
S N E T E C H N I C A L N O T E

 SNE 25(2) – 8/2015 117

Domain-Specific Languages for Flexibly
Experimenting with Stochastic Models

Danhua Peng*, Tom Warnke, Adelinde M. Uhrmacher
Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Albert-Einstein-Straße 22,
18059 Rostock, Germany; *danhua.peng2@uni-rostock.de

Abstract. Developing a model for simulation is a difficult
task, in which simulation experiments play a critical role. In
modeling and simulation, domain specific languages are
widely used for model description. More and more efforts
have been put in facilitating simulation reproducibility in
recent years. This motivates the use of domain specific
languages as the means to express experiment specifica-
tions.
Domain specific languages can be used to specify different
tasks of simulation experiments, such as experiment configu-
ration, observation, analysis, and evaluation of experimental
results. More importantly, they can serve to specify crucial
observations from experiments regarding model behavior.
Therefore, with a formal description of model behavior, an
evaluation based on model checking techniques can also
benefit from domain specific languages.
In this paper, we will first discuss how domain specific
languages can be used to specify simulation experiments
and illustrate it by using the domain specific language
SESSL. We aim at dealing with stochastic models. Several
problems arise in specifying simulation experiments with
stochastic models, such as probability estimation, tolerating
stochastic noises, and robustness measurement. Domain
specific languages can help handling those problems.

Introduction
Building simulation models is a complex process, which
is both an art and a science. To ensure that models are
created at the appropriate level of abstraction and are
valid regarding certain questions of interest, the design
and execution of simulation experiments is essential. On
the one hand, the reproducibility of simulation experi-
ment results is or should be a basic requirement for
model publication.

On the other hand, in the model development pro-
cess, the model may be revised iteratively. After the
model revision, it may be necessary to repeat the simu-
lation experiments conducted with previous versions of
model. Besides, when new models are built based on
this model, those simulation experiments can provide
useful information to assist experimentation with the
new models as well [1].

Therefore, it is of significance to describe simulation
experiments so that they can be easily reproduced. To
enable this, an unambiguous, explicit experiment de-
scription is important. All the aspects that define the
simulation experiment should be recorded completely
and accurately, including the conditions and the results
generated from the experiments.

The advantages of domain specific languages for
model design are well-known. They enable domain
experts to build models using the vocabulary of the
domain, while hiding implementation details. For ex-
ample, languages for cell biological models such as
ML-Rules [2] adopt a rule-based modeling style that
resembles biochemical reaction equations, whereas the
object-oriented style of Modelica [3] can easily be
mapped to components of technical systems.

However, domain specific languages can not only be
used to create models, but also to support flexibly ex-
perimentation with models. In modeling and simulation,
there is a trend that treats the experimentation process as
a first class object, e.g., in [4] and [5], where several
individual tasks can be distinguished in this process,
such as configuration, data collection, analysis, and
evaluation.

In this paper, we will first present the domain specif-
ic language SESSL (Simulation Experiment Specifica-
tion via a Scala Layer) [6]. As our focus so far has been
on experiments with stochastic models, we will discuss
the problems and challenges in dealing with stochastici-
ty and how they can be handled by extensions of SESSL.

Simulation Notes Europe SNE 25(2), 2015, 117 - 122
DOI: 10.11128/sne.25.tn.10299
Received: August 10, 2015 (Selected ASIM STS 2015
Postconf. Publ.); Accepted: August 15, 2015;

 Peng et al. Domain-Specific Languages for Flexibly Experimenting

118 SNE 25(2) – 8/2015

TN
1 Domain Specific Languages in

Experiment Specification

1.1 Domain Specific Languages
A domain-specific language (DSL) is a programming
language that is targeted specifically at an application
domain, in contrast to a general purpose language. It
contains syntax and semantics that represent the concept
at the same level of abstraction that the application
domain offers [7]. According to [8], a DSL is small and
declarative, and offers expressive power focused on and
usually restricted to a particular problem domain
through appropriate notations and abstractions.

Typically, two types of domain specific languages
are distinguished: internal (or embedded) DSL and
external DSL. An embedded DSL is implemented based
on a general-purpose programming language, i.e., the
host language, as an embedding. It inherits the con-
structs of its host language and adds domain-specific
primitives to provide the user a suitable modeling ab-
straction. However, its use requires typically some
knowledge of the host language. The advantage of in-
ternal domain specific languages is that less implemen-
tation effort is required for designing. More importantly,
they can easily be extended.

An external domain specific language, in contrast to
internal domain specific languages, is developed as an
independent language, which requires separate interpre-
tation or compilation. They are designed ground-up;
therefore their development has more freedom without
constraints from the host language. In modeling and
simulation, both types of domain specific languages are
used [9].

1.2 Specifying simulation experiments
One goal of specifying simulation experiments is to
allow reproducibility of the experiment and their ex-
change among different scientific groups. For that, one
has to identify what kind of information is required to
reproduce experiment results.

Several work exists on identifying requirements in
describing simulation experiments, such as Minimum
Information About a Simulation Experiment (MIASE)
[10] and Minimum Simulation Reporting Requirements
(MSRR) [11]. More detailed information can be found
in [12].

These standards define guidelines in providing an
accurate and complete description of simulation exper-
iments. As identified by MIASE, to make the descrip-
tion of simulation experiments available to third parties,
it must contain: the models to be simulated and their
configuration parameters, the simulation configuration
such as simulator to be used, the post-processing on the
raw numerical results and the description of the final
output results [10]. Simulation experiments can be in-
terpreted as a process that comprises different tasks. In
[5], six tasks are identified in a simulation experiment:
specification, configuration, simulation, data collection,
analysis and evaluation.

By combining the two perspectives above, we argue
that domain specific languages, as being able to allow
the reproducibility of simulation experiments, can be
employed to support simulation experimentation on
models from different aspects: model configuration,
simulation configuration, experiment execution, obser-
vation, analysis, and evaluation of results. We will illus-
trate this with the domain specific language SESSL.

2 SESSL
SESSL is an embedded domain-specific language for
simulation experiments [6]. It exploits the feature of its
host language Scala [13], such as meta-programming, to
allow flexible experiment set-ups. A SESSL specifica-
tion can incorporate simulation algorithm, model pa-
rameters, simulation run time, parallel execution, stop-
ping conditions, replication numbers, observation, result
analysis a.s.o., as needed; however only the specifica-
tion of the model file is mandatory while a default op-
tion is provided for the rest. The actual experiment is
then performed with arbitrary simulation software that
is controlled by SESSL based on a specific binding.
Currently, a number of bindings to different simulation
systems exist, such as the binding to the modeling and
simulation framework JAMES II [14]; additional bind-
ings can be added straightforwardly.

We illustrate the features of SESSL with an experi-
ment specification as shown in Listing 1. In this exam-
ple, a simulation experiment is specified based on
JAMES II (line 2). This specification contains configu-
ration of the model (line 4-6), configuration of the exe-
cution machinery (line 7-10), observation (line 11-12),
evaluation of results (line 13-18) and execution (line 20).

 Peng et al. Domain-Specific Languages for Flexibly Experimenting

 SNE 25(2) – 8/2015 119

T N

As SESSL can easily support experiment set-up and
execution, other analysis such as optimization is provid-
ed as well and examples on this can be found in [6]. We
moved our focus to the analysis of results. Model check-
ing is a well-established verification technique to auto-
matically analyze the dynamic behavior of models,
based on formalizing model behavior with temporal
logics, such as Linear Temporal Logic (LTL) [15]. To
support this, we extended SESSL with an additional
trait ‘Hypothesis’ in [1], which allows to specify behav-
ior properties with LTL. Another language was pro-
posed to describe the properties of trajectories in [16],
and integrated into SESSL. As shown in Listing 1, a
property is specified (line 13-18), which states that the
model variable ‘x’ observed from experiments reaches a
peak between time 2 and time 4, followed by a decrease
which ends at time 10. This example shows how domain
specific languages, like SESSL, are capable to support
different tasks of simulation experiments. Meanwhile,
with the explicit, declarative SESSL experiment specifi-
cation, simulation experiments can be also reproduced.

3 Experimentation on
Stochastic Models

In many areas such as systems biology, stochasticity
plays an important role. Stochastic models, e.g., Contin-
uous-Time Markov Chains (CTMC), provide a powerful
means to model and to analyze the dynamics of the sys-

tem of interest. When conducting experimentation with
stochastic models, certain problems need to be considered.

3.1 Probability estimation
Simulation experiments with a stochastic model require
multiple replications to gain the confidence on experi-
ment results. To analyze and evaluate the experiment
results, a typical question arises: what is the probability
that the model shows a certain behavior? Statistical
model checking [17], which is a simulation-based veri-
fication technique, has been widely used to provide
answers to this question. Several statistical model check-
ing approaches exist, such as the Bayesian approach [18]
and the Sequential Probability Ratio Test [19].

To support statistical model checking, we extended
SESSL to allow the definition of probabilistic state-
ments based on Continuous Stochastic Logic and hy-
pothesis testing [1]. The property of model behavior can
be specified in either LTL or the trajectory language
proposed in [16]. Listing 2 specifies that with a proba-
bility of at least 0.8, the variable ‘x’ shall peak between
time 2 and time 4 and afterwards decrease until time 10.
Using hypothesis testing, the number of required simu-
lation replications can be determined. A corresponding
number of simulation trajectories are generated, against
each of which the property specification is checked.
Thus, it is possible to determine whether the model
satisfies the specification with a probability greater than
a given threshold.

1 import sessl._ // SESSL core
2 import sessl.james._ // JAMES II binding
3 val exp = new Experiment with Observation with ParallelExecution with Hypothesis {
4 model = "file-mlrj:/./SimpleModel.mlrj"
5 scan("a" <~ range(100, 50, 200), "b" <~ range(1, 4, 10), "c" <~ range(0.01, 0.2, 1))
6 set("d" <~ 10.0)
7 simulator = MLRulesTauLeaping()
8 stopCondition = AfterWallClockTime(seconds = 10) or AfterSimTime(1)
9 replications = 100
10 parallelThreads = -2
11 observe("x")
12 observeAt(range(0.0, 0.1, 10.0))
13 assume{
14 P(Peak("x", "peakHeight"), time >= 2 and time <= 4, "peakTime"),
15 E(Decrease("x", "decreaseAfterPeak"), end = 10, "afterPeak"),
16 Id("peakTime") STARTS Id("afterPeak"),
17 Id("peakHeight") >= Id("decreaseAfterPeak")
18 }
19 }
20 execute(exp)

Listing 1: SESSL specification of a simulation experiment based on a binding to JAMES II.

 Peng et al. Domain-Specific Languages for Flexibly Experimenting

120 SNE 25(2) – 8/2015

TN

3.2 Tolerating stochastic noise
Besides the uncertainty of results among different simu-
lation replications, stochasticity exists within one repli-
cation as well. In each trajectory produced in the simu-
lation experiment, there may be some stochastic noises.

As shown in Figure 1, the observed model variable
‘x’ shows an oscillation property but with stochastic
noises. In LTL, typically an oscillation behavior can be
specified based on derivations, i.e.,

.
However, with the existence of noises, the calculation of
first order derivation is not applicable any longer. Alter-
natively, it can be expressed in LTL as

,

which is complex and error prone. However, it can be
described with a domain specific language in a much
more succinct manner by simply defining a predicate
named ‘Oscillation’. What’s more, several parameters
can be added to allow specifying constraints on the
oscillation amplitude and period.

Figure 1: An example of simulation trajectory generated

from experiments with a stochastic model, where
the variable ‘x’ oscillates along the time with noises.

Figure 2: An example of simulation trajectory generated

from experiments with a stochastic model, where
the trend of x is increasing however shows some
noises.

Domain specific languages can be used as an interface
with easy-to-use predicates defined for the user, while
those predicates can be transformed into the correspond-
ing specification in temporal logics (depending on their
semantics). In this way, the existing checking algorithm
developed for temporal logics, such as [20], can be
employed.

Let us look at another example. As shown in Fig-
ure 2, in this simulation trajectory generated from ex-
periments on stochastic model, the variable ‘x’ evolves
over time, exhibiting a trend of increase. However,
because of the stochastic noises, it is not strictly increas-
ing all the time, i.e., the first order derivation of ‘x’ is
not always larger than zero. In this case, it is difficult to
specify the increase behavior using temporal logics with
noises taken into account.

On the other hand, there are different ways to toler-
ate the noise. In this trajectory, one can say that variable
‘x’ increases from time 0 to 200, or from time 0 to time
600, depending on how the noises are tolerated and how
the increase is defined and interpreted.

1 assume(Probability >= 0.8){
2 P(Peak("x", "peakHeight"), time >= 2 and time <= 4, "peakTime"),
3 E(Decrease("x", "decreaseAfterPeak"), end = 10, "afterPeak"),
4 Id("peakTime") STARTS Id("afterPeak"),
5 Id("peakHeight") >= Id("decreaseAfterPeak")
6 }

Listing 2: A probability property specification in SESSL experiment: with a probability of at least 0.8, the number variable ‘x’ shall
peak between time 2 and time 4 and afterwards decrease until time 10.

 Peng et al. Domain-Specific Languages for Flexibly Experimenting

 SNE 25(2) – 8/2015 121

T N
Domain specific languages, which “speak” the lan-

guage of the domain, provide the possibility to flexibly
define specifications. Users can define the behavior
property in different manners, which may not be ex-
pressible formally. In the trajectory language proposed
in [16], as shown in Listing 1, several predicates are
defined to describe properties, e.g., peaking, increase,
decrease and reaching a steady state. Users can provide
algorithms to check those predicates to tolerate the
stochastic noises based on different requirements.

 Taking the simulation trajectory shown in Figure 2
as example, a predicate can be that variable ‘x’ increas-
es from time 0 to time 600.

Users can either define the semantics of increase as a
simple comparison between the starting point and the
ending point, where the predicate would hold. Or a
more complex algorithm can be defined which checks
whether the derivation of ‘x’ is within a certain a
threshold, in which case the predicate may not hold
because there is a relatively obvious decrease from time
200 to time 300 and the deviation could be out of the
given threshold.

3.3 Robustness measurement
Besides probability estimation, robustness measurement
is of interest in analysing stochastic systems. A general
definition is that ‘robustness is a property that allows a
system to maintain its functions against internal and
external perturbations’ [21]. To formally analyze ro-
bustness, a precise definition is required and this can be
performed from different perspectives.

While checking whether a behavior property holds
or not provides the yes/no answer, i.e., the satisfiability,
it may also be interesting and important to check to
which extent the property holds, or how far it is from
the property holding. Thus, the robustness degree re-
garding property satisfactory can be defined. There is
plenty of work on this type of robustness analysis, e.g.,
[22], [23] and [24]. The behavior properties are first
specified with temporal logics, such as LTL, Metric
Temporal Logic (MTL) [25], or Signal Temporal Logic
(STL) [26]. The robustness degree is measured based on
definitions of distance between a simulation trajectory
and the formalized properties, either in space or in time.
Furthermore, for stochastic models, similar definition of
robustness has been proposed in [27], where a robust
satisfiability distribution for the formalized property can
be estimated from that of multiple replications.

So far, this type of robustness measurement is not

supported in SESSL. However, as an internal domain
specific language, it is easy to extend it. Based on exist-
ing work, a specification of robustness can be added into
current SESSL by defining functions and integrating
corresponding robustness measurement implementations.

Additionally, another common definition of robust-
ness is to measure the capacity of the model maintaining
the given behavior with respect to changes in model
parameters [28]. SESSL, as shown in Listing 1, allows
specifying model parameters in a range in addition to
single values (line 5-6). This provides the possibility to
define robustness regarding model parameters.

4 Conclusion
In comparison to deterministic models, experiments
with stochastic models require to take stochasticity into
account. This may include stochastic deviations be-
tween simulation runs as well as stochastic noises dur-
ing one run. Domain-specific languages for the specifi-
cation of simulation experiments such as SESSL allow
handling these problems. In particular, they can employ
existing powerful analysis and evaluation tools without
much effort, as well as integrating new ones. As do-
main-specific languages provide a natural, domain-
friendly way to document simulation experiments, their
adoption is an important step towards the reproducibil-
ity of experiments and their results.

References
[1] Peng D, Ewald R, Uhrmacher AM. Towards semantic

model composition via experiments. In Proceedings of
the 2nd ACM SIGSIM/PADS conference on Principles
of advanced discrete simulation. Conference on
Principles of advanced discrete simulation; 2014;
ACM.151-162.

[2] Maus C, Rybacki S, Uhrmacher AM. Rule-based multi-
level modeling of cell biological systems. BMC Systems
Biology. 2011; 5(1): 166. doi:10.1186/1752-0509-5-166.

[3] Elmqvist H, Mattsson S-E. MODELICA-the next
generation modeling language-an international design
effort. In Proceedings of First World Congress of System
Simulation. First World Congress of System Simulation;
1997; 1-3.

[4] Teran-Somohano A, Day ba O, Yilmaz L, et al. Toward
a model-driven engineering framework for reproducible
simulation experiment lifecycle management. In
Proceedings of the 2014 Winter Simulation Conference.
Winter Simulation Conference; 2014; Savannah,
Georgia. 2694195: IEEE Press.2726-2737.

 Peng et al. Domain-Specific Languages for Flexibly Experimenting

122 SNE 25(2) – 8/2015

TN
[5] Leye S, Uhrmacher AM. GUISE-a tool for GUIding

simulation experiments. In Proceedings of Winter
Simulation Conference. Winter Simulation Conference;
2012; Berlin, Germany. Winter Simulation
Conference.305.

[6] Ewald R, Uhrmacher AM. SESSL: A domain-specific
language for simulation experiments. ACM Transactions
on Modeling and Computer Simulation (TOMACS).
2014; 24(2): 11. doi:10.1145/2567895.

[7] Ghosh D. DSLs in Action. Manning; 2011. 351.
[8] Deursen Av, Klint P, Visser J. Domain-specific

languages: an annotated bibliography. SIGPLAN Notices.
2000; 35(6): 26-36. doi:10.1145/352029.352035.

[9] Miller J, Han J, Hybinette M. Using domain specific
language for modeling and simulation: Scalation as a
case study. In Proceedings of the 2010 Winter
Simulation Conference. Winter Simulation Conference;
2010; IEEE.741-752.

[10] Waltemath D, Adams R, Beard DA, et al. Minimum
information about a simulation experiment (MIASE).
PLoS computational biology. 2011; 7(4):
e1001122_1001121-e1001122_1001124.
doi:10.1371/journal.pcbi.1001122.

[11] Rahmandad H, Sterman JD. Reporting guidelines for
simulation based research in social sciences. System
Dynamics Review. 2012; 28(4): 396-411.
doi:10.1002/sdr.1481.

[12] Schutzel J, Peng D, Uhrmacher AM, et al. Perspectives
on languages for specifying simulation experiments. In
Proceedings of the 2014 Winter Simulation Conference.
Winter Simulation Conference; 2014; IEEE.2836-2847.
doi:10.1109/WSC.2014.7020125.

[13] Odersky M, Spoon L, Venners B. Programming in
Scala. Second Edition. Artima Press; 2010. 852.

[14] Himmelspach J, Uhrmacher AM. Plug'n simulate. In
Proceedings of the 40th Annual Simulation Symposium.
Simulation Symposium; 2007; Norfolk, Virginia.
IEEE.137-143. doi:10.1109/ANSS.2007.34

[15] Clarke EM, Grumberg O, Peled D. Model checking.
1999.

[16] Warnke T, Peng D, Haack F, et al. Towards a Language
for Specifying Properties of Simulation Trajectories. In
Proceedings of 12th International Conference on
Computational Methods in Systems Biology.
Computational Methods in Systems Biology; 2014;
London.

[17] Younes HL, Kwiatkowska M, Norman G, et al.
Numerical vs. statistical probabilistic model checking.
International Journal on Software Tools for Technology
Transfer. 2006; 8(3): 216-228. doi:10.1007/978-3-540-
24730-2_4.

[18] Jha SK, Clarke EM, Langmead CJ, et al. A bayesian
approach to model checking biological systems. In
Computational Methods in Systems Biology; 2009;
Springer.218-234.

[19] Wald A. Sequential tests of statistical hypotheses. The
Annals of Mathematical Statistics. 1945; 16(2): 117-186.
doi:doi:10.1214/aoms/1177731118.

[20] Spieler D. Model checking of oscillatory and noisy
periodic behavior in Markovian population models
[Doctoral dissertation]. Saarland University; 2009.

[21] Kitano H. Towards a theory of biological robustness.
Molecular systems biology. 2007; 3(1): 137.
doi:10.1038/msb4100179.

[22] Rizk A, Batt G, Fages F, et al. On a continuous degree of
satisfaction of temporal logic formulae with applications
to systems biology. In Computational Methods in
Systems Biology; 2008; Springer.251-268.

[23] Donzé A, Maler O. Robust satisfaction of temporal logic
over real-valued signals. Springer; 2010.

[24] Fainekos GE, Pappas GJ (2006). Robustness of temporal
logic specifications for finite state sequences in metric
spaces, Technical Report MS-CIS-06-05, Dept. of CIS,
Univ. of Pennsylvania.

[25] Koymans R. Specifying real-time properties with metric
temporal logic. Real-time systems. 1990; 2(4): 255-299.
doi:10.1007/BF01995674.

[26] Maler O, Nickovic D. Monitoring temporal properties of
continuous signals. Formal Techniques, Modelling and
Analysis of Timed and Fault-Tolerant Systems. Springer;
2004. 152-166.

[27] Bartocci E, Bortolussi L, Nenzi L, et al. On the
robustness of temporal properties for stochastic models.
Electronic Proceedings in Theoretical Computer
Science. 2013; 3-19. doi:10.4204/EPTCS.125.1.

[28] Komorowski M, Costa MJ, Rand DA, et al. Sensitivity,
robustness, and identifiability in stochastic chemical
kinetics models. Proceedings of the National Academy of
Sciences. 2011; 108(21): 8645-8650.
doi:10.1073/pnas.1015814108

