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Abstract. Striving for a better understanding of complex
phenomena of hemodynamics and the need of reliable,
clinically relevant information on the circulatory system
are the driving forces to refine already existing cardio-
vascular models. A recent modelling theory is called the
reservoir wave paradigm (RWP) and merges two existing
models in order to address two important phenomena at
the same time: arterial compliance and wave propaga-
tion. The aim of this article is to present its inherent
concept and to illustrate its sensitivity to different model
parameters. For this purpose the RWP is applied to an
exemplary pressure waveform originating at the ascend-
ing aorta by using two different estimators of systolic
time duration as well as two different choices of minimi-
zation intervals for the subsequent reservoir pressure
fitting. The findings indicate a substantial impact of the
chosen optimization interval. In contrast, the effect of the
regarded estimators of systolic time duration on the
waveform might be considered as negligible.

Introduction

Cardiovascular modelling plays a key role in order to
quantify the physical state of the human circulatory
system. In this context, the investigation of time and
location dependent waveforms of arterial pressure and
flow are of particular interest, since they are capable to
provide indicators for cardiovascular diseases. For ex-
ample arterial stiffness and wave reflection parameters
have been revealed as clinically relevant predictors of
risk and have been suggested to be incorporated into
clinical practice [1-5].

To date various model concepts for describing the
pressure and flow waveforms have been proposed. Be-
side the frequently used approaches of wave analysis,
wave separation or the Windkessel method, a recently
emerged theory is called the reservoir wave paradigm
(RWP). Whereas the former methods concentrate on
either the wave behaviour or the Windkessel behaviour,
the RWP aims to incorporate both phenomena by sepa-
rating the measured pressure waveform in an arterial
compliance-related reservoir pressure and a wave-
associated excess pressure [6]. At present the justifica-
tion of this fairly new approach and its inherent assump-
tions are highly debated [7,8]. However, in this article it
shall be focussed on the underlying model concept of
the RWP and its sensitivity to the model parameters of
systolic time duration and optimization intervals neces-
sary to obtain the reservoir pressure.

The pressure separation according to the RWP can
be performed in various ways depending on the availa-
bility of pressure and flow waveforms. In this work, the
commonly used method of only using pressure curves is
derived and applied to a pressure waveform originating
at the ascending aorta. The underlying concept of fitting
the reservoir pressure waveform to the measured one in
later diastole requires an estimation of systolic time
duration and a corresponding appropriate minimization
interval. For this purpose, two different estimators of
systolic time durations are presented and used to define
two different optimization intervals. All methods are
implemented in MATLAB and described step-by-step.
Based on the results of this implementation, the impact
of the chosen algorithm parameterization is discussed
and analysed.
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1 Methods

1.1 Reservoir Theory

The RWP is based on the assumption that the actual
pressure and flow waveforms are shaped by two prevail-
ing phenomena within the arterial tree: the arterial com-
pliance and wave propagation related phenomena [9].

The former describes the ‘reservoir effect’ of cush-
ioning and recoiling of the major arteries, which is
mainly determined by the ascending aorta as the most
elastic part within the arterial tree [10]. This phenome-
non is modelled by a classic two-element Windkessel
concept [11].

The latter takes account for propagation phenomena

of travelling waves produced by every heartbeat. Due to
reflections, caused by impedance mismatches along the
arterial tree, the actual waveforms can be regarded as
superposition of forward and backward travelling
waves. This phenomenon depends strongly on local
properties.
Separation of pressure. According to the RWP, a
reasonable ansatz is now to divide the actual pressure
waveform p along the arterial tree into an instantaneous
sum of a time-dependent arterial compliance-related
reservoir pressure p,.s; and the remaining local, wave-
associated pressure p,, depending on time t and dis-
tance x along the arteries [6], i.e.

(X, 1) = Pres(t) + Dex (x, £). (1

Hence, the compliance-related reservoir pressure is
implicitly regarded as spatially uniform but shifted in
time that it takes the waveform from the ascending aorta
to arrive at the regarded vessel. Therefore, the observa-
ble differences in pressure waveforms along the arterial
tree shall be fully described by the local excess pressure
according to the RWP [12].

The actual pressure separation (1) is performed by
computing the reservoir pressure p,.; from a given
pressure waveform p which then defines the remaining
€XCeSS Pressure Py
Reservoir pressure based on flow. The reservoir
effect is related to the change of volume in time within
the arterial tree and leads to the classic two-element
Windkessel equation

d(pres - POO)

— Dres (t) — Py _ din (t) (2)
dt

RC c

®
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where P,, denotes the asymptotic pressure, R the arterial
resistance, C the arterial compliance and q;;,, the flow
into the arterial tree right after the left ventricle [6]. It
shall be assumed that 0 < t < T}, describes one heart-
beat with time duration T, from the beginning of systole
(t = 0) to the end of diastole (t = T}). The time t = Ty
with 0 < Ty < T}, refers to the closure of the aortic
valve and shall indicate the transition from systole to
diastole. From this time the flow q;, is approximately
zero and the wave activity decreases, leading to a negli-
gible excess pressure at the end of diastole. Thus, for
given parameters R, C and P,, the unique solution of (2)
is defined by the initial value p,..5(0) = p(0) and reads
~t/(RC) rt e
C fo din (S) es/( )dS (3)
+ (p(0) — P,)e /RO 4 p,
for 0 <t < T},. By assuming the ventricular flow g;,, to
be zero during diastole, the solution is given by

e

Dres (t) =

pres(t) = (pres(Ts) - Poo)e_(t_TS)/(RC) + P, @

for Ty < t < T,. Hence, provided that a simultaneously
measured flow q;,, and an estimation of T; are available,
one might fit the reservoir pressure (4) to the measured
pressure p in diastole in order to get approximations on
the asymptotic pressure P, and the time constant
7 := RC in the first place. A subsequent minimization of
the difference between the reservoir pressures (3) and
(4) at t = T yields the remaining parameters of R and
C. Consequently, the reservoir pressure p,.s(t) is fully
described by (3) forall0 <t < T),.

The procedure described above was essentially done
in [6], which revealed an excess pressure approximately
proportional to the flow in the ascending aorta, i.e.

Gin = Pex = § (P — Pres) )

with { > 0. The proportionality (5) basically states
Ohm’s law in hydraulic analogy and was one of the key
findings of the RWP. In further consequence, the obser-
vation (5) became a crucial assumption and led to the
elimination of the constraining requirement of flow
knowledge.

Reservoir pressure without flow. By assuming
the relationship (5) and inserting it into (2) one obtains
the ordinary differential equation

d(pres - Poo)

dt (t) + (a + b)(pres(t) - Poo) (6)

= a(p(t) - Poo)
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with the rate constants a = {/C and b = 1/(RC) at the
ascending aorta. Both rate constants have the same SI-
unit: 1/s. Similarly to (3), the solution of (6) reads

t
Pres(®) = @ [ a(p(s) - Po) e@%ds
0

+(@(0) — Po)e (@ + P,
for 0 <t < T, whereby the approximated exponential
decay (4) in diastole corresponds to

Dres(t) = (Dres(Ts) — Poo)e_b(t_TS) + P, )]

in the new variables for T, < t < Tj,.

In the following the pressure separation (1) via (7)
and (8) as described above shall be implemented. More-
over, two different estimations of the time duration of
systole T by the mere knowledge of the pressure wave-
form will be presented.

(7

1.2 Data

The investigated pressure curve is taken from [13],
which in turn references to [14], and illustrates a pres-
sure waveform of one heart cycle at the ascending aorta.
It is given in terms of the arrays of pressure p (in unit
mmHg) and time t (in s). The sampling rate of the pres-
sure curve is 0.0078s, which corresponds to a sampling
frequency of 128Hz. Due to the digitized nature of the
data, all operations shall be understood as discrete ones
in the following.

1.3 Duration of systole

Two estimation methods of the duration of systole are
used in this article. The first is based on the maximum
curvature of the pressure p and is computed by

d*p
Tsei= argtr,nax (F (t )) C)
with t’ being within a range around an initial guess of
Ts.
The second method relies on the minimum deriva-
tion of the pressure p and is defined by

_(dp
Ts 4 = argmin (— (t’)) (10)
! t! dt
with0 < t' < T),.

1.4 Minimization interval for reservoir curve
fitting

The idea is to fit the reservoir curve (8) to the measured

one such that p,, closely aligns p when wave activity

is believed to be minimal. It is common to consider

approximately the last two thirds of diastole for this

purpose [6,15],1.e. Ts + (T, = T5)/3 <t < Ty.

However, in literature one may also find a fitting
over the whole diastole [12]. Therefore, both intervals
will be regarded in the comparison.

1.5 Implementation of the RWP

The implementation of the RWP can be done in several
ways. The one presented in here basically follows the
explanations in [15]:

1. Determine the duration T}, of the given heart beat.

2. Estimate the duration of systole T by means of (9) or
(10).

3. Fit the reservoir pressure to the measured curve by
using the assumed exponential decay (8) of p,., dur-
ing diastole. Therefore, find b, pyes(T,), P, > 0 such
that

|pres — p”fz(T*,Tb) — min (11)

whereby T, denotes the start of the minimization in-
terval in diastole. Thus, T, is meant to correspond to
either T or Ts + (T, — Ts)/3 associated with the re-
spective systolic durations of (9) and (10). The min-
imization (11) is realized via the MATLAB function
lsgnonlin. The initial parameters for the optimiza-
tion are set to

b() =3 1/51 pres(T*)O = P(T*), Poo,O = minp
with the constraint that 30 mmHg < P,, < P .

4. The remaining rate constant a is determined by seek-
ing continuity at T, between the piecewisely defined
reservoir curve via (7) in systole and (8) in diastole.
Hence, find a > 0 such that their absolute difference
is minimal at the transition time t = T,. In MATLAB
the optimization is done by using again l1sgnonlin
with initial value a, == 15-1/s, whereby the inte-
gral in (7) is implemented via the function trapz.

2 Results

In this section the obtained pressure separation accord-
ing to the algorithm above is illustrated. Moreover, the
effects of the choice of estimated systolic duration and
minimization interval on the RWP results are presented.

2.1 Separation of pressure

In Figure 1 the pressure separation based on the esti-
mated systolic duration T4 and the use of the whole
diastole for reservoir curve fitting is shown.
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For illustration purposes the diastolic blood pressure
(DBP), defined as the minimum of the waveform p, was
subtracted from the reservoir and measured pressure
curves. It can be witnessed that in early systole the ex-
cess pressure p,, is a good approximation of the meas-
ured pressure p. However, after reaching its peak it
declines quickly and remains approximately zero during
diastole. As indicated in [6] the waveform of p,, is
suggested to be a good approximation to the flow q;, in
the ascending aorta. In contrast, the reservoir pressure
Pres increases gradually during systole and hits its peak
in late systole where it then closely aligns the measured
pressure waveform.

——p-DBP

Figure 1. Pressure separation according to the RWP. For
illustration purposes the DBP = 84.56mmHg
was subtracted from both the reservoir and
measured pressure waveform. The dashed
vertical line indicates the estimated systolic
duration T; ; = 0.38s.

2.2 Sensitivity on minimization interval

In Figure 2 the reservoir curves p,.s (2/3D,d) and
Pres (D, d) represent the waveforms obtained by either
using two-thirds or the whole diastole associated with
the estimated time Ty 4, respectively. The vertical dash-
dotted line indicates t = T 4 and the vertical dotted line
the time t = Ty + (T}, — T)/3, referring to the begin-
ning of the last two-thirds of diastole. It can be observed
that the later start of the optimization interval leads to a
higher peak in the reservoir waveform. Since the infor-
mation of the prior pressure decay in the first third is not
taken into account its corresponding reservoir pressure
is only determined by a small range of p-values at later
diastole. In contrast, the reservoir waveform p,..; (D, d)
is computed by a broader range of p, which enables a
closer matching of p,..s to the actual measured pressure
decay.
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— P
= = Dres (2/3D’ d)
Pres (D7 d) ]

Figure 2. Reservoir pressures based on the estimation
T, 4(vertical dash-dotted line) and its associat-
ed two-thirds of diastole (p,.s (2/3D,d)) and its
entire diastolic duration (p,. (D, d)). The verti-
cal dotted line indicates the beginning of the
last two-thirds of diastole.

In Table 1 a more detailed analysis and comparison of
both approaches are provided. The pulse pressure (PP)
is defined as the difference between the maximum and
minimum pressure value. The pressure area (A) is com-
puted as the integral of the respective pressure curve
subtracted by the DBP. By taking the reservoir wave-
form p,.s (D, d) as the reference the relative differences
of about 27 % in PP and almost 22 % in area quantify
the already witnessed discrepancies. The figures of both
asymptotic pressures P, are close to the upper limit of
the DBP = 84.56mmHg as a consequence of the smooth
decay of p at the end of diastole.

2/3D,d Dd abs. diff. rel. diff. [%]
PP[mmHg] 34.42 27.06  7.37 27.22
A[mmHgs] 1510 1242  2.68 21.58
P [mmHg] 8456 8346  1.09 131

Table 1. Overview of the pulse pressures (PP), areas (A)
and asymptotic pressures P,, of the waveforms
Pres (2/3D,d) and p,..s (D, d), respectively.

Based on the computed reservoir pressures of the re-
spective minimization intervals, the results of the corre-
sponding excess pressures p,, (2/3D,d) and p,, (D, d)
are presented in Figure 3. Since generally p,.s (2/
3D,d) = pres (D,d) during systole, it holds that
Pex (2/3D,d) < pey (D,d) in this period of time ac-
cording to (1).
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—p-DBP
- - pex (2/3D, d)
p@'X (D7 d) ]

Figure 3. Excess pressures based on the estimation
T, q(vertical dash-dotted line) and its associat-
ed two-thirds of diastole (p,, (2/3D,d)) and its
entire diastolic duration (p., (D, d)). The
vertical dotted line indicates the beginning of
the last two-thirds of diastole.

2.3 Sensitivity on estimation of systolic
duration

Figure 4 shows the respective reservoir waveforms
obtained by minimizing the differences of (8) and the
measured waveform p in entire diastole associated with
both estimations T, and Tsg4. It holds that Tg . > T 4
and that the pulse pressure of p,..s (D,d) is slightly
higher during systole but no substantial differences in
reservoir waveforms are observable.

—P

= = Dres (D7 C
Pres (D~ d) ]

- Ts.c

——dsd

&5

Figure 4. Reservoir pressures based on the minimization
along entire diastole based on different esti-
mations of systolic duration Ty

(pres (D- C)) and Ts,d (pres (D- d))

Table 2 enables a more detailed discussion of the differ-
ences: The estimated systolic duration T; . based on the
maximum curvature of p is approximately 0.02s longer
compared to its counterpart Ts,; which relies on the
minimum derivative.

Furthermore, only slight discrepancies are visible in
terms of pulse pressure and area. The reservoir wave-
forms related to T . are about -5 % and approximately -
4 % smaller in pulse pressure and in area than their T 4-
counterparts. Additionally, only minor differences are
noticeable between their asymptotic pressures too
whereby the longer time T, yields a slightly lower
asymptotic pressure.

T,e Toq abs. diff. rel. diff. [%]
T, [s] 040 038  0.02 4.08
PP[mmHg] 25.78 27.06  -1.28 -4.72
A[mmHgs] 1198 1242  -0.44 -3.57
P,[mmHg] 8322 8346 -0.24 -0.29

Table 2. Overview of the pulse pressures (PP), areas (A)
and asymptotic pressures P,, of the waveforms
Pres (D, ¢) and p,.s (D,d) , respectively.

3 Discussion

In this work, the concept of the RWP as well as a
possible implementation and its sensitivity to the nu-
merical realization were presented. The theoretical con-
cept of pressure separation according to the RWP might
seem natural due to the mentioned phenomena of aortic
compliance and wave propagation, which can also be
seen in the results shown in Figure 1. The reservoir
pressure represents the cushioning and recoiling effect
which smooths the pulsatile pressure and flow of every
cardiac ejection: During the ejection period the left
ventricle pumps blood into the arterial system where the
‘blood storage‘ gets filled steadily. After closure of the
aortic valves the ascending aorta forwards the blood
and, thus, enables a perfusion at tissue level throughout
the cardiac cycle.

Nevertheless, a concise definition of the application
of this concept onto a pressure waveform is difficult to
state. Aguado-Sierra et al. [15] for example use approx-
imately the last two thirds of diastole to fit the reservoir
pressure (8) to the actual pressure waveform. Parker et
al. [12] use (10) as Ts-estimator and fit the assumed
exponential decay of the reservoir pressure during the
whole diastole. Thereafter, they choose the first crosso-
ver point of the resulting curves (7) and (8) as transition
to define the entire reservoir curve.
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Additionally, the MATLAB function fminsearch is
taken for the minimization itself. Vermeersch et al. [16]
primarily use the method as described in [12], but
switch to the last two thirds for curve fitting when the
procedure is not successful for entire diastole. Moreo-
ver, they assume the asymptotic pressure P,, to be zero.

Apart from that, the optimization criteria could be
adapted. Other norms as the #?-norm used in here are
possible and different parameter ranges may be permit-
ted, including different initial values and boundary
conditions [17].

Consequently, one may find different suggestions of
the RWP implementation in literature which, in turn, are
based on the set of available test curves. The results
presented in this work indicate a substantial impact of
the minimization interval on the reservoir pressure
waveform. The reservoir curves related to the two re-
garded different optimization intervals show remarkable
differences of almost 30 % in their corresponding reser-
voir pulse pressures. In contrast, the differences caused
in asymptotic pressures may be considered as negligi-
ble. In this context, one should bear in mind that the
obtained figures depend strongly on the underlying
exemplary pressure curve and might differ markedly to
other ones.

In conclusion, whereas the actual discussion regard-
ing scrutiny of the RWP mainly focuses on its justifica-
tion related to physiological aspects, the results present-
ed in this work also suggest a considerable sensitivity
associated with the numerical and algorithmic imple-
mentation. Consequently, a broad consensus about the
algorithms used is needed before the RWP can be incor-
porated into clinical practice.
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