are
used for limiting the position of the cart. The position of
the cart is measured by an incremental encoder.
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Figure 1: A scheme of the loading bridge with annotated
quantities: #, - driving force on the cart, -
swing angle of the load, /- rope length, x— cart
position, m; — cart mass, m:— load mass, v; - cart
velocity, vz - load velocity, vzx— horizontal com-
ponent of load velocity, vz — vertical component
of load velocity.

The cart carries a winch that is used to change the
length of the rope. The rope runs around two deflection
rollers and carries the load, which is suspended below
the guiding bar. The length of the rope is measured by
an incremental encoder.
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The loading bridge allows the load to swing in paral-
lel to the guiding bar when the cart is moved to the left
or to the right. The swing angle is measured by an in-
cremental encoder [3]. Table 1 shows the measured
parameters of the loading bridge.

Parameter Value

r 0.3183m
m; 0.2 kg
m; 5.5kg

m, 0.143 kg

Table 1: The measured parameters of the loading
bridge. Here, r is the radius of the winch, mt is
the mass of the winch, m1 denotes the mass of
the cart and m2 the mass of the load.

2 Derivation of the
Mathematical Model

The mathematical model of the loading bridge was
derived using the Lagrangian method [1,2]. A general
Lagrangian partial differential equation is given in eq.

(D).

d(aL) 0L+0P_F (a
at\aq.) " g, 9.~ :
Here, g is a generalized coordinate describing the mod-
el of the system. P represents the power-dissipation
function — see eq. (2) — where Ris the damping factor.

1
P = =Rg,’ )
2
L stands for the Lagrangian in eq. (3).
L=T, -V, )

Here, 7% is the kinetic energy of the system and V), rep-
resents the potential energy of the system. F; stands for
the external excitation along the respective generalized
coordinate. By considering the kinetic and potential
energy of the system, the Lagrangian can be rewritten as
in eq. (4).
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Here, J is the moment of inertia of the winch, r is its
radius and g represents gravitational acceleration.

Based on eq. (1) a partial differential equation for
each of the generalized coordinates can be established.
In our case, there are 3 generalized coordinates, i.e.: cart
position x in eq. (5); swing angle 1 in eq. (6); and rope
length [ in eq. (7):

()= )
at\ox/) " ax o9x P

d(oL\ oL P
a(a)*a%” ©
i(a_L)_Fa_L_{_a_P:T (7)
at\gi/ a1 ai

Upon inserting the Lagrangian and the power-
dissipation function into egs. (5), (6) and (7) and carry-
ing out the derivations, we obtain the following 2™
order differential equations for x, 1 and [ in egs. (8), (9)
and (10), respectively.

% = (my +my)Y[E, — Ryxt — Imy,sin(yp)
— 21plm,cos(P) — Plm,cos() (8)
+ P2imysin(y)]

§ = 17 [~Ecos() — gsin() — 29l — Ry )]

-1
i=(my+ T/_Z) [T = Repl — ¥mysin(p)  (10)
+2Im, + mygcos ()]

The aforementioned equations define the mathemat-
ical representation of the system.

3 Simulation and Validation of
the Mathematical Model

The nonlinear mathematical model of the loading bridge
was implemented in the Matlab/Simulink simulation
environment. The simulation scheme of the nonlinear
model is presented in Figure 2.

7,



Karer et al.

Modeling, Simulation and Control of a Loading Bridge

i

L
i0

Ui

Towanspoce

B

Figure 2: Simulation scheme of the nonlinear model of
the loading bridge.

In order to validate the obtained nonlinear model, the
responses of the model were compared to the real load-
ing-bridge response-signal measurements using the
scheme in Figure 3.

position

v

u [position, angle, length]

From
Workspace

Loading bridge
angle

From
Workspace1l

length

®

Clock To Workspace
Figure 3: Measurement scheme for acquiring real loading-
bridge response signals.

3.1 Parameters of the nonlinear model

The real loading bridge and the developed nonlinear
model were fed a positive and negative step-signal for
the cart-motor input and the appropriate response sig-
nals were recorded (see Figure 4 - left). Figure 4 depicts
the comparison of signals of the nonlinear model and
the measured signals on the real plant. We can see that
the cart does not return to the initial position (see Fig-
ure 4 - right).

The dynamical model had to be adjusted in order to
close the discrepancy gap between the model and the
real device response signals. The friction parameters are
not constant along the guiding bar. In addition, they
depend on the direction the cart is moving as well.
Therefore, a series of measurements was conducted,
taking into account the relevant partitions of the guiding
bar. A testing input signal was used that moved the cart
to the left and to the right. Descending and ascending
ramps were used for the measurements, respectively.
The respective ramps were time-limited and amplitude-
limited.

The distance travelled was used to estimate the fric-
tion parameters appurtenant to the relevant partition of
the guiding bar. In such a manner, the developed model
includes several lookup tables that describe the nonline-
ar dynamics within a particular partition. The main
cause for nonlinearity is non-constant friction along the
guiding bar and a dead-zone of the input signal that
provides the voltage to the motor.

In order to estimate the damping properties of the
pendulum, which is made up of the load and the load-
carrying rope, several responses to the initial non-
equilibrium condition were measured. The measure-
ments were initially carried out without moving the cart
along the guiding bar. The responses were measured
with various lengths of the rope |. The damping coeffi-
cient was adjusted until the response of the nonlinear
model matched the response of the real device.

swing angle [°]

Figure 4: Validation input signal (positive and negative
steps: 2V and -2 V, respectively) for the cart and
response comparison between the nonlinear
model (blue line) and the real device (red line).
The rope length was constant (I = 0.7 m).
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The responses regarding the change of the rope
length as a consequence of the input signal of the winch
were also adjusted. In order to match the response of the
model to the response of the real device, a dead-zone
within the input-voltage has to be considered. Further-
more, the winch submodel includes a 1% order delay.
The measurements suggest that the discrepancy between
both response signals is acceptable.

4 Tracking Control of the Load
Along the Reference
Trajectory

Tracking control of the load along the reference trajec-
tory was designed by implementing two fuzzy control-
lers. One was used to control the position of the cart and
the other one controlled the length of the rope that car-
ries the load. The reference trajectory is automatically
generated from the initial and the final position within
Matlab.

The fuzzy controller for the cart position has 3 input
variables and 1 output variable, whereas the fuzzy con-
troller for the rope length has 2 input variables and 1
output variable. Both are Mamdani type controllers with
centroid defuzzyfication. Table 2 shows the input and
output variables and the respective ranges for both fuzzy
controllers.

Lower  Upper

Controller Variable Limit Limit Unit
Error x, — X -3 3 [m]

Cart Velocity x -0,7 0,7 [m/s]
position—x  Swingangle ¥  -45 45 []
Motor voltage -3 3 [V]
Error |, -1 -3 3 [m]

Rope length—1  Velocity i -0,7 0,7 [m/g]

Motor voltage ~ -10 10 [V]

Table 2: Input and output variables and their respective
ranges for both fuzzy controllers.

In both cases, the errors are normalized to the interval
[-1,1], so that the controller is comparably responsive
within the operating range.
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Figure 5 depicts the membership function of the
fuzzy controller for cart position, whereas Figure 6
shows the membership function of the fuzzy controller
for rope length. The membership functions regarding
the error in both cases are condensed around 0, which
ensures high accuracy of control.

Figure 5: Membership functions of the input and output
variables of the fuzzy controller for cart position.
Trapezoidal, triangular and Gaussian
membership functions are used.

Figure 6: Membership functions of the input and output
variables of the fuzzy controller for rope length.
Trapezoidal, triangular and Gaussian
membership functions are used.

The inputs and outputs of each fuzzy controller are
connected by an inference system, which are defined by
appropriate rules, as defined below:

If (Error is NB) then (Voltage is NB).

If (Error is PB) then (Voltage is PB).

If (Error isNS) then (Voltage isNS).

If (Error is PS) then (Voltageis PS).

If (Error is NS) and (Velocity is PB) then (Volt-

ageisNS).

6. |If (Error is PS) and (Velocity is NB) then (Volt-
ageisPS).

7. If (Error is ZE) then (Voltage is ZE).

8. If (AngleisN) then (Voltage is ZE).

9. If (AngleisP) then (Voltageis ZE).
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Both controllers employ similar rules, except for
rules 8 and 9, which are not considered in the controller
for rope length. On one hand, rules from 1 to 7 tend to
minimize the error by appropriately adjusting the motor
voltage. On the other hand, rules 8 and 9 are used to
slow down the cart to prevent the swing angle of the
load exceeding safe boundaries.

Figure 7 shows the control scheme where both fuzzy
controllers are implemented. The reference trajectory
was generated from the initial position of the load
T,=[0,0.185] along the first reference goal-point
T1=[1.2,0.6] and ending up in the final reference goal-
point T,=[0.5,0.3].

Figure 7: Control scheme with two fuzzy controllers. The

same controllers are implemented in the simula-
tion experiment using the nonlinear model and
in the experiment using the real device.

The experiments are carried out by first moving the load
from the initial position T, to the first reference goal-
point T; and then moving the load to the final reference
goal-point T,. Figure 8 depicts the comparison between
the responses of the model (red line) and of the real
device (green line), with regard to the reference trajecto-
ry (blue line). The measurements suggest that the dis-
crepancy between the responses is quite small.

pe length [m]
——

Figure 8: Comparison between the responses of the
model (red line) and of the real device (green
line), with regard to the reference trajectory
(blue line).

Figure 9 shows the control signals for the cart posi-
tion (left) and for the rope length (right). Red line de-
notes the signals of the nonlinear model, whereas green
line is for the signals concerning the real device.

Rope fength

Figure 9: Control signals for cart position (left) and for
rope length (right). Red line — nonlinear model;
green line - real device.

The behaviour of the simulated model and of the real
device are rather similar, although the actuators of the
real device are slightly more loaded. Reference tracking
of the cart position is favourable both in simulation and
on the real device, despite noticing slight overshoots
and a negligible steady-state error. Reference tracking o
the rope length is also satisfactory in both cases, in spite
of minor overshoots. Figure 10 depicts the trajectory of
the load from T,=[0,0.185] along T;=[1.2,0.6] to
T,=10.5,0.3].
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Figure 10: Trajectory of the load: reference (blue line),
simulated model response (red line), real device
response (green line). T,=[0,0.185] - initial
position; T; = [1.2,0.6] — first reference goal-point;
T.=[0.5,0.3] - final reference goal-point.
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Two fuzzy controllers — i.e., one for the cart posi-
tion and ono for the rope length — have been designed
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