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Abstract.  Virtual commissioning (VC) is used to test 
control code deployed on Programmable Logical Control-
lers. Simulation models of a plant are the core of any VC 
approach. Simulation models should represent the plant 
in a way so that the correct process execution can be 
tested under customers’ conditions. Simulation models 
of a plant are usually not built monolithically, but by 
many partial simulation models that represent the mod-
ules or components of the investigated plant. To ensure 
that the VC is efficient and provides helpful results, these 
partial simulation models can be implemented at differ-
ent levels of detail, depending on the current test scenar-
io. Usually, the definition of the modules’ and compo-
nents’ level of detail is fixed. However, situations exist 
where more than one level of detail can be adequate. A 
dynamically adaptable level of detail seems beneficial to 
e. g. keep computing time at a reasonable level and to 
ensure meaningful results of the plants simulation mod-
el. However, no method or approach exists so far to 
handle a dynamically adaptable level of detail. The paper 
presents the research results of the authors on virtual 
commissioning and focuses on a simulation point of view 
and is organized as follows: In Section 1, a brief descrip-
tion is given on how to define the right granularity of 
simulation models used for virtual commissioning. Based 
on these results, several levels of detail and model types 
that can be used for a VC approach are introduced in 
Section 2. In Section 3, situations are described where 
more than one level of detail is suitable. In Section 4 and 
Section 5, potentials and challenges of a dynamically 
adaptable level of detail are dicussed and possible solu-
tion contributions that could yield benefits for a VC ap-
proach are shown. 

Introduction

Figure 1: Components within a module. 
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1 Defining the Right Granularity 
of Simulation Models 
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Figure 2: Principle of ‘clustering’: Components with strong 
interaction are arranged to clusters (which 
henceforth form the modules). 

2 Model Types and Levels  
of Detail for Virtual 
Commissioning 

LoD

•

•

•

•

•
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Table 1: Overview of defined levels of detail and several 
important aspects of VC. 

2.1 Ensuring consistent interfaces  
between simulation models in  
different levels of detail 

2.2 Deficits when defining the level  
of detail for certain modules 

3 Identifiying Situations  
where an Adaptable Level  
of Detail is Appropriate 

Macroscopic
dev. mech.

(nd) (d) (nd) (d)
Consideration 
of entire process 
mapping

- - -

Time-based 
behaviour

X X X X

Dynamical/physical 
behaviour (if 
applicable)

X X X

Failure states
Consideration of 
processed good*:

X - - -

- Movement of goods 
on stated paths 
(= degrees of freedom)

X - - ** - X

- Free movement of 
goods in space

X - - X X -

- Collision of goods 
possible

X - - X *** -

** Acceleration free movement
*** Only possible in simulated degree of freedom

Mesoscopic Microscopic
dev. mech.

* Good is synonym to bulk goods or piece goods

dev: device, mech: mechanical /pneumatical/hydraulical basic system (see 
VDI2206 [2]), nd: not dynamical, d: dynamical

Aspect:
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3.1 Example 

Figure 3: Example as described. 

Figure 4: Exemplary PLC program that shows execution  
of process steps P1 and P2. 

3.2 A systematic way to identify modules 
that can potentially switch regarding  
to their level of detail 
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Figure 5: Example of a Domain Mapping Matrix where 
processes are assigned to modules within a 
plant. Processes refer to process steps as  
defined in Chapter 2.1. 

 

4 Potentials and Challenges of 
an Adaptable Level of Details 

4.1 Possible implementation strategies 
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4.2 Influences on computing time when 

simulating in different levels of detail 

4.3 Conclusions and thoughts about an 
adaptable level of detail 
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5 Requirements for Implementing 
an Adaptable Level of Detail 

•

•

•

•

•

•

•

6 Conclusion 
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