SNE TECHNICAL NOTE

MATLAB/Simulink Based Rapid Control
Prototyping for Multivendor Robot Applications

Christina Deatcu’, Birger Freymann, Artur Schmidt, Thorsten Pawletta

Hochschule Wismar — University of Applied Sciences: Technology, Business and Design,
Research Group Computational Engineering and Automation, Philipp-Muller-Stral3e 14, 23966 Wismar, Germany

*christina.deatcu@hs-wismar.de

Simulation Notes Europe SNE 25(2), 2015, 69 - 78
DOI: 10.11128/sne.25.tn. 10293

Received: July 10, 2015 (Selected ASIM STS 2015
Postconf. Publ.); Accepted: July 20, 2015;

Abstract. Industrial robots are used in various fields of
application and many robot manufacturers are active in
the market. In most cases, their software solutions are
proprietary and, consequently, they cannot be used for
third party robots. Moreover, the integration of external
hard- or software is highly restricted. Long term stand-
ardization efforts for robot programming languages,
such as the Industrial Robot Language (IRL) and its suc-
cessor, the Programming Language for Robots (PLR),
have been mostly ignored by robot manufacturers. This
fact leads to a restriction on the combined usage of ro-
bots. Multi-robot applications where robots have to
interact are usually limited to software solutions and
robots of one manufacturer. On the other hand, control
design in engineering is often carried out by the usage of
Scientific and Technical Computing Environments (SCEs)
like MATLAB. The Robotic Control & Visualization Toolbox
(RCV Tbx) for MATLAB/Simulink tries to close the gap
between robot manufacturer-specific software solutions
and SCEs. The current version of the RCV Thx supports a
uniform and integrated control development for KUKA
and KAWASAKI robots in the MATLAB/Simulink environ-
ment. An extension to other robot types is straight for-
ward. Thus, the implementation of heterogeneous multi-
robot applications is considerably simplified.

Introduction

This paper is an extended version of [1] and aims to
introduce the RCV Tbx for MATLAB/Simulink as an
easy to use Rapid Control Prototyping (RCP) Tool for
multivendor robot controls. The RCV Tbx has been
under development by the research group Computa-
tional Engineering and Automation (CEA) at Wismar
University since 2009 [2].

As research into robotics is proceeding rapidly and
new fields of application for robots are being made up
continually, the requirements concerning robot control
development are increasing, too. Fast and easy control
programming, integration of external hardware or soft-
ware components and multi-robot operation are of par-
ticular importance. In this context it is often desirable to
use a SCE, such as MATLAB, for RCP. RCP, according
to Abel and Bolling [3], is understood as an integrated,
continuous control development from early design to
operating phase in a homogenous environment.

In addition to multi-robot capability, multivendor
applications are one further key aspect. Today, various
robot manufacturers are established on the market. They
offer proprietary software environments with special
robot programming languages such as KRL (VEN KU-
KA Robotics), AS (VEN Kawasaki Robotics) or RAPID
(VEN ABB Robotics). From a software engineering
point of view, all these robot languages are pretty simi-
lar. Nevertheless, long-term standardization efforts like
the IRL and its successor, the PLR are still unsuccess-
ful. In addition, almost all robot manufacturers offer a
Computer Aided Robotic (CAR) system, which is also
referred to as 3D robot simulation software. CAR sys-
tems typically provide physics-based robot models for
one manufacturer as well as interfaces to 3D CAD sys-
tems. Thus, a simulation and 3D visualization of com-
plete robot cells is supported. Robot controls can be
developed within these virtual environments using the
proprietary robot languages. Such CAR systems simpli-
fy the development and commissioning of robot appli-
cations. However, the proprietary software limits appli-
cations to products from its manufacturer. There are
some third-party CAR systems available, such as
3DRealize-R by Visual Components Corporation [4].
They offer a comprehensive solution for simulation and
3D visualization of heterogeneous robot types.

Deatcu et al.

MATLAB/Simulink-based Rapid Control Prototyping

However, the control programming is still based on
the different proprietary robot languages. Hence, the
development of interacting multi-robot controls is com-
plicated for robots from different manufacturers.

For MATLAB/Simulink, besides the RCV Tbx [2],
there exists a robot control toolbox for KUKA robots
(KUKA Control Toolbox, KCT) developed at the Uni-
versity of Sienna [5, 6]. The KCT connects a remote
MATLAB computer via TCP/IP to the robot controller
of a KUKA robot. Usage of KCT is limited to one sin-
gle robot from one manufacturer, namely KUKA, so
that multi-robot and multivendor applications cannot be
addressed.

Inspired by the idea of RCP in control theory, the re-
search group CEA began in 2004 to develop a
MATLAB KRL toolbox. This toolbox supports control
programming of KUKA robots within MATLAB in-
cluding the usage of all available MATLAB features.
Moreover, it provides a first MATLAB based CAR
system [7]. As well as the KCT, the MATLAB KRL
Tbx was limited to KUKA robots, but users already
benefited from the powerful methods as well as the
various interfaces provided by MATLAB and its tool-
boxes.

Almost all of the proprietary robot languages are
imperative languages containing similar programming
elements. Thus, the approach of the MATLAB KRL
toolbox was generalized. A uniform robot control lan-
guage for robot types from different manufacturers has
been developed with the RCV Tbx for MATLAB.
Moreover, the simulation and 3D visualization tools
have been enhanced.

This paper is organized as follows: Section 1 intro-
duces the concept of RCP and relates it to robot con-
trols. In Section 2, the RCV Tbx for MATLAB is de-
scribed. Design, implementation as well as user inter-
face aspects are analyzed. Finally, Section 3 gives a
summary and identifies potentials for future work.

1 Rapid Control Prototyping

This section summarizes the RCP approach and how it
can be used for robot control development. Systematic
development of controls can be carried out following
the V-model derived from Orth, Abel and Bollig [8, 3].

The V-model defines two main phases, the design
phase and the commissioning phase. The design phase
starts with the problem specification and continues with
a draft and simulative testing of the control algorithms.

It is completed with coding of an executable control
program for the target hardware. This piece of software
is then used to bring the control into operation. The
commissioning phase starts with component tests and
ends with a test of the control across the entire process.
Each step of the V-model may have to be performed
several times and through several iterations or it is pos-
sible that leaps back in the development process will
occur.

1.1 Fundamentals

RCP generally requires either a well-adjusted tool chain
to follow the V from specification phase down to coding
phase and up to operational phase or support from an
integrated development environment. This integrated
development environment can be an SCE. Furthermore,
Software-in-the-Loop simulation (SiL) and Hardware-
in-the-Loop Simulation (HiL) techniques following
Abel and Bollig [3] and explicit automatic code genera-
tion are key features of RCP-capable software systems.

Maletzki [9] adopted the general V-model for con-
trols for robot control development as illustrated in
Figure 1.

Specification Operational

Phase

Control Testing
and
Commissioning
with the Real
Robot System

Design and
Evaluation of
Control Strategies

Planning
Simulation

Planning
Engineer

Coding and Implementation of
the Control (Robot Specific
Programming Language)

Control
Engineer

Figure 1: Adopted V-Model for Robot Control
Development According to Maletzki [9].

A notably critical point is the transfer of results from
planning simulation to the coding and implementation
phases. As for industrial robots, the executable control
program for the target hardware typically has to be
written in a robot specific programming language; a
continuous tool chain is not guaranteed. The control
strategies that result from the planning simulation are
handed over from the planning engineer to the control
engineer. This kind of manual handing over is obviously
fault-prone.

7,

Deatcu et al.

MATLAB/Simulink-based Rapid Control Prototyping

1.2 RCP and proprietary robot controls

Conventionally, robot controls are coded in vendor-
specific programming languages and tested using dedi-
cated 3D-simulation software. Such CAR systems offer
software libraries with robot models from the particular
vendor and usually include interfaces to 3D-CAD soft-
ware. In CAR systems, concrete control strategies can
be implemented within the specific robot programming
language so that extra coding after simulative testing of
the control is not required. 3D visualizations, of e.g.
robot movements and potential collisions, play a deci-
sive role if CAR systems are deployed. Continuity as
required for RCP is partly given but manual knowledge
transfer from planning to control engineer is still neces-
sary.

The conventional robot control programming ap-
proach supported by CAR systems and associated lan-
guages and software respectively are depicted in Figure 2.

KUKA KAWASAKI ABB-Robotics .
ROBOT ROBOT ROBOT
o
£ o b=
— i W % a g
[@ < = e
i kv 0 < 4
5 [[2
<z a o
s

Figure 2: Conventional robot control development using
vendor specific software.

After specification of the control requirements the plan-
ning engineer designs control strategies using planning
simulation tools.

Subsequently, he delivers a control strategy to a con-
trol engineer mostly in a textual manner. The control
engineer implements the robot control using vendor
specific tools as listed in Figure 2. At this point there is
a break in the tool chain according to the definition of
RCP by Abel et al. [3].

However, a continuous reuse of software compo-
nents during this transition is hard to realize for robot
control development, because different concepts are
used and are necessary in these two phases. Starting
from this point, a control engineer can implement and
deploy a robot control for vendor specific robots com-
pliant with the definition of RCP. For example, for
KUKA robots, coding of controls is done using KUKA
Robot Language (KRL) and simulation of the control
with robot models is carried out using the Kuka.Sim
software. Control testing and commissioning with the
real robot system can be achieved by automatic code
generation or a communication link as illustrated in
Figure 3.

Specification

Design and
Evaluation of
Control Strategies

Planning
A Simulation

CAR-System
Control Model
(Extended General
Programming
Language)

Operational
Phase

Planning
Enginee

(Communication

......... (Executable on
Target Hardware)

Model of
Robot System

Control Robot System

Automatic Code Generation
(Cross-Compiling)

Figure 3: Detailed V-Model for robot control
development according to Maletzki [9].

In the case of industrial robots, an explicit code gen-
eration for target hardware is not necessary. The control
program from the design phase is implemented in a
robot-oriented language and running on a robot control
computer that is used in operation phase. In the context
of RCP, this approach is called implicit code generation.
Hence, commissioning can be carried out via a simple
communication link between a CAR system on a PC
and a robot controller. This practice is called Software
in the Loop (SiL) approach in [3]. The concept of ex-
plicit automatic code generation for target hardware is
important for mobile robotic applications.

However, the robot control development software
depicted in Figure 2 is vendor-specific and incompat-
ible between types. This fact complicates the previ-
ously discussed control development or makes it nearly
impossible to develop multivendor robot applications.

Deatcu et al.

MATLAB/Simulink-based Rapid Control Prototyping

1.3 RCP and the RCV Toolbox for
MATLAB/Simulink

Controls for interacting robots and multivendor robot
controls are examples of advanced tasks in robot control
development.

Figure 4 illustrates how the RCV Tbx eases such

tasks by providing not just a generalized interface to
robot control and robot visualization commands, but
also to robots from different vendors and/or types.
The control engineer implements a robot control as a
MATLAB coded sequence of control commands. These
commands are independent from a specific robot vendor
as well as from a specific robot language, but they are
very similar to established robot programming lan-
guages such as KRL and AS. Furthermore, control
commands can be combined with any MATLAB com-
mands and can also be generated from Stateflow or
Simulink models. This option eases the implementation
of complex controls by making available high level
programming concepts.

MATLAB
Robotic Control &
Visualization Tbhx.

|

KUKA KAWASAKI ABB-Robotics| | Virtual
ROBOT ROBOT ROBOT ROBOT
' Il
; c, ! c
5| S5 s |85l 5|68 S5
3| =8 2| =8 g |8 =2
a2 B¢ g | B2 | 100 [8@, [
za | =g wsg | BEalraag | Ea =g
gg | =8 <g | 58 g | =g = g2
a s 3 g 58 '35 T3 T8
| 2k€ c |2 |' | 2t hE
=1 5= Sl s=10 =55, s =
1
1

Figure 4: Robot control programming with the RCV Thx
for MATLAB/Simulink.

Moreover, the RCV Tbx for MATLAB provides robot-
specific interpreters coded by using the vendor-specific
robot languages, which have to be installed on the robot
controllers.

The MATLAB based control PC and the robot con-
trollers are connected via a bidirectional communication
link. The interpreters are responsible for the identifica-
tion and execution of control commands that are trans-
mitted by the MATLAB based control PC and they
deliver acknowledgements or sensor signals back. Fig-
ure 5 illustrates an RCV Tbx-based multi-robot configu-
ration.

One or more computers with MATLAB/Simulink
and the RCV Tbx installed act as the continuous soft-
ware environment from the early design and evaluation
phase via control testing with the real system and finally
the operational phase. No recoding or reimplementation
is necessary, rather the control program can be extended
successively until it meets the de-mands of the intended
control task. SiL. and HiL approaches as defined in [3],
as requirements for RCP capability of control develop-
ment, are met because the simulated control can be
stepwise extended to become the real control for the
operational phase.

MATLAB RCV
based
|contral program

controller
& interpreter
MATLAB RCV
S e

B E

virtual robots
Kuka Agilus T T pr—
upto 99 ¢ L
robots : L HUB TCP/IP

u controller controller Rs232
& interpreter

& interpreter J-l
Kawasaki FS003N

Kuka KR3

Figure 5: A Multi-robot configuration with
heterogeneous robot types using the RCV Thx.

Short control sequences or single control tasks can al-
ready be tested with the real process during design and
evaluation (SiL). HiL tests, in which a real control de-
vice is tested with a simulated process, are not usually
relevant for industrial robot controls as mentioned in
Section 1.3. However, they could be of interest for other
devices in a robot application. Furthermore, a control
application can also be tested in a purely virtual envi-
ronment using the RCV Tbx similar to the usage of a
CAR system. For this purpose the RCV Tbx provides
3D-models of real robots and other virtual components.

2 Design and Usage of RCV
Tbhx for MATLAB/Simulink

This section describes and analyzes the software design
of the RCV Tbx. It details the two toolbox downloads as
they are available at [2], namely the robot control down-
load (Robotic Control Thx) and the visualization down-
load (Robotic Visualization Thx).

Deatcu et al.

MATLAB/Simulink-based Rapid Control Prototyping

It is shown how a robot control program can be de-
veloped, tested by simulation, put into service (soft
commissioning) and finally used as a real control. Con-
tinuity of the tool chain, as is needed to meet the re-
quirements of RCP, is given. Hence, the same sequence
of control commands coded in the same language can be
sent either to a visualized or a real robot.

Figure 6 depicts the main functional parts of the
RCV Tbx. Control, Interpreter and Visualization are the
three main functionalities which are distributed across
the two software packages.

Figure 6: Main parts of the RCV toolbox for
MATLAB/Simulink.

A collection of control commands for real, as well as
visualized, robots and interpreters for real robots are
dowloaded with the first part of the RCV Tbx, the Ro-
botic Control Tbx. Interpreters for visualized robots,
also called virtual robots, and the visualization software
are dowloaded with the second part of the RCV Tbx, the
Robotic Visualization Tbx. Currently, both parts support
interpreters for Kawasaki FSO03N, Kuka Agilus KR6
(TCP/IP connection) and for KUKA KR3 (RS232 con-
nection).

Interaction between the MATLAB control PC and
the interpreter program as well as the interpreter algo-
rithm is depicted in Figure 7.

The interpreter can be installed either on a robot
controller or on a MATLAB PC as part of the Robotic
Visualization Thbx. Implementation of the interpreter
slightly differs depending on robot type and robot con-
troller hardware. However, the basic principle of inter-
preter program algorithm remains the same.

MATLAB Control PC
| Robotic Control Toolbox |
T
! e.qg. e.g. +
motion CMD current position |

Interpreter

init Interface
init CMD_Buffer

read
Interface
I new CMD

available?

]

available?

CMD_Buffer

CMD_1
CMD_2
read CMD_3 execute
CMD o CMD
CMD_n

N
send ‘Done’

s N
write CMD A

to - - - - Msg via ——
CMD_Buffer Interface
~

Figure 7: Simplified interpreter algorithm.

The connection between interpreter and MATLAB
control PC is always established by the interpreter. It
can either be an RS232 or a TCP/IP link. After connec-
tion is established and communication interface as well
as the command buffer is initialized, robot control
commands can be received by the interpreter. Com-
mands are written to a FIFO buffer, read from there and
brought to execution. Buffering the commands is neces-
sary, because execution of most commands takes some
time.

Deatcu et al.

MATLAB/Simulink-based Rapid Control Prototyping

The interpreter program is not blocking meanwhile
and receiving of subsequent commands is always possi-
ble. Some commands, such as commands for stopping
the robot for security reasons or altering the motion
speed during an onging robot movement, have to be
executed immediately. Handling of those commands is
not shown in Figure 7.

2.1 Part|: Robotic Control Thx

This subsection details robot control programming and
gives some examples of robot control commands.

The control of real robots requires an interpreter pro-
gram to be installed on the robot controller. The in-
terpreter for each kind of real robot is written in the
appropriate robot-specific language and copied to the
robot controller. The interpreter program takes the
commands from MATLAB and translates them into
commands for the robot-specific language which are
executable by the robot controller. Security considera-
tions, such as workspace supervision and movement
execution, are, therefore, still covered by the robot con-
troller.

After the toolbox is installed on the control PC and
the appropriate interpreter is copied to the robot con-
troller, the interpreter program on the controller needs to
be started. For RS232 connections, after startup of in-
terpreter, the controller is ready to receive MATLAB
control commands immediately. For TCP/IP connec-
tions, the interpreter on the controller acts as a server
and waits for a suitable client to connect. This client is a
robot object created on the control PC.

Table 1 lists all available commands for robot con-
trol alphabetically.

Of essential importance is the robot () command which
creates and destroys the robot object which acts as an
interface for control commands. Listing 1 shows the
syntax of the robot () command. Currently, robots can
either be of type’Kawasaki’ or of type ‘Kuka’.

>> hl = robot('open', 'Kawasaki',...
"tcpip', IP-ADRESS, PORT);
>> h2 = robot('open', 'Kuka',...

'serial', COM-PORT) ;
>> robot ('close', hl, h2);

Listing 1: Create and destroy robot objects.

rbrake () brake the motion of one or all robots
directly

rcallback () define functions, that are executed auto-
matically

rdisp () formatted display of position structures

rerror () set up a function, dealing with error
codes received from robot controllers

rget () get interpreter-, toolbox- and motion-
properties and current positions

ris () check the status of commands and pro-
cesses

rkill () brake and stop the motion of one or all
robots directly; then set up the original
state of robot(s)

rmove () move a robot

robot () create or destroy a robot object that can
be controlled

rpoint () define robot-positions with coordinates

and motion-properties

rprocess () define complex operations

rreset () reactivate robot(s) after automatic switch-
ing-off of the interpreter(s)

rrun () reactivate robot(s) after using rbrake() or
rstop()

rset () set up interpreter-, toolbox- and motion-
properties

rstatus () switch ON or OFF status report

rstop () brake and stop the motion of one or all
robots directly

rteach() teach and save positions of a robot

rwait () block the MATLAB-prompt until the

status of commands or processes fulfills a
condition

Table 1: List of available robot control commands.

The command robot () creates a robot object and re-
turns a MATLAB handle to the object. This handle can
then be passed to other control commands to address
this specific robot. Some control commands such as
rbrake (), rkill (), rreset (), rrun() and rstop()
affect all robots that the control PC is currently connect-
ed to, if no handle is passed to the command as a first
parameter. Complex control operations can be coded by
using the command rprocess (). With this command,
tasks to be fulfilled by more than one robot can also be
defined. Sequential as well as concurrent operations are
possible, and control commands can be structured and
grouped. Listing 2 shows a short example for a concur-
rent operation with two robots.

Deatcu et al.

MATLAB/Simulink-based Rapid Control Prototyping

>> load P1 P2
>> rprocess({...
Kuka, P1,...
Kawasaki, {P2, 'speed', 50},...
|
{

Kuka, 'home', ...
Kawasaki, 'home', ...

b

Listing 2: Two robots in a concurrent operation
pro-grammed with rprocess () .

Kuka und Kawasaki are the handles for the robots. The
robots move at the same time to the positions P1 and P2
which are defined by the loaded variables P1 and
p2.They start to move to their home positions only after
they have both finished their moves.

The rprocess() command already allows some com-
plexity, but furthermore, all standard and advanced
programming features of MATLAB/Simulink can be
used to create even more complex and also simulation
based robot controls. An example of such integration
with other tools is depicted in Figure 8§ where RCV
control commands are embedded in Stateflow.

Waiting
start
[rs==1]

MoveToFirstPos
en: ID=ml.rmove(...);
du: rs=ml.ris(ID);

ReleasePart
en: ID=ml.rsef(...);
du: rs=ml.ris(ID);

[rs==1] [rs==1]

PickPart
en: ID=ml.rset(...);
du: rs=ml.ris(ID);

[rs==1] MoveToSecondPos
en: ID=ml.rmove(...);
du: rs=ml.ris(ID);

Figure 8: State-based control using Stateflow
and RCV Tbx.

The integration of arbitrary external hardware, which
can act as sensors or actors, is also feasible. This would
allow a big advantage compared to the restricted availa-
bility of additional hardware when developing robot
controls with proprietary software and languages.

2.2 Part |l: Robotic Visualization Tbhx

The Robotic Visualization Thx is the second software
package of the RCV Tbx and can be used for testing and
enhancement of controls developed with the Robotic
Control Tbx. It offers distributed 3D-visualization of up
to 99 robots in MATLAB and allows interactive control
of visualized real robots and also pure virtual robots in a
virtual environment. Thereby, safe development, testing
and debugging of robot applications is possible. Fur-
thermore, the toolbox includes an STL interface for
importing user-defined graphical objects designed using
external CAD software.

The control of a visualized robot requires an inter-
preter program, too. Interpreter functionality for virtual
robots is included in the Robotic Visualization Tbx.
Interpreters are part of virtual robot objects and estab-
lish a TCP/IP link between control PC and visualization
PC. Control program and visualization can physically be
located on the same PC, represented by two MATLAB
instances. User toolbox’s interface as well as virtual
objects is designed as a MATLAB class. Figure 9 pic-
tures visualizable object types that map entities of the
real world.

Figure 9: Types of visualizable object.

Besides virtual robot objects environmental objects and
part objects can be visualized. Environmental objects
are passive objects that cannot be moved by the robots.
Part objects are also passive objects, but they can be
picked and moved by robots. In Figure 9 examples for
environmental objects are two tables and a conveyor; a
test tube represents the part objects. Robot objects that
represent the active visualization objects include kine-
matics which matches the kinematics of the correspond-
ing real robot. Furthermore, pure virtual robots or other
active objects such as carts can be visualized if the user
defines appropriate kinematics. Figure 9 shows two
visualized real robots and a pure virtual cart.

Deatcu et al.

MATLAB/Simulink-based Rapid Control Prototyping

Table 2 lists commands of the Robotic Visualization
Tbx. The first three commands are used to initialize,
finish and monitor a visualization session. With the
creation of a MATLAB 3D-figure at startup, a
MATLAB timer object is also started. It ensures that the
visualized objects are refreshed 20 times per second to
achieve a smooth appearance of the animation.
ViSu.start initialize the visualization,
open an empty 3D window

stop the visualization, delete
all virtual objects, close the
figure

display all virtual objects
with their ID, type, position
and additional information
depending on object type

ViSu.stop

ViSu.info

ViSu.create () instantiate a robot object of

type ‘Kuka’, ‘Kawasaki’ or

user defined type
ViSu.repose robot () alter position of robot object
identified by its id
ViSu.delete robot () delete a robot object identi-
fied by its id

instantiate an environmental
object

alter position of an envi-
ronmental object identified
by its id

delete an environmental
object identified by its id

ViSu.place env ()

ViSu.repose env ()

ViSu.delete env ()

instantiate a moveable
object

alter position of a part ob-
ject identified by its id

ViSu.place part()
ViSu.repose part ()

ViSu.delete part() delete a part object identi-

fied by its id

Table 2: User Interface for Visualization.

The other commands offer identical functionalities for
the three different types of visualizable objects: robot,
environmental and part objects can be I) initialized, II)
repositioned, and II) deleted during a simulation ses-
sion.

Currently, the toolbox is being revised extensively to
harmonize the user interface and improve software
stability and robustness.

2.3 Integrated RCV Thx usage example

Figure 5 introduced in Section 1 shows an example of
multi-robot configuration. Notice that in that configu-
ration we have integrated real robots from different
vendors, i.e. from Kuka (Agilus, KR3) and Kawasaki
(FSO003N) and some virtual robots, too.

In this section we focus on an academic scenario

where we have a robot control being applied only to
some virtual objects. For this, it is necessary to start two
instances of MATLAB; of these, one acts as the control
PC (client) and the other is the visualization server.
These MATLAB instances can either be located on
different computers, as shown in Figure 5, or on the
same computer as in the following example. The exam-
ple includes two robots, the environmental object table
and a test tube which is is classified as a “part’.
Listing 3 illustrates how MATLAB control and visuali-
zation instances can interact. MATLAB commands in
line 1,2,4,6,7,11to 12, and 14 have to be executed on
the visualization instance, while the indented lines 3, 5,
8 to 10, and 13 are control commands which have to be
executed on the control instance.

>> ViSu.start;
2 >> ViSu.create('Kawasaki', 40000, ...
[0,0,0,0,0,0]);
3 >> rl=robot ('open', 'Kawasaki',...
"tcpip', 'localhost', 40000);
4 >> ViSu.create('Kuka', 40001, ...
[500,500,0,0,0,01);
5 >> r2=robot ('open', 'Kuka',...
"tcpip', 'localhost', 40001);
6 >> ViSu.place env('table.stl',...
[-800 0 0 0 0 0], 'blue');
7 >> ViSu.place part('test tube.stl',...
[-800 0 400 45 0 0], 'white');

8 >> rset(rl,'signal', [-9, 10]);
9 >> rmove (rl, "home2') ;
10 >> rmove (r2, 'home2') ;

11 >> ViSu.info;

12 >> ViSu.delete part(1);

13 >> robot (rl, r2, 'close');
14 >> ViSu.stop;

Listing 3: Code Example of Interaction of the two Parts
of RCV Thx for MATLAB/Simulink.

Deatcu et al.

MATLAB/Simulink-based Rapid Control Prototyping

After a virtual robot has been created with the com-
mand ViSu.create(), the MATLAB prompt for the
visualization instance is blocked until the TCP/IP con-
nection to the control instance is established. This is
accomplished when the appropriate robot (’open’,...)
command is executed on the control instance which
initiates a robot control object. The table, as well as the
test tube, just exist virtually and are passive objects that
are not controllable and therefore have no counterpart
on control instance. After line 7 is executed, the visuali-
zation looks as depicted in Figure 10.

Figure 10: Visualization example after creation of objects.

Then some simple control commands, beginning with
line 8, are executed. The command in line 8 closes the
gripper of the Kawasaki robot. After that, both robots
are moved to one of their predefined home positions,
‘home2’. Back on the visualization instance, infor-
mation on the current visualized objects is requested.
With this information the user knows, that the test tube
is a ‘part’ object with ID 1 and can be deleted during the
visualization session. This feature is useful, if one
wants, for example, to alter the surroundings of active
robot objects without restarting the visualization.

After execution of line 12 the scenario looks as de-
picted in Figure 11. The gripper is closed, both robots
have moved to their home positions and the test tube has
disappeared. The last two commands close the TCP/IP
connections and finally close and delete the visualiza-
tion figure.

Figure 11: Visualization example after execution of
some control commands.

Without larger modifications it is possible to apply the
same sequence of control commands to real robots in a
real environment, if we assume the real robots are of
appropriate types and placed in the same positions. In
this case, instead of the commands ViSu.create(),
that initialize the visualized real robots, TCP/IP and
RS232 connections to the control PC need to be estab-
lished by the robot controllers. For visualized robots all
connections are of type TCP/IP, although for a real
KUKA KR3, for example, an RS232 connection is
necessary. Hence, the control command in line 5 has to
be adapted. The control object r2 needs to be opened
with the parameter ' serial’ instead of with 'tcpip’.
Instead of a visualized table and a visualized test tube, a
real table and a real test tube could be placed in the real
robot cell. Motivation for such simple control tests by
simulating the movements first in a virtual environment
could be, for example, to avoid collisions between ro-
bots and table.

3 Summary and Further Work

The RCV Tbx offers excellent possibilities for devel-
oping multivendor robot controls in a homogeneous
software environment. It fulfills the main requirements
of a RCP capable tool. The key benefits of using the
RCV Tbx are the possibility to develop monolithic
control programs for interactive robots from different
manufacturers and the easy, manufacturer-independent
integration of external hardware.

Deatcu et al.

MATLAB/Simulink-based Rapid Control Prototyping

The MATLAB/Simulink environment is well estab-
lished in the area of engineering and, today, is a stand-
ard tool for engineers. Hence, the engineer can benefit
from employment of all programming tools available in
this environment. Especially for recent advanced control
applications such as the Simulation Based Control
(SBC) approach introduced by Maletzki [9] the integra-
tion of the RCV Tbx into MATLAB/Simulink is very
advantageous. Simulation models are directly used as
control programs in this approach and it is obvious that
RCV Tbx control commands can easily be integrated
into these kinds of simulative control.

If one takes another step, it can be seen that models
employed for control tasks can also be automatically
generated from a knowledge base as proposed in the
SBC and System Entity Structure (SES) approach by
Schwatinski and Freymann [10, 11]. The development
of flexible, task oriented multi-robot controls is consid-
erably simplified with this approach.

References

[1] Pawletta T, Freymann B, Deatcu C, Schmidt A. Robotic
Control and Visualization Toolbox for MATLAB. In:
Breitenecker F, Kugi A, Troch I, editors. MATHMOD
2015. Proceedings of MATHMOD 2015 - 8th Vienna
Int. Conf. on Mathematical Modelling; 2015 Feb 18.-20.,
ARGESIM Report No. 44, ARGESIM, Vienna/Austria
UT; 2015. P. 371-372 & Poster.

[2] Research Group CEA. (2011). Robotic Control & Visu-
alization (RCV) Toolbox for MATLAB [Internet]. [cited
2015 March 28]. Available from: http://www.mb.hs-
wismar.de/cea/sw_projects.html

[3] Abel D, Bolling A. Rapid Control Prototyping — Metho-
den und Anwendungen. Springer-Verlag Berlin. 2006.

[4] Visual Components Corporation (2014). 3DRealize-R
[Internet]. [cited 2014 Oct 24]. Available from:
http://www.visualcomponents.com/products/3drealizer-r

[5] Chinello F, Scheggi S, Morbidi F, Prattichizzo D. KCT:
a MATLAB toolbox for motion control of KUKA robot
manipulators. In: Proceedings of |EEE Int. Conf. on Ro-
botics and Automation, Anchorage, Alaska, 2010; P.
4603-4608.

[6] Chinello F, Scheggi S, Morbidi F, Prattichizzo D. KU-

—

KA Control Toolbox. Motion control of robot manipula-
tors with MATLAB. Robotics Automation Magazine,
IEEE, 2011; 18(4):69-79.

Maletzki G, Pawletta T, Pawletta S, Lampe BP. A mod-
el-based robot programming approach in the
MATLAB/Simulink environment. In: Advancesin Man-
ufacturing Technology — XX, 4th Int. Conf. on Manufac-
turing Research (ICMRO06); 2006 Sept. 05-07; Liverpool,
UK, 2006. P. 377-382.

Orth P, Bollig A, Abel D. Rapid Control Prototyping
diskreter Steuerungen in der Automatisierungstechnik.
In: SPSIPC/Drives Congress; Niirnberg, Germany;
2004. P. 143-152.

Maletzki G. Rapid Control Prototyping komplexer und
fexibler Roboter steuerungen auf Basis des SBC-
Ansatzes. [dissertation in German]. Rostock University,
Germany, 2014.

Schwatinski T, Pawletta T, Pawletta S. Flexible Task
Oriented Robot Controls Using the System Entity Struc-
ture and Model Base Approach. In: Simulation Notes Eu-
rope (SNE), 2012; 22(2): 107-114.

Freymann B, Pawletta T, Schwatinski T, Pawletta S.
Modellbibliothek fiir die Interaktion von Robotern in der
MATLAB/DEVS-Umgebung auf Basis des SBC-
Frameworks. In: Proceedings of ASIM-Treffen
STSGMMS Reutlingen 20./21.02.2014 - ARGESIM
Report Nr. 42, ASIM Mitteilung AM 149, ARGE-
SIM/ASIM Pub. Vienna, Austria, 2014, P. 199-208.

Acknowledgement

The authors are thankful to our former co-worker Tobi-
as Schwatinski and all students who worked very moti-
vated within the project. Furthermore, the authors
acknowledge the financial support of the Federal Minis-
try of Education and Research and the Ministry of Edu-
cation, Science and Culture of Mecklenburg-West Pom-
erania.

