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Abstract.  Many countries in this world have lack of drink-
ing water. Austria has advantage of drinking water coming 
from the mountains. This article contains a study focusing 
on mathematical modelling using different methods for the 
analysis of groundwater pollution. The distribution of pollu-
tion follows the convection-diffusion equation. Therefore 
different methods ranging from analytical and numerical to 
alternative approaches dealing with random walk are com-
pared. The analysis of the approaches is mostly done for 
one and two dimensional case. 

Introduction
In order to analysis the po llution distribution in wa-

ter of sim ilar circumstances the m athematical equation 
describing t his be haviour i s a c onvection-diffusion 
equation. This equation can not only be used to analysis 
the be haviour of pollution. Also in biology, chem istry 
and ot her fiel ds of study t his e quation i s im portant. 
Regarding biology the equation can be use d to predict  
the development of fur pattern for cats. In chemistry the 
mixture of different substances follows this equation. In 
the field of physical modelling and simulation this equa-
tion is often c alled heat equation bec ause it describe s 
the distribution of heat em anating from a source. De -
spite disci plines in nat ural sciences also the fi nance 
market uses this equation t o foresee the behaviour of 
buyers of st ocks. In general the convection- diffusion 
equation looks as follows:  

 (1)

Equation (1) is a partial differential equation of sec-
ond or der a nd c ontains tw o dif ferent variables 

which can be ti me-dependent, position-dependent 

or simply constant. In t he following we assume that all 
the variables are constant. The first term of this equation 
describes a re gular distribution in every di rection. It is 
similar to spreading of waves after throwi ng in a little 
stone into water. The variable in th e secon d term  of 
(1) symbolises the velocity field of oriente d movement. 
Assuming for example a river with a ce rtain flux the n 
the distribution would be influence by the  velocity of  
the flux. This information will be transformed into t he 
equation using the variable . To sum it up, t he convec-
tion-diffusion equation contains one part de scribing the 
chaotic movement in all dir ections and an orie nted dis-
tribution depending on the circumstances. In the follow-
ing a fl ux only in x- direction is assumed. This pr oblem 
description wi ll be a nalysed usi ng three different a p-
proaches applied in one and two dimensions. 

1 Analytical Solution 
In this case, due to the used initial and boundary condi-
tions, an anal ytical solutio n can be given. The initial 
condition describes a pollutio n sources which releases 
all the pollution at ti me  without inj ecting any  
further pollution. B oth so lutions, one- and two-
dimensional, are used to validate the different methods. 
One-dimensional. Using the regarded equation is 
given as follows 

 (2)

and has to fulfill the initial  and the 
boundary conditions . Using sub-
stitutions described in [1] the equation (2) can be writ-
ten as 

 

 

 

(3)
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The resulting l ine in equation (3) can be multiplied by 

. After integration with respect to  one obtains an 
ordinary differential equation which can be solved using 
basic m athematical tools. A La place ba ck tra nsfor-
mation and backward substitution gives the solution of 
equation (2). 

 (4)

Two-dimensional. In the  tw o dimensional case  the  
obtained equation changes to 

 (5)

Analogue to the one-dimensional case certain initial and 
boundary conditions are defined as follows 

 
 

 

In order to s olve equation (5) a s pecific form of the  
solution is assumed. 

 (6)

The f unctions  and  are so lutions of t he on e-
dimensional convection- diffusion equation with c on-
stant coe fficients. Therefore  and  can be taken 
from the one-dimensional analytical solution (4). 

 

 
(7)

The source is located at the origin therefore the val ues 
 and  can b e in serted. Additionally the 

integral over the whole domain has to be 1. 

 

 
(8)

This integration result leads to the analytical solution in 
two dimensions. 

 (9)

2 Numerical Approximation 
This section introduces two t ypes of numerical approx-
imations. On the one ha nd there is the finite diffe rence 

method (FDM). In this approximation the derivative of 
the d ifferential eq uation is approached by tak ing the 
difference quotient of the ne ighboring grid points. The  
method is easy to use but slightly weak concerning the 
accuracy. T he second m ethod is the finite elem ent 
method (FEM) and is based on formulating variations of 
the differential equation. FEM determines approximated 
solutions c onsisting o f piece wise de fined polynomials 
on a fi ne resolution of the  domain. T he a dvantage of  
FEM is the suitability for any geometry. 

2.1 Finite Difference Method 
One-dimensional. Using finite diffe rences to ap-
proximate the first and seco nd derivatives the partial 
differential equation (2) tra nsforms into an or dinary 
differential equation. 

 (10)

The time derivative can be replaced as follows 

 (11)

Using (11) equation (10) can also be written as a matrix 
product 

 (12)

whereas  is the current concentration of pollution and 
 the concentration in th e next time step. In order to 

determine  using the Explicit Euler equation (12) is 
rearranged. 

 (13)

It is well known  that the Explicit Euler can be un stable 
using the wrong step size rela tion. Notation (12) can be 
also used to find the Im plicit Euler form ulation. The 
current concentration on the r ight hand side in equation 
(13) is re placed by the c oncentration of t he future time 
step in order to obtain the implicit formulation. 

 (13)

Two-dimensional. Regarding the  p roblem form ula-
tion in  tw o d imensions t he finite di fference m ethod 
looks a little bit different. Due to the fact that an equi-
distant grid,  is used th e approximation can be 
given as follows 

 
(14)

In contrary to the two-dimensional case the matrix nota-
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tion is not as easy as in one dimension. 

 (15)

Therefore only the Explicit Euler method is implement-
ed as shown in (15). 

2.2 Finite Element Method 
The finite elem ent method was only realized for the  
convection-diffusion equation in one dimension.  

 

 on  
(16)

First of all the weak solutio n of (16) is formalized using 
a test function of the according Sobolev space . 

 (17)
 

The formulation of the Gale rkin approximation is nec-
essary to form ulate the sol ution e quation of the finite 
element method. 

 (18)

The unk nown variables in e quation ( 18) have to  b e 
determined. Using linear ba sis functions called 'hat-
functions' for  a linear system of  equations wit h  
unknowns, called the Galerkin formulation, results [3]. 

 

(19)

In equation (19) ne is the num ber of elem ents in every 
finite elem ent and  is t he domain of ele ment . 
Equation (19) can also be written in a short form. 

 

 

(20)

The matrices of (20) are called mass matrix M and stiff-
ness matrix . Considering the mentioned ’hatfunctions’ 
it is clear, that only a few of the possible integrals are  
not equal zero. 

Those basis functions which corres pond to the cor-
ner points of the element will lead to non trivial results. 
Because t he ele ment  is connected to  and  
the profile of the m atrices is a band m atrix with widt h 

three. 

 

 

(21)

Equation (22) is called -method and will be used to 
present im plicit and e xplicit m ethods for s olving (21). 
The most common values for q are: 
• , Eplicit Euler 
• , Implicit Euler 
• , Implicit Heun 

Using this method the Explicit and Im plicit Euler algo-
rithm can be given. 

 
(22)

3 Random Walk 
An alternative method for simulating transport is the so-
called random walk. This appro ach is contrary t o the 
numerical solutions. T he focus changes from a macro-
scopic view t o the sim ulation of m icroscopic be havior 
of diffusion by analyzing movements of single particles. 

3.1 Intuitive Approach 
The intuitive approach describes a model which uses no 
grid or collision rules. It is  implemented again for both 
dimensions. 
One-dimensional. At t he beginning t = 0 all the 
particles are placed in the  origin presenting the source 
of pollution. The pollution injection happens only at t = 
0. The simulation focuses on the c onvection and diffu-
sion behaviour of these initial particles. In this approach 
the movement of particles is described by: 

(23)

The particle m otion in (23) consists of three parts.  In 
order to get the new position  at time  these 
three c omponents a re s ummed up. T he variable  
stands for the position at time . The velocity field  is 
multiplied by the step size. T he variable  describes the 
diffusive movement of a particle for one time step and is 
added to the former particle position .  

The second equation in (23) defines the movement r 
in particular. It consists of the step size i n space  and 
a norm ally distribute d ra ndom variable  with m ean 
zero and unit variance. In every time step the ne w posi-
tion of ev ery p article is calcu lated with equ ation (2 3). 
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The sim ulation ends when t he chosen simulation tim e 
tend is reached. 
Two-dimensional. For expansion in a tw o-
dimensional domain the movement has to be define d in 
a different way. There is no  initial velocity but there is 
an initial direction of every particle . T he diffusive 
transport is realized by us ing a norm ally distributed 
random variable  and a uniformly distributed random 
number .  is used to generate a random length and  
chooses a coincidental direction. 

 

 
(24)

In (24)  stands for the distance the particle moves in a 
certain tim e s tep. The influence of this param eter is 
similar to the diffusi on coefficient.  is the mentioned 
normally distributed random variable and  describes 
the step size in space . The s econd equation of (24) sets 
the direction for the particle’s ne xt m ove. The initial 
direction  is only necessary for the recursive de fini-
tion. During sim ulation the direction of the last move-
ment is used to calculate the next one. The convection is 
realized by a shift in fl ow di rection along . The  final 
formulation of the random walk movement can be given 
as follows 

 (25)

3.2 Gaussian Approach 
This approach shows the connection between a random  
walk approach and the analytical solution. 
One-dimensional. The an alytical so lution of th e 
convection-diffusion e quation ( 2) is used to de fine t he 
particle movement. Considering the probability density 
function of a normal or Gaussian distribution 

 (26)

At the beginning t = 0 all the  particles are placed in the  
origin presenting the source of pollution. The pollution 
injection happens only at t = 0 . The simulation focuses 
on t he conve ction and diffusion be haviour of t hese 
initial particles. In this approach the movement of parti-
cles is described by: 

(27)

the formal equivalence to t he analytical solu tion (4) is 
obvious. The parameters used in (27) stand for the mean 
value m and the standard deviation s which characterize 

the position and the width of the Gaussian bell curve in 
a unique way. Therefore the according parameters in (4) 
can be read out. [4] 

 (28)

Due to t he properties and m eaning of the parameters in 
(28) t he hei ght and wi dth of t he conce ntration peak 
depending on t ime is given.  The corresponding particle  
movement using (29) can be formulated as follows 

 (29)

The variable  stands for a normally distributed random 
number with mean zero and unit variance as in the intui-
tive approac h.  is newly generated in eve ry step for 
each particle. Ide ntifiable by the velocity  th e second 
term stands for t he convective m otion. This term  is 
equal to the term  of the in tuitive approach. The radical 
term describes the diffusive motion and is based on the 
standard derivation. 
Two-dimensional. In order to en large this approach 
in two dim ensions the m ovement along y- direction has 
to be a dded. For an e xpansion in a tw o-dimensional 
domain the  -component of the m ovement has t o be 
defined. Due to the fact  that  there is no fl ux the new 
particle position can be calculated using 

 
(30)

The variables  and  stand for independent normally 
distributed random numbers which are newly generated 
in every step for each particle. The term   describes 
the convective transport. Due to the fact that the diffu-
sion coe fficient is equal for t he - a nd -direction t he 
diffusive movement  in the random walk defini-
tion (30) is the same. 

4 Results 
In the following section the analytical solutions in bot h 
dimensions a re com pared t o the various approac hes. 
The different conce ntration errors a re discussed. In 
general the pa rameter settin g is: diffusion coefficient  

 and velocity .  
The step sizes  and  are variable. The regarded 

simulation time varies between  and 
. 
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