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Abstract. Cancer is the second most cause of death in
Austria and around 38000 people are diagnosed with
cancer each year [1]. The goal of this paper is to analyze
methods for evaluation of risk factors in order to para-
metrize a micro simulation model for cancer prevalence.
The focus of this paper is on modeling the survival time.
This is done by the methods of survival analysis and
model selection. Firstly, the survival function is estimated
by the Kaplan-Meier estimate. Afterwards, a Cox propor-
tional hazards regression is performed with all possible
sets of parameters. These models are tested by twos
with the likelihood ratio test in order to compare them.
Another approach is the so-called Lasso method. This
method puts a constraint on the sum of the absolute
values of the regression coefficients and in most cases
forces some of the coefficients to go to zero. The Akaike
Information Criterion is also applied. All three methods
are compared and the parameters which are supported,
at least to a certain extent, by all of them are included in
the estimation of the survival time of the prevalence
model.

Introduction

Cancer is the second most cause of death in Austria and
around 38000 people are diagnosed with cancer each
year [1].

So, it is of great importance to find out the risk fac-
tors on one side, but also to model the incidence and
prevalence to be able to evaluate health policy measures
on the other side.

An important step for doing a simulation is to find
out the potential influences on the course of the disease
and to quantify them in order to parametrize the model.

The goal of this paper is to test methods for identifi-
cation of possible influence factors on the course of
cancer and to do a survival analysis for finding out the
factors on which the course of the disease depends.
Also, methods of model selection are used. These anal-
yses will be used for the parametrization of a micro-
simulation model for cancer prevalence later on.

1 Data

The following six categories are examined to find out, if
they are possible influences on the development or the
course of cancer: sex, age at the diagnosis date, chronic
diseases X, Y and Z and the stage of cancer at the date
of the diagnosis. In Table 1, an overview of these cate-
gories with according types and ranges is presented.

Number|Category Type Range
1 Age ratio 23-83
2 Sex nominal | 0,1
3 Chronic disease Y | ordinal | 0,1
4 Chronic disease Z | ordinal | 0,1
5 Chronic disease X | ordinal | 0,1
6 Stage of disease ordinal | 2-4

Table 1: Overview of categories with according types
and ranges.
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2 Methods

2.1 Survival Analysis

In order to examine the survival time of the individuals
depending on the possible influence factors, methods of
survival analysis are applied. These methods allow the
estimation and the analysis of the survival function and
the hazard function. The survival function S(t)is de-
fined as the probability that an individual will survive
up to time t and the hazard function h(t) is defined as
the instanteneous rate of death at time t. The cumulative
hazard function A is given by A(t) = fot h(x)dx.
Another important aspect regarding survival analysis is
censoring. In the field of survival analysis often the data
collection ends before the event of interest has occurred
for all individuals. For those individuals, the survival
time cannot be determined. The only thing that is known
is that the survival time exceeds the time of the observa-
tion of the particular patient.

Kaplan-Meier Estimate. The Kaplan-Meier esti-
mate is an estimate for the survival function S(t). It
makes use of the information of the exact date of the
occurrence of death. The estimated survival
ity s; at time t is:
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n; is the number of people alive at time t and d; is the
number of people that died at time t. So, s; is simply the
ratio of the people alive who survive time t. Thus, the
probability of surviving up to a certain point of time t;
is calculated with the so-called product-limit formula
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Nelson-Aalen Estimate. The Nelson-Aalen esti-
mate is an estimate for the cumulative hazard function.
Let d_tand n_t denote the numbers of people that expe-
rience the event at time t respectively are at risk at time
t. Let t i denote the event times. Then, A can be esti-
mated by
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Cox Regression. A common approach to do regres-
sion analysis on survival data is the so-called Cox re-
gression, also known as proportional hazards regression.
It assumes that the ratio of the hazards comparing dif-
ferent exposure groups remains constant over time. This
is called the proportional hazards assumption. The
mathematical form of the proportional hazards model is:

R(®) = ho(®) * exp() by + x7) 3)
i=1

ho(t) denotes the baseline hazard which refers to a
particular group of individuals (for example, the indi-
viduals with value zero in all binary categories, with
mean age and with stage of illness two), n is the number
of covariates, x; is the value of the ith covariate and b;
is the corresponding regression coefficients [3,4].

2.2 Model Selection

The methods of model selection can be used to find the
significant covariates for our model depending on given
data. The goal of model selection is to eliminate some of
the covariates from the full model with six covariates to
get a simpler model which still explains most of the
effects correctly. In order to find an appropriate model,
three approaches are considered: Likelihood ratio tests,
Lasso — Method and Akaike Information Criterion
(AIC).

Firstly, the Cox regression is performed with all pos-
sible sets of parameters. That means the parameter sets
of the models are all possible subsets of the full set with
Six parameters.

Likelihood Ratio Tests. For each two nested models
the likelihood ratio test is applied. With this test we
examine, if the bigger model of the two significantly
provides additional information in comparison to the
smaller nested model. The significance level is set to
0.05.

Lasso-Method. Another approach to select a model is
to use the Lasso-method. The regression coefficients of
the Cox regression are calculated as usual by minimiz-
ing the partial log-likelihood, but additionally the sum
of the absolute values of the regression coefficients is
bounded by a copgtant in order to force some of the
coefficient to shrink to zero. This results in a sequence
of models depending on the size of the constraint.
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There are various ways to determine the ‘best’ size
of the constraint. It can be either chosen arbitrarily or
automatically based on the data. For instance, the use of
an approximate generalized cross-validation (GCV)
statistic is a common tool for automatic constraint selec-
tion [5].

Akaike Information Criterion. Another criterion
to select a set of variables is the so-called “Akaike In-
formation Criterion” (AIC). The AIC value is calculated
as follows:

AIC = —2log L(t,ly) + 2K “4)

The first summand is the negative of twice the numeri-
cal value of the log-likelihood at its maximum point t,
given data y and the second summand is twice the num-
ber of parameters of the model. The smaller the AIC
value of a model is, the better it is, because the AIC
value can be interpreted as a kind of information loss
[6]. The AIC can also be used for automatic choice of a
constraint for the abovementioned Lasso-method.

3 Results

The Kaplan-Meier estimate was calculated for various
groups of the population. Figure 1 shows the Kaplan-
Meier estimates for male and female individuals in
comparison. We can see that the estimate for the males
is lower than the estimate for the females until about
800 days after the diagnosis, when only 10 percent of
the individuals are left alive.
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Figure 1: Comparison of Kaplan-Meier estimates for
male and female individuals

The coefficients for the Cox regression with all six
covariates included are shown in Table 2.

b, b, b; b, bs be

-0.11 | 0.02 -0.05 | 0.09 -0.25 | 0.02

Table 2: Coefficients of Cox regression in order: sex, age,
chronic disease Y, chronic disease Z, chronic
disease X, stage of illness.

The p-values of the Cox regression show that the p-
value of the term age is the lowest, so we start with the
model with only term age. The likelihood ratio test
shows that the model with added terms chronic disease
X and sex and the model with added term chronic dis-
ease X, both given the term age, are statistically signifi-
cant, while any other extension given the term age is not
significant.

Figure 2 shows the values of the six regression coef-
ficients of the Cox model plotted over the [;- norm of
the coefficient vector. On the x-axis above the plot also
the number of non-zero coefficients is displayed.
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Figure 2: Cox regression coefficients over the norm of
coefficients vector.

In Figure 2, we see that the smaller the norm of the
vector gets, the smaller is the number of non-zero coef-
ficients. The coefficient that vanishes at last, when the
norm of the coefficient vector goes to zero, is the coeffi-
cient of the parameter age, right after the coefficients of
the parameters chronic disease X and sex. The other
three coefficients are eliminated earlier.

The AIC value is calculated for the models with all 64
possible sets of variables. In order to compare different
models, AIC differences are computed, because the
relative values of the AIC are more meaningful than the
absolute values. The AIC differences are computed by
subtracting the AIC value of the model with the least
AIC value from the AIC values of each model.
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In Table 3, the five models with the least AIC values So all used methods suggest that these three parame-
and the AIC differences are listed. ters definitely should be included in the estimation of
the survival time for the prevalence model. For the other
Parameters AIC AIC difference categories, further analysis will be done to determine, if
15255 6788.75 0 they also will be included in the future model.
2;5 6789.15 0.40
1;2;3;5 6790.27 1.52 Acknowledgement
1’ i :’2 2;38:; igi This paper has alrdeady been published in the proceed-
= ings of the “22" ASIM 2014 Symposium Simula-
Table 3: Parameters sets with lowest AIC values and AIC tionstechnik™.

differences, numbers referred to numbering of
categories in Table 1.
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