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Abstract.  Developing a model for simulation is a difficult 
task, in which simulation experiments play a critical role.  In 
modeling and simulation, domain specific languages are 
widely used for model description. More and more efforts 
have been put in facilitating simulation reproducibility in 
recent years. This motivates the use of domain specific 
languages as the means to express experiment specifica-
tions.  
Domain specific languages can be used to specify different 
tasks of simulation experiments, such as experiment configu-
ration, observation, analysis, and evaluation of experimental 
results. More importantly, they can serve to specify crucial 
observations from experiments regarding model behavior. 
Therefore, with a formal description of model behavior, an 
evaluation based on model checking techniques can also 
benefit from domain specific languages.  
In this paper, we will first discuss how domain specific 
languages can be used to specify simulation experiments 
and illustrate it by using the domain specific language 
SESSL. We aim at dealing with stochastic models. Several 
problems arise in specifying simulation experiments with 
stochastic models, such as probability estimation, tolerating 
stochastic noises, and robustness measurement. Domain 
specific languages can help handling those problems.  

Introduction
Building simulation models is a complex process, which 
is both an art and a science. To ensure that models are 
created at the appropriate level of abstraction and are 
valid regarding certain questions of interest, the design 
and execution of simulation experiments is essential. On 
the one hand, the reproducibility of simulation experi-
ment results is or should be a basic requirement for 
model publication. 

On the other hand, in the model development pro-
cess, the model may be revised iteratively. After the 
model revision, it may be necessary to repeat the simu-
lation experiments conducted with previous versions of 
model. Besides, when new models are built based on 
this model, those simulation experiments can provide 
useful information to assist experimentation with the 
new models as well [1]. 

Therefore, it is of significance to describe simulation 
experiments so that they can be easily reproduced. To 
enable this, an unambiguous, explicit experiment de-
scription is important. All the aspects that define the 
simulation experiment should be recorded completely 
and accurately, including the conditions and the results 
generated from the experiments. 

The advantages of domain specific languages for 
model design are well-known. They enable domain 
experts to build models using the vocabulary of the 
domain, while hiding implementation details. For ex-
ample, languages for cell biological models such as 
ML-Rules [2] adopt a rule-based modeling style that 
resembles biochemical reaction equations, whereas the 
object-oriented style of Modelica [3] can easily be 
mapped to components of technical systems.  

However, domain specific languages can not only be 
used to create models, but also to support flexibly ex-
perimentation with models. In modeling and simulation, 
there is a trend that treats the experimentation process as 
a first class object, e.g., in [4] and [5], where several 
individual tasks can be distinguished in this process, 
such as configuration, data collection, analysis, and 
evaluation.  

In this paper, we will first present the domain specif-
ic language SESSL (Simulation Experiment Specifica-
tion via a Scala Layer) [6]. As our focus so far has been 
on experiments with stochastic models, we will discuss 
the problems and challenges in dealing with stochastici-
ty and how they can be handled by extensions of SESSL.   
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1 Domain Specific Languages in 

Experiment Specification 

1.1 Domain Specific Languages 
A domain-specific language (DSL) is a programming 
language that is targeted specifically at an application 
domain, in contrast to a general purpose language. It 
contains syntax and semantics that represent the concept 
at the same level of abstraction that the application 
domain offers [7]. According to [8], a DSL is small and 
declarative, and offers expressive power focused on and 
usually restricted to a particular problem domain 
through appropriate notations and abstractions.  

Typically, two types of domain specific languages 
are distinguished: internal (or embedded) DSL and 
external DSL. An embedded DSL is implemented based 
on a general-purpose programming language, i.e., the 
host language, as an embedding. It inherits the con-
structs of its host language and adds domain-specific 
primitives to provide the user a suitable modeling ab-
straction. However, its use requires typically some 
knowledge of the host language. The advantage of in-
ternal domain specific languages is that less implemen-
tation effort is required for designing. More importantly, 
they can easily be extended. 

An external domain specific language, in contrast to 
internal domain specific languages, is developed as an 
independent language, which requires separate interpre-
tation or compilation. They are designed ground-up; 
therefore their development has more freedom without 
constraints from the host language. In modeling and 
simulation, both types of domain specific languages are 
used [9]. 

1.2 Specifying simulation experiments 
One goal of specifying simulation experiments is to 
allow reproducibility of the experiment and their ex-
change among different scientific groups. For that, one 
has to identify what kind of information is required to 
reproduce experiment results.  

Several work exists on identifying requirements in 
describing simulation experiments, such as Minimum 
Information About a Simulation Experiment (MIASE) 
[10] and Minimum Simulation Reporting Requirements 
(MSRR) [11]. More detailed information can be found 
in [12].  

These standards define guidelines in providing an 
accurate and complete description of simulation exper-
iments. As identified by MIASE, to make the descrip-
tion of simulation experiments available to third parties, 
it must contain: the models to be simulated and their 
configuration parameters, the simulation configuration 
such as simulator to be used, the post-processing on the 
raw numerical results and the description of the final 
output results [10]. Simulation experiments can be in-
terpreted as a process that comprises different tasks. In 
[5], six tasks are identified in a simulation experiment: 
specification, configuration, simulation, data collection, 
analysis and evaluation. 

By combining the two perspectives above, we argue 
that domain specific languages, as being able to allow 
the reproducibility of simulation experiments, can be 
employed to support simulation experimentation on 
models from different aspects: model configuration, 
simulation configuration, experiment execution, obser-
vation, analysis, and evaluation of results. We will illus-
trate this with the domain specific language SESSL. 

2 SESSL 
SESSL is an embedded domain-specific language for 
simulation experiments [6]. It exploits the feature of its 
host language Scala [13], such as meta-programming, to 
allow flexible experiment set-ups. A SESSL specifica-
tion can incorporate simulation algorithm, model pa-
rameters, simulation run time, parallel execution, stop-
ping conditions, replication numbers, observation, result 
analysis a.s.o., as needed; however only the specifica-
tion of the model file is mandatory while a default op-
tion is provided for the rest. The actual experiment is 
then performed with arbitrary simulation software that 
is controlled by SESSL based on a specific binding. 
Currently, a number of bindings to different simulation 
systems exist, such as the binding to the modeling and 
simulation framework JAMES II [14]; additional bind-
ings can be added straightforwardly.  

We illustrate the features of SESSL with an experi-
ment specification as shown in Listing 1. In this exam-
ple, a simulation experiment is specified based on 
JAMES II (line 2). This specification contains configu-
ration of the model (line 4-6), configuration of the exe-
cution machinery (line 7-10), observation (line 11-12), 
evaluation of results (line 13-18) and execution (line 20). 
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As SESSL can easily support experiment set-up and 
execution, other analysis such as optimization is provid-
ed as well and examples on this can be found in [6]. We 
moved our focus to the analysis of results. Model check-
ing is a well-established verification technique to auto-
matically analyze the dynamic behavior of models, 
based on formalizing model behavior with temporal 
logics, such as Linear Temporal Logic (LTL) [15]. To 
support this, we extended SESSL with an additional 
trait ‘Hypothesis’ in [1], which allows to specify behav-
ior properties with LTL. Another language was pro-
posed to describe the properties of trajectories in [16], 
and integrated into SESSL. As shown in Listing 1, a 
property is specified (line 13-18), which states that the 
model variable ‘x’ observed from experiments reaches a 
peak between time 2 and time 4, followed by a decrease 
which ends at time 10. This example shows how domain 
specific languages, like SESSL, are capable to support 
different tasks of simulation experiments.  Meanwhile, 
with the explicit, declarative SESSL experiment specifi-
cation, simulation experiments can be also reproduced. 

3 Experimentation on 
Stochastic Models 

In many areas such as systems biology, stochasticity 
plays an important role. Stochastic models, e.g., Contin-
uous-Time Markov Chains (CTMC), provide a powerful 
means to model and to analyze the dynamics of the sys-

tem of interest. When conducting experimentation with 
stochastic models, certain problems need to be considered.  

3.1 Probability estimation 
Simulation experiments with a stochastic model require 
multiple replications to gain the confidence on experi-
ment results. To analyze and evaluate the experiment 
results, a typical question arises: what is the probability 
that the model shows a certain behavior? Statistical 
model checking [17], which is a simulation-based veri-
fication technique, has been widely used to provide 
answers to this question. Several statistical model check-
ing approaches exist, such as the Bayesian approach [18] 
and the Sequential Probability Ratio Test [19]. 

To support statistical model checking, we extended 
SESSL to allow the definition of probabilistic state-
ments based on Continuous Stochastic Logic and hy-
pothesis testing [1]. The property of model behavior can 
be specified in either LTL or the trajectory language 
proposed in [16]. Listing 2 specifies that with a proba-
bility of at least 0.8, the variable ‘x’ shall peak between 
time 2 and time 4 and afterwards decrease until time 10. 
Using hypothesis testing, the number of required simu-
lation replications can be determined. A corresponding 
number of simulation trajectories are generated, against 
each of which the property specification is checked. 
Thus, it is possible to determine whether the model 
satisfies the specification with a probability greater than 
a given threshold. 

1 import sessl._ // SESSL core 
2   import sessl.james._ // JAMES II binding 
3 val exp = new Experiment with Observation with ParallelExecution with Hypothesis { 
4   model = "file-mlrj:/./SimpleModel.mlrj" 
5         scan("a" <~ range(100, 50, 200), "b" <~ range(1, 4, 10), "c" <~ range(0.01, 0.2, 1)) 
6         set("d" <~ 10.0) 
7   simulator = MLRulesTauLeaping() 
8   stopCondition = AfterWallClockTime(seconds = 10) or AfterSimTime(1) 
9   replications = 100 
10  parallelThreads = -2 
11      observe("x") 
12    observeAt(range(0.0, 0.1, 10.0)) 
13      assume{ 
14         P(Peak("x", "peakHeight"), time >= 2 and time <= 4, "peakTime"), 
15         E(Decrease("x", "decreaseAfterPeak"), end = 10, "afterPeak"), 
16         Id("peakTime") STARTS Id("afterPeak"), 
17         Id("peakHeight") >= Id("decreaseAfterPeak") 
18    } 
19       } 
20       execute(exp) 

Listing 1:  SESSL specification of a simulation experiment based on a binding to JAMES II. 
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3.2 Tolerating stochastic noise 
Besides the uncertainty of results among different simu-
lation replications, stochasticity exists within one repli-
cation as well. In each trajectory produced in the simu-
lation experiment, there may be some stochastic noises. 

As shown in Figure 1, the observed model variable 
‘x’ shows an oscillation property but with stochastic 
noises. In LTL, typically an oscillation behavior can be 
specified based on derivations, i.e.,  

. 
However, with the existence of noises, the calculation of 
first order derivation is not applicable any longer. Alter-
natively, it can be expressed in LTL as 

, 

which is complex and error prone. However, it can be 
described with a domain specific language in a much 
more succinct manner by simply defining a predicate 
named ‘Oscillation’. What’s more, several parameters 
can be added to allow specifying constraints on the 
oscillation amplitude and period.  

 
Figure 1: An example of simulation trajectory generated 

from experiments with a stochastic model, where 
the variable ‘x’ oscillates along the time with noises. 

 
Figure 2: An example of simulation trajectory generated 

from experiments with a stochastic model, where 
the trend of x is increasing however shows some 
noises. 

Domain specific languages can be used as an interface 
with easy-to-use predicates defined for the user, while 
those predicates can be transformed into the correspond-
ing specification in temporal logics (depending on their 
semantics). In this way, the existing checking algorithm 
developed for temporal logics, such as [20], can be 
employed. 

Let us look at another example. As shown in Fig-
ure 2, in this simulation trajectory generated from ex-
periments on stochastic model, the variable ‘x’ evolves 
over time, exhibiting a trend of increase. However, 
because of the stochastic noises, it is not strictly increas-
ing all the time, i.e., the first order derivation of ‘x’ is 
not always larger than zero. In this case, it is difficult to 
specify the increase behavior using temporal logics with 
noises taken into account.  

On the other hand, there are different ways to toler-
ate the noise. In this trajectory, one can say that variable 
‘x’ increases from time 0 to 200, or from time 0 to time 
600, depending on how the noises are tolerated and how 
the increase is defined and interpreted. 

1  assume(Probability >= 0.8){ 
2         P(Peak("x", "peakHeight"), time >= 2 and time <= 4, "peakTime"), 
3         E(Decrease("x", "decreaseAfterPeak"), end = 10, "afterPeak"), 
4         Id("peakTime") STARTS Id("afterPeak"), 
5         Id("peakHeight") >= Id("decreaseAfterPeak") 
6    } 

Listing 2: A probability property specification in SESSL experiment: with a probability of at least 0.8, the number variable ‘x’ shall 
peak between time 2 and time 4 and afterwards decrease until time 10. 
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Domain specific languages, which “speak” the lan-

guage of the domain, provide the possibility to flexibly 
define specifications. Users can define the behavior 
property in different manners, which may not be ex-
pressible formally. In the trajectory language proposed 
in [16], as shown in Listing 1, several predicates are 
defined to describe properties, e.g., peaking, increase, 
decrease and reaching a steady state. Users can provide 
algorithms to check those predicates to tolerate the 
stochastic noises based on different requirements. 

 Taking the simulation trajectory shown in Figure 2 
as example, a predicate can be that variable ‘x’ increas-
es from time 0 to time 600.  

Users can either define the semantics of increase as a 
simple comparison between the starting point and the 
ending point, where the predicate would hold. Or a 
more complex algorithm can be defined which checks 
whether the derivation of ‘x’ is within a certain a 
threshold, in which case the predicate may not hold 
because there is a relatively obvious decrease from time 
200 to time 300 and the deviation could be out of the 
given threshold.  

3.3 Robustness measurement 
Besides probability estimation, robustness measurement 
is of interest in analysing stochastic systems. A general 
definition is that ‘robustness is a property that allows a 
system to maintain its functions against internal and 
external perturbations’ [21]. To formally analyze ro-
bustness, a precise definition is required and this can be 
performed from different perspectives. 

While checking whether a behavior property holds 
or not provides the yes/no answer, i.e., the satisfiability, 
it may also be interesting and important to check to 
which extent the property holds, or how far it is from 
the property holding. Thus, the robustness degree re-
garding property satisfactory can be defined. There is 
plenty of work on this type of robustness analysis, e.g., 
[22], [23] and [24]. The behavior properties are first 
specified with temporal logics, such as LTL, Metric 
Temporal Logic (MTL) [25], or Signal Temporal Logic 
(STL) [26]. The robustness degree is measured based on 
definitions of distance between a simulation trajectory 
and the formalized properties, either in space or in time. 
Furthermore, for stochastic models, similar definition of 
robustness has been proposed in [27], where a robust 
satisfiability distribution for the formalized property can 
be estimated from that of multiple replications.  

So far, this type of robustness measurement is not 

supported in SESSL. However, as an internal domain 
specific language, it is easy to extend it. Based on exist-
ing work, a specification of robustness can be added into 
current SESSL by defining functions and integrating 
corresponding robustness measurement implementations. 

Additionally, another common definition of robust-
ness is to measure the capacity of the model maintaining 
the given behavior with respect to changes in model 
parameters [28]. SESSL, as shown in Listing 1, allows 
specifying model parameters in a range in addition to 
single values (line 5-6). This provides the possibility to 
define robustness regarding model parameters. 

4 Conclusion 
In comparison to deterministic models, experiments 
with stochastic models require to take stochasticity into 
account. This may include stochastic deviations be-
tween simulation runs as well as stochastic noises dur-
ing one run. Domain-specific languages for the specifi-
cation of simulation experiments such as SESSL allow 
handling these problems. In particular, they can employ 
existing powerful analysis and evaluation tools without 
much effort, as well as integrating new ones. As do-
main-specific languages provide a natural, domain-
friendly way to document simulation experiments, their 
adoption is an important step towards the reproducibil-
ity of experiments and their results. 
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