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Abstract. Heart Rate Variability (HRV), i. e., the varia-
tion of time intervals between consecutive heart beats,
is a marker of the health status, since it unveils changes
in beat-to-beat variation of the heart, even before there
is a remarkable change in heart rate itself. HRV reflects
the balance between the sympathetic and the parasym-
pathetic nervous system. The heart rate itself is non-
stationary and the structure generating the signal in-
volves nonlinear contributions. Thus, nonlinear meth-
ods to quantify the variability of the heart rate gained
interest over the last years. In this work, two nonlin-
ear indices, i. e., Correlation Dimension (CD) and Frac-
tal Dimension (FD), to quantify HRV derived from mathe-
matical models are presented. The implemented meth-
ods are tested on their ability to differentiate between
healthy and pathological subjects. The databases used
for the test are retrieved from PhysioNet. The results
show that the FD is able to differentiate between non-
pathological and pathological subjects, while the other
implemented method, i. e., CD, shows no significant dif-
ference. In summary, this paper shows that fractal de-
scriptors are an appropriate support for analyzing the
HRV, and therefore help to prevent or detect cardiovas-
cular diseases. Especially Higuchi’s Fractal Dimension,
well established in the analysis of time series, should get
more attention in analyzing biomedical signals, such as
HRV.

Introduction

An epidemiological update for the Cardiovascular Dis-

eases (CVD) Statistics in Europe 2015 reports that car-

diovascular diseases are the most common cause of

mortality in Europe and globally. Furthermore, CVD

causes almost two times as many deaths as cancer

across Europe [1].

Several papers showed the significant relationship

between Autonomic Nervous System (ANS) and car-

diovascular mortality [2]. Heart Rate Variability (HRV)

analysis is a useful noninvasive tool for understanding

and characterizing the status of the ANS. Furthermore,

HRV is an early predictor of cardiac failures [3]. The

term HRV refers to the variation of beat-to-beat inter-

vals. Usually, HRV is studied in an Electrocardiogram

(ECG) by considering the time duration between two

R-peaks. Therefore, the beat-to-beat intervals are often

named RR-intervals. A schematic representation of an

ECG-signal can be seen in Figure 1.

The complex origin of biomedical signal limits the

traditional linear approaches [4]. Hence, nonlinear

methods gained recent interest to reveal more informa-

tion embedded in the Heart Rate [5]. In this article two

nonlinear indices are presented and compared.

1 Data and Test

1.1 Data

All data used for the tests have been taken from Phys-
ioNet [6], a free-access, online archive of physiological

signals. PhysioNet guarantees that all data have been

fully deidentified (anonymized), and may be used with-

out further institutional review board approval.
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Figure 1: Illustration of an ECG-signal. The beat-to-beat
interval (i. e., RR-interval) is defined between two
consecutive R-peaks.

The Normal Sinus Rhythm RR-Interval Database [6]

defines the control group. It is a composition of 54

approximately 24 hours long ECG recordings. The 30

healthy men are 28.5 to 76 years old and the 24 woman

range from 58-73 years. Sample frequency of the sig-

nals is 128 Hz.

As pathological dataset, the MIT-BIH Arrhythmia
Database [7] was used. It is a collection of 48 half-

hour recordings from 47 subjects (25 men aged 32 to

89 years and 22 woman aged 23 to 89 years). 25 exam-

ples of uncommon but clinically important arrhythmias

are included in this database and the remaining record-

ings include different pathologies. The digitization rate

is 360 Hz.

Before calculation of HRV indices the data were

processed. The first step of preprocessing was to re-

move all intervals longer than two seconds. This thresh-

old for the deletion of very long intervals is reported

in [8]. Afterwards data was clustered in order to per-

form the calculations only on the sinus beat cluster. The

clustering method is described in detail in [9, 10]. The

required parameters were set to a number of iterations

r = 20 and the minimum number of points in one cluster

MinPts = 4.

From all of the recordings, the middle 1500 RR-

intervals were taken. After processing the data, mea-

sures were calculated on the first 1024 RR-intervals.

The last four recordings, i. e., 231-234 were excluded

from the pathological database, since after clustering

less than 1024 RR-intervals were available.

Nonpathological Pathological

records (female) 54 (24) 48 (22)

Nmin 77373 1512

Table 1: PhysioNet databases. Nmin is the minimal number
of RR-intervals per database.

1.2 Test

To test if the models can differentiate between healthy

and unhealthy subjects, indices of the pathological

database were tested against the calculated indices of

the nonpathological database. Since the results follow a

normal distribution, the t-test was used to determine the

difference between the data sets. The test decision for

a normal distribution was obtained with the Lilliefors

test. All the calculations were done in MATLAB R©.

A test with a p-value p< 0.05 was called significant.

If the p-value is smaller than 0.01, the test outcome was

declared as very significant.

2 Methods

Already in the 1980s, it was indicated that beat genera-

tion in a human heart is a chaotic process [11]. As the

RR-time series is not constant over time, and irregular,

it cannot be completely described by a linear approach

[12]. Thus, there is an increasing interest in nonlinear

methods and methods from chaos theory recently [13].

For all the algorithms in this section, the set of RR-

intervals
{

RR1, . . . ,RRN
}

of length N is denoted as

X :=
{

x(1), . . . ,x(N)
}
=
{

RR1, . . . ,RRN
}
. (1)

2.1 Correlation Dimension

The first nonlinear measure, the Correlation Dimension
(CD) assesses the fractal dimension of the system at-

tractor in the reconstructed phase space, i. e., measures

the complexity of the chaotic system [14].

The CD index is calculated based on an algorithm

proposed by Grassberger and Procaccia [15]. In the first

step, a phase space reconstruction is created by

Yi =
{

x(i),x(i+ τ), . . . ,x(i+(m−1)τ)
}
,

i = 1, . . . ,N − (m−1)τ.
(2)

Hereby, m is the embedding dimension and τ is the de-

lay time. The concatenation Y is a M ×m matrix with

M := N − (m−1)τ row vectors Yi.

The CD is obtained by considering correlations be-

tween points on this attractor. Therefore, the correlation

integral is defined as

C(r) :=
2

M(M−1)

M−1

∑
i=1

M

∑
j=i+1

Θ
(
r−∥∥Yi −Yj

∥∥) , (3)
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where r is the radius and Θ denotes the Heaviside func-

tion

Θ(x) :=

{
0, x ≤ 0

1, x > 0.
(4)

∥∥Yi −Yj
∥∥ is the Euclidean distance between a pair of

points within the attractor. Hence, the correlation func-

tion counts the number of distances closer than r, over

the total number of distances. Obviously C(r) has val-

ues between 0 and 1. If M is sufficiently large and r is

small enough, the following definition holds:

CD := lim
r→0

logC(r)
logr

. (5)

In this work, the delay time and the embedding di-

mension are chosen as τ = 1 and m = 22, according

to [16]. The last step is the design of the scaling re-

gion for the power law behavior. The approach of

[16] is the following: Obtain rmax at C(rmax) = 0.1 and

rmin = r0 +0.25(rmax − r0), where r0 is the smallest ra-

dius. Since most of the subjects had nearly the same

scaling region, parameters for rmax and rmin, respec-

tively, were fixed as rmax = 0.15 and rmin = 0.06. In

Figure 2, the plot of the scaling region and the linear fit

for a healthy subject is shown.
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Figure 2: Correlation Dimension of a nonpathological
subject. The fitting region lies between the black
dashed lines.

2.2 Fractal Dimension

The term fractal is used for objects exhibiting a repeat-

ing pattern that displays at every scale. Famous exam-

ples of fractals are the Koch (Niels Fabian Helge von

Koch (January 25, 1870 – March 11, 1924)) curve (also

known as Koch snowflake), or the Sierpińksi (Wacław

Franciszek Sierpiński (March 14, 1882 – October 21,

1969)) Triangle. For ordinary geometric objects, the

Fractal Dimension (FD) equals the well known Eu-

clidean or topological dimension, i. e., lines are one-

dimensional, surfaces have two dimensions and solids

are three-dimensional. But the fractal dimension has

not to be an integer.

To understand the need of the FD, the Koch curve

is considered. Its topological dimension is one, but

the length of the curve between two arbitrary points

is infinite. One can assume that the curve can be ex-

plained as a fractal line, but it is too simple to be two-

dimensional [17]. The FD of the Koch curve is defined

as FD := log(4)
log(3) ≈ 1.26, since in each step of scaling by

1/3 the number of new sticks is equal to four. Indeed,

the FD of the Koch curve lies between one and two. The

first two iterations of the Koch curve are plotted in Fig-

ure 3.

Figure 3: The first two iterations of the Koch curve. In each
iteration the lines are divided into three equal
parts. The middle part is duplicated and then
arranged like a triangle.

FD is calculated directly from the analyzed signal and

has been applied to different biomedical signals, such

as Electroencephalography (EEG) and ECG recordings

[18].

The following algorithm was proposed by Higuchi

in 1988 [19]:

1. For a fixed k ∈ {
1, . . . ,kmax

}
, construct k new time

series

xk
m =

{
x(m),x(m+ k),x(m+2k), . . . ,x(m+ �a�k)

}
m = 1, . . . ,k,

(6)

where �a� :=
⌊N−m

k

⌋
.

2. Compute the length of each time series

Lm(k) =
�a�
∑
i=1

|x(m+ ik)− x(m+(i−1)k)| . (7)
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3. Normalize the lengths for each k

L̃m(k) = Lm(k)
N −1

�a�k
. (8)

4. Calculate the average length

L(k) := meanm

(
L̃m(k)

)
. (9)

Theses steps are repeated for k = 1, . . . ,kmax.

The FD is defined as the slope of the linear fit (in

a least squares sense) of the plot 1/ log(L(k)) versus

log(k). An example can be seen in Figure 4.

The implemented method is an adaption of

Higuchi’s algorithm with a moving time window of

fixed window length. Hence, this method is sometimes

specified as running FD [20].

According to [21], the parameter kmax was set to

kmax = 10 and the RR-intervals were divided into win-

dows with a length of 100 samples, shifted by one sam-

ple. The FD of one entire record was obtained by aver-

aging all FDs of all windows.
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Figure 4: The Fractal Dimension calculated on a window of
100 samples of a nonpathological subject. kmax = 10

3 Results
In table 2, the distribution parameters of both indices

are presented. Since the calculated values of the indices

are normally distributed, the mean value, standard devi-

ation and the corresponding p-value are listed.

Furthermore, Figure 5 shows boxplots of the mea-

sures calculated from the nonpathological and the

pathological database, respectively. The left boxplot

shows the CD with no significant difference between

both groups, whereas the FD shows very significant dif-

ferences between the tested groups.

Nonpath. Data Path. Data p-Value

CD 7.25 (2.42 SD) 8.22 (4.63 SD) 0.26

FD 1.68 (0.14 SD) 1.95 (0.09 SD) <0.01

Table 2: Statistical parameters of the Correlation Dimension
CD and Fractal Dimension FD for the test. Mean and
Standard Deviation (SD) are listed since data follows
a normal distribution.

4 Discussion
The computed values of the CD are similar to the re-

ported ones in [16]. Mia et al. characterized the HRV

by means of the CD for two groups, i. e., healthy sub-

jects and hypertension patients and distinguish between

values during the day and at night. Their outcome was

that healthy subjects had a lower CD in daytime than

at night. This relationship was not seen in hypertensive

patients [16]. Since the recording time was not speci-

fied for the pathological data and for the nonpatholog-

ical database, this may have affected the results. The

wide scatter indicates this effect.

Acharya et al. reported in [22] that the index CD

varies for different kind of cardiac abnormalities. E. g.,

the CD calculated of subjects with atrial fibrillation

is rather high compared to the CD value of patients

where the heart rate remains stable (e. g., complete heart

block).

Higuchi’s Fractal dimension is very close to 2 for

the pathological dataset. These values are also reported

in [23]. The FD of healthy subjects is significantly

smaller. The higher values of FD may result during ec-

topic beat variation in the heart rate.

4.1 Limitations

The outcome of this work is mainly bounded by two

limitations. First, the composition of the pathologi-

cal database is not as homogeneous as it should be.

Precisely, subjects with different pathologies, including

people with and without arrhythmias, are included.

Second, the absence of the recording time may yield

comparing indices calculated on different day times.
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Figure 5: Boxplots for the test of the (a) Correlation Dimension index CD, (b) Fractal Dimension FD.

5 Conclusion and Outlook

Higuchi’s FD is a fast and useful method to differenti-

ate between nonpathological and pathological subjects.

The CD was not able to asses, if a subject is healthy or

not. Further examination of the design of the scaling

region and a separation of day- and nighttime is sug-

gested.
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