SNE BENCHMARK NOTE

Modelling and Simulation of a SIR-type Epidemic
with Cellular Automata and Ordinary
Differential Equations — Definition ARGESIM
Benchmark C17R

Florian Miksch'", C. Haim?, Guinter Schneckenreither™?, Nikolas Popper?

*dwh simulation services, Neustiftgasse 57-59, 1070 Vienna, Austria; *florian.miksch@dwh.at
?Inst. of Analysis and Scientific Computing, Vienna University of Technology, Wiedner HaupstraRe 8-10, 1040

Vienna, Austria

Simulation Notes Europe SNE 25(1), 2015, 49 - 54
DOI: 10.11128/sne.25.bn17r.10283

Received: October 20, 2014; Revised February 10, 2015;
Accepted: February 15, 2015;

Abstract. This Comparison investigates a classical popu-
lation model for the spread of infection diseases (SIR
ordinary differential equations model by Kermack and
McKendrick) and an inhomogeneous spatial approach
using cellular automata. An identification of parameters
based on an abstract time discrete conceptual model is
presented. The tasks of this comparison include the
validation and analysis of this identification, an investiga-
tion on the impact of different spatial dynamics in the
cellular automaton modelling approach and simulation
scenarios for confining epidemic outbreaks that involve
state-dependent interventions.

Introduction

This comparison is a revision of the original ARGESIM
Comparison 17 [1] and is targeted at the identification
of the classical SIR-type differential equations model by
Kermack and McKendrick [2] (which is a cumulative
population model) with a microscopic individual based
cellular automaton modelling approach [3].

For the purpose of a systematic identification of both
approaches, a virtual individual based time-discrete
population contact-induced ~ SIR-
characteristic spread of an infectious disease is present-
ed. Based thereon the differential equations and cellular

system  with

automaton models are derived and identified in an ana-
lytical fashion. Furthermore intervention scenarios for
confining epidemic outbreaks are discussed.

1 System Definition

Let N be the number of individuals of the population.
The population can neither be joined nor left by indi-
viduals, which means that N is a constant number. Each
individual shall be in one of the states susceptible, in-
fected or recovered. The system evolves by discrete
steps of one time unit and the spread of the disease is
characterised by contacts between individuals, transmis-
sion of the disease and recoveries.

Parameter Description

So initial number of susceptible

I initial number of infected

R, initial number of recovered
contacts

a infection probability

B recovery probability

Table 1. System parameters.

Each individual is assumed to have an average of C
contacts per time step; these contacts always happen
between two random individuals. Since the discrete time
steps are atomic by definition, the order of contacts is
irrelevant. However, in order to ensure that susceptible
individuals cannot get infected and infect others simul-
taneously, the infection-states of the individuals change
after all contacts have been processed according to the
following paradigms:
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e  When a susceptible individual gets into contact with
an infected individual, the susceptible individual be-
comes infected with probability a. This probability
applies for each contact separately.

e Infected individuals recover at the end of each time
unit with probability S.

e Recovered individuals always remain recovered.

Interventions. In order to confine an epidemic, in-
terventions might be applied. We define two different
types of strategies (‘soft’ and ‘hard’) that can be applied
when a certain critical threshold of infected individuals
is reached or exceeded. The threshold is defined relative
to the whole population as f;-N.

As a ‘soft’ strategy, the system parameters C, a or §
are decreased to fs - C (or fs - @ or fg - 8) over a period
of time At. 0 < f; <1 is called the reduction parame-
ter. This can be either a linear decrease in the form
f(x) =k-x or a smooth step in the form f(x) =3
x%2 — 2 -x3. Let r(t) be the function that describes the
decrease from 1 to fs, so that it can be multiplied with
C, a or B, and let t; be the time when the threshold is
reached. For a linear decrease

t_tT t_tT
=(1-
r® ( At ) At

and for a smooth step it can be

r(®) =1- (3 (t ;ttT)z 2 (t ;ﬁ)s) S(1=f). @

If At = 0, then the change is a discontinuous step. Fig-
ure 1 illustrates the idea and expected outcome of a
‘soft’ strategy.
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Figure 1. lllustration of a 'soft’ intervention. Once the
number of infected reaches a critical
threshold, the infection parameter decreases

over a certain period of time.

‘Hard’ strategies involve the individuals directly.
Representing a quarantine or vaccination strategy, sus-
ceptible or infected individuals, respectively, can be-
come recovered. Such a ‘hard’ strategy is defined by
choosing a fraction fy of susceptible or infected indi-
viduals and immediately changing their state to ‘recov-
ered” when the threshold of infected individuals is
reached. The individuals are chosen randomly among all
possible individuals with the respective state, since
further distinction is not possible with this system defi-
nition.

Table 2 lists all parameters that are relevant for in-
terventions.

It could be that the threshold is reached more than
once. This happens, for example, when the number of
infected is growing, then it is reduced by an intervention
but still keeps growing. The intervention strategy can be
applied in two ways: either only once when the treshold
is reached for the first time or every time it is reached.

Parameter Description

fr Fraction that defines
the threshold

fs Reduction parameter of
a soft intervention

At Duration of a soft inter-
vention
Fraction parameter of a

fu

hard intervention

Table 2. Parameter of hard and soft interventions.

2 Differential Equations Model

The differential equation, which models the defined
system, corresponds to the classical SIR epidemic mod-
el which was proposed by W. O. Kermack and A. G.
McKendrick in 1926 [2]. S'(t), I'(t) and R'(t) repre-
sent the change of susceptible, infected and resistant
individuals. The amount of susceptible individuals that
become infected is described as yS(t)I(t), where y is
referred to as infection rate. The amount of infected
individuals that become resistant is described as 61(t),
and § is named recovery rate. Since the number of indi-
viduals in our system shall be constant, these growth
terms yield the following system of ordinary differential
equations (ODE) shown in (3).
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S'(t)=-y-St)-1(t)
I't) =y-S@)-1(t) =6 -1(¢t) 3)
R'(t)=6-1(t)

Before setting the ODE parameters, one needs to deal
with another concern. An ODE A'(t) = —¢A(t) with
0 < & <1 represents a system where A is continuously
decreased. However, ¢ does not represent the amount of
decrease within one time unit. If A should be decrease to
& - A within one time unit, then & needs to be set as

&§=In(1-9).
This is based on the fact that the general solution of the
ODE is A(t) = A(0) - e~%t. The condition that A should
be decreased leads to the equation A(t + 1)=(1 — &) -
A(t), and further results in the formula above.
Identification of the infection term y -S(t) - I(t)
takes a look at a single individual, which has C contacts
per time unit in average. Among the contacts, it has

4)

C % contacts with infected individuals. Each contact

causes a transmission with probability «. The transmis-
sions are statistically independent events. Hence, the
infection probability per time unit is computed as the
probability to get infected at least once, which is repre-

1
sented by the formula 1— (1 —a)“WN. Considering
Equation (4), the infections in the ODE are represented

1
by —In (1 -1+0- a)c'ﬁ) - S, which can be rewrit-
tenas —[-S- % -In(1 — a). Hence, vy is identified with
—=-In(1 - ).
Since the recovery rate § determines the fraction of
infected individuals that recover during one time unit, §
calculates as —In(1 — ).

The identified parameters are summarised in
Table 3.

Parameter Identification
5(0) So
1(0) Iy
R(0) R,
Y - £ ‘In(1—«a)
N
é —In(1-p)

Table 3. Parameter identification of the
differential equation model.

Interventions. In a ‘soft’ intervention strategy, the
parameter ¥ or § in the ODE system needs to switch to
a time dependent function P(t) or &(t) when the
threshold fN is reached at time t = ¢ty.

7(t) or §(t) calculates as the term in Table 3 where
the desired parameter C, @ or f is replaced by C - r(t)
ora-r(t)or B -r(t), and r(t) corresponds to the func-
tion in Equation (1) or (2).

At time t = t + At, the ODE system switches back to
Equation (3) where y or § is replaced by fsy or fsd.

In a ‘hard’ intervention strategy the ODE system ab-
ruptly changes S(t) or I(t) when the threshold is
reached. This can be achieved using the delta distribu-
tion D(x) where D(0) = 1and D(x) =0 forx # 0

For example, quarantining the fraction fy of infe-
ceted individuals when the threshold is reached, then the
ODE can be rewritten as Equation (5).

S'(t) =—y-S(t) - 1(t)

I'(t) =y-S()-1(t) (5)
=8-1(t) = DU —I) " fyy - 1(t)
R'(t)=6-1(t) + D —Iy) - I

3 Cellular Automaton Model

In the context of modelling and simulation Cellular
Automata (CA) can be seen as a time- and space-
discrete modelling approach. A CA consists of cells
which are arranged on a regular grid and can hold dif-
ferent states [4]. Lattice Gas Cellular Automata (LGCA)
are an extension of the concept of CA where particles
move around these cells [5]. Especially with a hexago-
nal lattice, LGCA are used for simulating the movement
of gas particles or fluids.

We will additionally allow particles to take one of
the states susceptible, infected or recovered [1, 3, 6] in
order to simulate the spatial spread of a SIR-type dis-
ease.

Accordingly, we assume that our cells are arranged
on a two-dimensional hexagonal grid structure and
represent a spatial segment. Each cell can hold at most
six individuals. Each individual is in one of the three
states susceptible, infected or recovered. Contacts hap-
pen pairwise between all individuals which are located
in the same cell at the same time. To simulate a mixture
of the individuals, they move around the cells in random
directions (diffusion) or as defined by the FHP-I colli-
sion rules [5]:



Miksch et al. SIR-type Epidemics: ODEs vs CAs — Definition Benchmark C17R E!I

e The position of an individual within a cell defines its
moving direction (Figure 2).

e After the movement phase a collision phase (Figure
3) takes place. The FHP-I variant only defines spe-
cial two and three particle collisions. All other colli-
sions happen without any change of moving direc-
tion. When two individuals collide as in Figure 3,
they are reflected clockwise or counter clockwise
with probability 0.5. When three particles collide as
pictured in Figure 3, then they are reflected clock-
wise.

Figure 2. Schematic visualization of LGCA movement
rules.

A =T \A

Figure 3. FHP-I collision rules.

When a susceptible individual meets an infected indi-
vidual within a cell, it shall become infected with prob-
ability @ An infected individual recovers with probabil-
ity ¢.

The size of the LGCA plays an important role be-
cause it affects the density of particles and thus the
number of contacts. For the sake of simplicity, we use a
grid with width = length = n and accordingly n? cells
with six places each. Table 4 shows the parameters of
the model with appropriate parameterisation. For a
given number of individuals, the number of contacts
depends on the size n of the LGCA.

The correct identification for n is crucial, but fol-
lows a simple calculation: Assuming a uniform distribu-
tion of the individuals, each of the six slots of a cell is
occupied with the same probability. For a given indi-
vidual there are 5 unoccupied slots in the same cell.
Accordingly N —1 remaining individuals occupy
6n2 — 1 remaining slots and the individual has an ex-
pected number of

N-1
: 6
C=5r— (6)

contacts within this cell. Adjusting n, which has to be
an integer, to meet a given number of contacts leads to
the identification in Table 4.

Parameter Identification
5(0) So
1(0) Iy
R(0) Ro
(] a
¢
S(IN—-1)+C
" - 6C

Table 4. Parameter identification of the
cellular automaton model.

Interventions. Also for the CA approach interven-
tion scenarios can be simulated. If the number of infect-
ed particles in the CA reaches the threshold, one of the
strategies described in Section 1 can be applied.

Applying a ‘soft’ strategy is easy for a and . Then,
¢ or ¢ are multiplied with r(t) in Equation (1) or (2) so
that the fs or fs¢ are reached after At. Reducing C
causes problems because it requires a change of n. First,
changing n is very inaccurate and second, there is no
instruction on how to enlarge or shrink the space in
respect to the individuals that have positions on the grid.
Thus, if a ‘soft’ strategy for C is desired, it should be
performed very carefully.

‘Hard’ intervention strategies can be directly applied
as stated in the system definition. Then the threshold is
reached, a desired number of susceptible or infected
individuals are randomly chosen, and immediately be-
come recovered.
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In contrast to the ODE model, individuals in the CA
are distinguished by their spatial location on the lattice.
Presumably, the selection of particular individu-
als/particles for changing their state can make a crucial
difference. For testing purposes, it seems reasonable to
deliberately violate the system definition and choose
individuals with respect to their location.

4 Analytical Comparison

There is a strong analytical relation between the ODE
approach and the CA model. For simplicity the parame-
ter identification presented in this section neglects inter-
ventions.

Infections. The following calculation aims to esti-
mate the number of new infections in a time step in the
LGCA. Consider a susceptible individual in a cell (only
susceptible individuals can get infected). Then there are
altogether 6n? — 1 remaining slots in the LGCA, 5
remaining slots in the cell and I infected individuals.
Define the probability of i slots in the cell being occu-
pied by infected individuals as q;. Under the assumption
that the individuals are uniformly distributed, the num-
ber of infected individuals in this cell is distributed
according to a hypergeometric distribution. The proba-
bilities calculate as choosing i out of I infected individ-
uals on 5 out of 6n? — 1 places:

O

qi = (6n21— 1) ,

The expected value E of this hypergeometric distribu-
tion is

=0..5 )

5
] 5
E=Zqilzl—6n2_1. ®)
i=

Using the identification in (6), the expected value can be

written as
c

E=lg— )
With these preparations the actual infection probability
of a susceptible individual can be calculated. If the cell
is occupied by i infected individuals the probability for
an infection of the susceptible individual is 1 —
(1 — a)t. Hence the expected probability for an infec-
tion is Y:7_, q;(1 — (1 — a)?). Considering the first two
terms of the Taylor series expansion at ¢ = 0 and the
identification in (9) leads to the following approxima-
tion for this probability.

5 5
Yat-a-ah= Y qia=
i=0 i=0

5

= Z | =aE = al ¢

_a.oqil =af = al—
i=

Multiplying (10) with the total number of susceptible

(10)

individuals leads to Sal ﬁ as an approximation for the

expected total number of new infections for one time
unit in the LGCA for small values of a.

The term in the ODE for infections of one time unit
per susceptible is computed in section 2 as

CI
1— (1 —a)V. In the term for the CA, ﬁ can be ap-

proximated with % Natural limitations are és 1 and
C <5. For small a« and the natural limitations,
1-(1- a)% is an approximation of @ %

Recoveries. An infected individual in the LGCA
recovers during one time unit with probability 3, hence
the expected amount of infected individuals who regen-

erate in one time unit is SI. The same factor also occurs
in the differential equation (3) and Table 3 as —In(1 —

B).

5 Tasks

In order to validate the analytical findings from Section
4 in an experimental fashion, both model approaches
must be implemented in a simulation environment or as
stand-alone programs. The primary output and point of
comparison for both approaches is the evolution of the
numbers S(t), I(t) and R(t).

5.1 Task 1 - Model Comparison

We use the parameters from Table 5 as a starting point

and perform a parameter analysis for Iy, @ and  while

keeping the overall population count (N = 10 000)

constant. For the CA approach, FHP-I collision rules

and a uniform distribution of the individuals as initial
condition seem legit.

a) Is it possible to identify parameter regions with
similar behaviour in both modelling approaches? It
is very likely that the reasons for qualitative and
quantitative differences lie in the fact that the identi-
fication of the infection parameter is based on the
assumption that the population is always uniformly
distributed on the lattice and secondly that a Taylor
approximation was used in (10).
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b) From Equation (10) we can see that the average
probability of a susceptible individual to get infected
depends on the contact rate C and the infection
probability @. We can analyse the trade-off between
those two parameters by performing a parameter
variation of @ and C leaving the product aC con-
stant. The dynamics of the CA imply different ef-
fects of variations in a and C respectively. Note that,
in particular, changing the contact rate C also in-
volves changing the size n of the lattice and that the
contact rate for the six-particle LGCA is limited.

Parameter Value
So 9500
Iy 500
R, 0
c 4
a 0.1
B 0.1

Table 5. Parameter set for Task 1.

5.2 Task 2 - Interventions

It is rather clear that different intervention strategies

deliver different reactions of the system. Additionally

for both modelling approaches the same intervention

strategy can have different effects (compare Task 1).

a) Based on a parameter set with similar behaviour in
both modelling approaches (Task 1) choose a
threshold f; for the number of infected and compare
different intervention strategies in both modelling
approaches.

b) What is the advantage of the spatial LGCA approach
in combination with the ‘hard’ strategies? For exam-
ple we can assume that vaccinating or quarantining
individuals at the interface between regions with
high and low infections reduces the spread of the
disease. On the other hand, ‘hard’ interventions in
the center of infected areas may have hardly any ef-
fect on the epidemic.

5.3 Task 3 - Spatial Inhomogeneity

A constantly homogeneous mixture of the population in
the CA model can be achieved by introducing a third
type of ‘movement’ rules: instead of moving to an adja-
cent cell, the particles jump to an arbitrary cell on the
lattice (‘random movement’). Based on the findings
from Task 1 we can choose a parameter setting for
which the ODE approach and the original CA model
deliver different qualitative behaviour. We can however
postulate that the CA model with this new type of
movement rules behaves identical to the ODE model.
How can this be explained?
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