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Abstract. This work addresses the issue of building a
probabilistic system in an ambient assisted living envi-
ronment to ensure a proper living for older adults. The
focus lies on the early prediction of human activities
based on domotic sensor data which form a temporal-
sequential data set. In contrast to commonly used meth-
ods in sequential data mining, data in hidden streams
and with variable temporal spans are considered. The
aim in this context is to detect recurrent patterns in
a stream of domestic sensor data using the Temporal-
Pattern (T-Pattern) algorithm and to automatically gen-
erate probabilistic finite-state automata.

Introduction

The motivation of the work presented here is mainly

driven by the demographic change and the need for am-

bient assisted technologies to support a longer indepen-

dent living of older adults. Behavior pattern recognition

based on non-obtrusive sensors is a challenging task,

but is seen to be of fundamental importance for AAL

technologies being accepted by the end users.[1] Hu-

man behavior can be very complex, consider, for in-

stance, the preparation of a meal. This activity con-

sist of many other sub activities like taking the pan

out of the cupboard, taking food out of the refrigerator,

switching on the stove and so on.

The current attempts to detect human behavior and

activity can be classified by the type of the sensors used

(1) body worn sensors, (2) video cameras and (3) do-

mestic sensor networks. For the sake of maximal non-

obtrusiveness, this work concentrates on domotic sen-

sor networks. The data gained from domotic sensors

are mostly binary and form sequential patterns. Se-

quential pattern mining, which discovers frequent sub-

sequences as patterns in such a data source, is an impor-

tant problem with broad applications. This includes the

analysis of customer purchases, natural disasters, dis-

ease treatment, DNA sequences and others.[2]

In the literature, methods for predicting the next

symbol of a sequence of strings are proposed using

probabilistic suffix trees (PST) [3, 4], which usually ig-

nore the time between subsequent events and assume

no noise in terms of unknown or random events in the

data. In sensor networks consisting of many sensors, or

in environments with multiple persons interacting with

the smart home, patterns are very often hidden in data

streams and must be discovered with appropriate sta-

tistical methods. Later the probabilistic suffix tree is

transformed in an automaton. The automaton cannot be

learned straight forward with this kind of data, as there

exists no trainings data. This is the reason why PST are

used to solve this problem.

There is a demand for future smart home solutions

which increase the comfort and safety of the inhabitants

while saving energy at the same time. The focus lies on

caring for older adults, which are independent enough

to live on their own, but desire to feel more secure. The

security factor comprises, among other things, the send-

ing of help in case of an accident or warning from an

open window.
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This factors are treated in Ambient Assisted Liv-

ing (AAL) technologies, in specific, behavior pattern

recognition can handle and meet the request of older

adults.[5] Nowadays state-of-the-art smart home solu-

tions are based on simple predefined rules to control de-

vices based on movement detectors or timers, but there

is still very little intelligence built-in due to the follow-

ing reasons:

• Too many systems on the market are proprietary

and cannot be connected to each other

• Very few smart appliances are available on the

market

• Living environments differ significantly and stan-

dardized solutions will not work

• Configuration is complex and therefore costly

One of the keys towards smart systems in the AAL

context is seen to be activity recognition, and much re-

search in recent years has focused on this topic. Al-

though many approaches and algorithms exist, there are

still many obstacles towards a system which is ready to

be used in real environments in everyday life.

The aim of this work is to describe a concept for hu-

man behavior detection, which includes also the time

aspect of environmental sensor events hidden in data

streams. The time aspect is important, as data comes

from real world settings and different sensors can send

at similar timestamps. Moreover the order of the ac-

tivities is important, in particular for events which are

dependent on past events. The detection of high com-

plex patterns and behaviors are important for a higher

comfort of the end users.

1 Related Work
Human activity recognition is a challenging task and

has been an active, fast growing and broad research

area, with a multitude of approaches and algorithms

proposed. Roughly, these approaches can be catego-

rized by camera-based, environmental sensor-based, or

wearable-/object-based activity recognition. This work

focuses on non-obtrusive environmental sensors for ac-

tivity recognition. Algorithms used in activity recog-

nition can be divided into two major groups. The first

one is based on machine learning techniques including

supervised and unsupervised learning methods, the sec-

ond one is based on logical modeling and reasoning.[1]

For probabilistic activity recognition a wide range of

algorithms exists. This includes Hidden Markov Mod-

els (HMMs) [6], Bayes networks [7], decision trees and

other classical pattern recognition methods. Among

these, HMMs and Bayes networks are the most popular.

These algorithms used in a supervised context are meth-

ods, which need annotated data to construct a model.

On the other hand there exists unsupervised learning

methods like factor analysis and mixture of Gaussians,

these are learning methods without the need of prepro-

cessing the data. These methods try to build statistical

representations of the data.[8]

An approach similar to Hidden Markov Models

is that of probabilistic finite state automata (PFA).[9]

PFAs describe distributions over strings, but have been

successfully used in several fields, including pattern

recognition. Finite state machines in general are widely

used for all kind of control tasks appearing in smart en-

vironments as well. The PFA is learned over a PST,

where the nodes are the patterns from the T-Pattern al-

gorithm.

PSTs are used in a wide area, for example to an-

alyze video data [3]. Li et al. [3] used an action-only

prediction model to represent dependencies between ac-

tion units on the basis of video data. In comparison in

the approach of this paper domestic sensors are used.

In the action-only prediction model, the occurrence

of a sequence of events is used and compared with an

empirical parameter to detect patterns. Another ap-

proach for the detection of patterns in behavior are T-

Patterns [10]. T-Patterns are created for finding hidden

or non-obvious temporal patterns in streams of data de-

scribing human behavior. T-Patterns are originally used

for children interaction analysis [10], but find also ap-

plication in detecting animal and human behavior [11].

2 Activity Recognition

The sensors used for behavior detection are off-the-

shelf and low-cost conventional home automation sen-

sors. All sensor types have been integrated in the plat-

form and work in parallel due to the harmonization of

data packets into a hardware abstraction bundle.[12]

For evaluation, three annotated datasets consisting

of several weeks of data recorded in a real-world setting

provided by Kasteren et al. [13] are used. Each dataset

belongs to one house which is occupied by one person.
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2.1 Algorithm

The algorithm employed relies on the work of Li et al.
[3] and their action-only prediction model. The authors

try to construct a PST out of video data. This is done

in four steps. First, they find every pattern in the video

data and filter out the patterns which are not frequent.

The frequent patterns are broken down into individual

interactions along the time line. In the last step they

calculate the probabilities of the various patterns with

an algorithm containing some empirical parameters.

This fits the aim of this work quite well, but it must

be expanded by the important temporal aspect. This is

done by following the concept in Figure 1. In contrast

to the algorithm proposed in [3], which only counts the

occurrences of different frequent patterns, in this work

the temporal aspect of the sensor data, as well as its sta-

tistical significance, is included in the calculation of the

T-Pattern algorithm and the next symbol’s probability

to make it more robust. Another drawback of the ref-

erenced paper are the empirical parameters, which are

unpractical and a stumbling block to a fully automatic

system. In the present work, this problem does not oc-

cur.

If only the significant patterns are used to calculate

the probabilities, a more appropriate result can be ex-

pected.

2.2 Concept

The real environmental sequential data from the senors

are preprocessed. In this step false data are deleted and

with this preprocessed data the algorithm can be pro-

ceeded.

First a T-Pattern algorithm is performed with the

sensor data. Followed by building a PST with the sig-

nificant T-Patterns. Therefore each significant T-Pattern

stands for one node and the next symbol probabilities

are calculated with the Poisson distribution.

The concept how to construct the next symbol prob-

ability of states in a PST relies on the idea of maxi-

mum duration compare Figure 1. This means in every

pattern-step the longest duration of the patterns in this

period is used to calculate the next symbol probability

for this transition.

If the maximum duration of pattern-step 11 is inter-

esting, the calculation begins at the pattern @tt. The

pattern-step 11 in this example means the transforma-

tion of @tt in @ttt, @ttk or @ttx. The duration of ev-

ery suffix of the pattern @tt{t,k,x} is compared and the

@

t k x

tt kt xt kktk xk

ttt ktt xtt

d1 d2

d11

tkt xktkkt
d12

ttk ktk xtk
d21

tkk xkkkkk
d22

ttpattern-step 1

pattern-step 11 pattern-step 12

sample statistics
(t,k,x) probability function

Figure 1: Concept how to calculate next symbol probability.

maximum duration is chosen to calculate the next sym-

bol probability. All transformation probabilities, which

are calculated in the way described before, are put to the

correct node, where x describes those cases where noth-

ing significant happens. Therefore is it ensured that the

total cases in one step sums always up to one. This

is important, as otherwise no automaton can be con-

structed out of the PST.

To complete the system, the PST must be trans-

formed in a probabilistic suffix automaton (PSA). In

[14] an algorithm can be found for this step, the result

for one example can be seen in Figure 2. The PSA is

created by the information of the PST in the following

way. First all leaves are added to the new automaton as

recurrent states and a state equal to the root of the PST.

The states are connected with each other. For example

if the path between root and ’021’ is questioned, two

states are required and connected ’20’ and ’2’.

In the next step the arcs are built, for this step the

next-symbol probabilities of the PST are required. If

there exists a next symbol probability after the given

state, the symbol is added, and from the front symbol

by symbol is removed until this state can be found in

the automaton. For example ’20’ has a next symbol

probability to ’1’, the constructed label is ’201’ after

removing the first symbol ’2’ an already existing state

’01’ is found and an arc is created.

The last step is to assign state types. This is done

by looking at each node and ascertaining if one of the

arcs comes from a recurrent state created in step one,

therefore this state also becomes a recurrent state. All

other nodes are transient states. ’2’ is a recurrent state,

as their exists an arc from the recurrent state ’10’ to

’2’.[14]

This algorithm leads to a PSA, out of significant T-

Pattern which can detect behavioral anomalies in real

environments with domestic sensors.[12]
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Figure 2: A transformation from a PST to a PSA [14].

2.3 T-Pattern recognition

The concept and algorithm behind T-Patterns was first

stimulated by research regarding the structure of be-

havior and interactions with focus on real-time, prob-

abilistic, and functional aspects, as well as hierar-

chical and syntactic structure, creativity, routines and

planning.[15, 10] T-Patterns were chosen, because be-

havior patterns are often hidden in a behavioral stream

and exist at different time scales.

The T-Pattern method described in [10] is an ap-

proach to find patterns in time series data, where causal-

ity between different data can be expected in short time

intervals, relative to the observation period. This T-

Pattern algorithm can be applied to sensor data in smart

environments. The activity patterns in real sensor data

are expected to be hidden in a data stream created by

a large number of sensors. The approach can handle

noisy, uncertain and incomplete sensor data, as the al-

gorithm makes a probabilistic method available.[16]

The T-Pattern algorithm works with a bottom-up ap-

proach. A bottom-up approach means, that first the sim-

plest T-Patterns are searched for and then, level by level,

the higher hierarchical T-Patterns are found. These sim-

ple T-Patterns are at the fundamental level just simple

pairs of sensor events having a statistical significant in-

terval relationship.[15]

The assumption in the T-Pattern approach is a null

hypothesis, expecting that each component is inde-

pendently and randomly distributed over time with its

observed average frequency. This null hypothesis is

the assumption which all found T-Patterns are tested

against.

The significance testing is based on Poisson proba-

bility distribution.

Making use of real-time information, the following

probabilistic real-time relation serves as a key to the

detection of hidden T-Patterns. If A is an earlier and

B a later component of the same recurring T-Pattern,

then, after an occurrence of A at t, there is an inter-

val [t + d1, t + d2],(d2 ≥ d1 ≥ 0) that tends to contain

at least one occurrence of B more often than it would

be expected by chance. This relation is called a critical
interval (or CI) relation between the distributions of A
and B. The later component B does not need to be the

one immediately following A within the pattern, so even

when some elements of a T-Pattern are ignored, it may

still have the defining characteristics.

The behavior data are coded during an observation
period [1,NT ] in terms of discrete occurrence times

of events. A T-Pattern can be seen as an ordered set

Q = X1 ≈ dt1X2 ≈ dt2 . . .Xm, where X stand for sim-

pler T-Patterns and each ≈ dt term stands for a rela-

tively invariant (relative to the expectation assuming the

null hypothesis) time distance between the components,

which separates the consecutive Xi and Xi+1 terms.[16]

The algorithm as proposed in [10] computes if there is

a series of intervals containing k(k ≥ 2) occurrences of

A followed by at least one B and checks if k is signif-

icantly greater than the expectation, by varying the in-

terval length for the search.

The input data are a set of sensor events, where

timestamps represent the beginning and ending time of

a specific sensor event. This data from real world set-

tings are often sparse during long observational periods
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Figure 3: Sensor data recorded 2 days, accumulated hourly.

and clustered within short periods, which can be seen in

Figure 3. This figure shows long periods without activ-

ity, and short periods with high activity. This problem

can be solved by considered the time during the use of

the T-Pattern approach. A small significance level leads

to more reliable results as not less long patterns will be

recognized (α =10−8).

Some patterns appeared significantly more often

than others, and those are essential for an activity to be

recognized.

2.4 Suffix Trees and Probabilistic Finite
Automata

Activity processes can be described by a subclass of

probabilistic finite automata which are called Proba-

bilistic Suffix Automata (PSA) by the authors of [4].

Probabilistic automata have similarities to widely used

Hidden Markov Models, as analyzed in [17]. On the

other hand PSAs seemed to be a logical extension to

handle uncertainty in cases which can not be solved

with pure finite state automata.

A PST T , over an alphabet Σ, is a tree of degree |Σ|.
Each edge in the tree is labeled by a single symbol in

Σ, such that from every internal node there is exactly

one edge labeled by each symbol. The nodes of the

tree are labeled by pairs (s,γs), where s is the string

associated with the walk starting from that node and

ending in the root of the tree, and γs : Σ → [0,1] is the

next symbol probability function related with s. It is re-

quired that for every string s labeling a node in the tree,

Σσ∈Σγs(σ) = 1. A PST T generates strings of infinite

length, but only probability distributions induced on fi-

nite length prefixes of these strings are considered. The

probability that T generates a string r = r1r2 . . .rN ∈ ΣN

is

PN
T (r) =

N

∏
i=1

γsi−1(ri),

where s0 = e, the empty string, and for 1≤ j ≤N−1, s j

is the string labeling the deepest node reached by taking

the walk corresponding to riri−1 . . .r1 starting at the root

of T .

The PST is learned with a top-down algorithm by

means of the sample statistic. With this T-Patterns the

empirical probability function P̃ is defined and a suffix

tree T , which is a sub-tree of T with high probability, is

constructed.

First, only a single node labeled as empty string e
is constructed. Further nodes are added which are rea-

sonably to be in the tree. This is the case when for the

node v, the empirical probability of the suffix s, P̃(s),
is non negligible. Additionally, for σ the empiric prob-

ability of s followed by σ , P̃(σ |s), must differ signif-

icantly from the probability of observing suffix(s) fol-

lowed by σ , P̃(σ |suffix(s)). Suffix(s) is the suffix string

of the parent node, meaning the way from the root to

the parent node of v.

The decision rule is dependent on the ratio between

P̃(σ |s) and P̃(σ |suffix(s)). A given node is only added

if this ratio is substantially greater than one. The tree

is built level by level so the successors of a leaf are

only added if they satisfy the condition. The tree

reaches its final shape, if it does not fulfill the condi-

tion anymore.[4]

3 Results

In this section the results of the methods described so

far are shown and discussed. The data from Kasteren et
al. [13] are used to evaluate the T-Pattern algorithm and

the results fulfills the demand. The last part focuses on

the results from the algorithm constructing a PSA.

3.1 T-Pattern Analysis

The T-Patterns are evaluated with the annotated data in

Matlab. In this analysis the significance test for the T-

Patterns is done by the Binomial distribution. For each

pattern the best fitting activity is searched for and is

saved in the class with the highest percentage of over-

lap. These percentages are visualized in a pie and a

histogram format.

In Figure 4, the histogram bars describes in 10%

steps the percentage of patterns intersecting with an

annotated activity. For better understanding 0 means

no match with an activity, 1 means all patterns which
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60-80%-match
>90%-match
<60%-match
no match

60-80%-match
>90%-match
<60%-match

ignore bad patterns

ignore useless activitieswithout fine-tuning

no sensor-event patterns

10%activity blur

ignore specific patterns

Figure 4: Fine Tuning.

intersect 0− 10% with an annotated activity, 2 means

10−20% intersection and so on.

The pie has four different classes, ’no matches’,

’more than 60%-matches’, ’between 60% and 80%-

matches’ and ’more than 90%-matches’. This figures

are all analyzed over the whole time period with the T-

Pattern algorithm focusing on the sensor Ids 7 and 8.

Sensor Id 7 stands for the ’toilet flush’ and sensor Id

8 for the ’toilet door’. The figures must be seen as a

continuous chain. All patterns which are left out in one

picture are also left out in the other pictures in vertical

direction.

In the first evaluation the T-Pattern algorithm finds

too many T-Patterns compare picture one. This is the

reason why a fine tuning of the recognized T-Patterns

has been done to get more appropriate patterns. Espe-

cially the first two bars are a problem for further evalua-

tion. This are those patterns which do not intersect with

an activity or only intersect with at most 10%. In the

first picture second row the T-Patterns which consist of

only one sensor event are left out. A huge improvement

can be seen especially in the ’no matches’ part, as most

of the individual single sensor-events are too small to

overlap with an activity.

In the second picture the fine tuning is expanded by

blurring the activities 10% each side. Other fine tun-

ing steps like ignoring specific patterns, useless patterns

and bad pattern lead finally to an appropriate result.

The significance analysis leads to the result of an im-

provement of while using lower significance level. The

significance level 0.005 or 0.001 seems to be more ap-

propriate than a bigger one like 0.05. The significance

level is lowered with the consequence of less patterns

being recognized. This patterns are those which match

an annotated activity with higher percentage.

3.2 Probabilistic Suffix Tree and Probabilistic
Suffix Automata

71 80

@
(17.91, 18.11, 39.43, 12.05, 12.47)

xxx x

70 81x

8 70 07 701 8 701 8 7117 710 8 710 8 807 800 7 801 7 810 7 810 8 810

(1.96, 3.38, 3.69, 90.51)(3.01,5.13,4.98,86.86) (2.68, 2.6, 5.51, 89.19) (6.02, 6.07, 4.55, 83.36)

1

Figure 5: PST based on sensor 7 and 8 with pattern length 2.

In Figure 5 a result of the used system can be seen.

In this case the sensors 7 and 8 are considered to build

a PST. The probabilities are described in percentage,
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83.36
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3.38

3.69

2.68

2.60

5.51
4.55

6.02

6.07

100

Figure 6: PSA transformed from PST in 5.

where the state 80 means ’toilet flush usage ended’,

81 ’toilet flush usage started’, 70 ’toilet door contact

opened’ and 71 means ’toilet door contact closed’. The

results show that the probabilities are reasonable, as in

each step the probabilities get smaller. This is of course

true, because the occurrence of event A is at least as

probable as the occurrence of pattern AB.

In Figure 6 the PST is transformed into a PSA with

the already mentioned method. The result is an automa-

ton, because for each state exists a subsequent state. If

the activity, for instance ’using the toilet’, is finished,

the activity concludes with the state x, describing all

events excluding the important ones 7 and 8. The two

probabilities in Figure 6 assigned to arrows pointing in

both directions describe the probability to the left node,

indicated by the number above, and to the right node,

indicated by the number below.

4 Conclusion and Outlook

The work describes a system which is able to deal with

sequential data from domestic sensors. This sensor data

are used to detect patterns and transform this patterns

into knowledge, which can be further used to detect

anomalies. This is done with the transformation of the

T-Pattern sample statistic to a PST and further to a PSA.

This PSA only differs in the arcs and not in the nodes

or probabilities from the PST.

The algorithms described beforehand will funda-

mentally increase the efficiency of a home automation

system in terms of configuration efforts due to auto-

mated processes. A conceptual structure of the overall

system is depicted in Figure 7. The data from the Smart

Home System from sensors and actuators are prepro-

cessed, this means false data are deleted. After that the

Sensors Actuators

Pre-Processing T-Pattern-
Recognition

Probabilistic 
Suffix Tree

Probabilistic  
Suffix Automata

Policy ControllerPredictor

Decision maker

Smart Home

Figure 7: Activity recognition structure.

algorithm from above is applied to get a PSA.

The work ends with in this step, but further research

can make it possible to detect anomalies on the basis of

this algorithm. The idea behind is to use the prediction

data from PSA and from policy controller, which con-

tains user preferences and statistical data, for a decision

maker. This decision maker, not yet enveloped, would

be able to decide if a specific event occurred like leav-

ing the Smart Home or optionally reminding the user to

put on a jacket. The anomalies detection can also give

hints about physical health status and diseases.[5]
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