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Abstract. Many countries in this world have lack of drink-
ing water. Austria has advantage of drinking water coming
from the mountains. This article contains a study focusing
on mathematical modelling using different methods for the
analysis of groundwater pollution. The distribution of pollu-
tion follows the convection-diffusion equation. Therefore
different methods ranging from analytical and numerical to
alternative approaches dealing with random walk are com-
pared. The analysis of the approaches is mostly done for
one and two dimensional case.

Introduction

In order to analysis the po llution distribution in wa-
ter of sim ilar circum stances the m athematical equation
describing t his be haviouri sac onvection-diffusion
equation. This equation can not only be used to analysis
the be haviour of pollution. Also in biology, chemistry
and ot her fiel ds of study t his e quation i s im portant.
Regarding biol ogy the equation can be use d to predict
the development of fur pattern for cats. In chemistry the
mixture of different substances follows this equation. In
the field of physical modelling and simulation this equa-
tion is often ¢ alled heat equation bec ause it describe s
the distribution of heat em anating from a source. De -
spite disci plines in nat ural sciences also the fi nance
market uses this equationt o foresee the behaviour of
buyers of st ocks. In general the convection- diffusion
equation looks as follows:

dc

a=D-Vzc—v-Vc (1)

Equation (1) is a partial differential equation of sec-
ondor dera ndc ontainstw o dif ferent wvariables
D,v which can be ti me-dependent, position-dependent

or simply constant. In the following we assume that all
the variables are constant. The first term of this equation
describes a re gular distribution in every direction. It is
similar to spreading of waves after throwi ng in a little

stone into water. The variable v in the second term of
(1) symbolises the velocity field of oriente d movement.
Assuming for example a river with a ce rtain flux the n
the distribution would be influence by the velocity of
the flux. This information will be transformed into t he
equation using the variable v. To sum it up, the convec-
tion-diffusion equation contains one part de scribing the
chaotic movement in all dir ections and an orie nted dis-
tribution depending on the circumstances. In the follow-
ing a flux only in x-direction is assumed. This problem
description wi ll be a nalysed using three different a p-
proaches applied in one and two dimensions.

1 Analytical Solution

In this case, due to the used initial and boundary condi-
tions, an anal ytical solution can be given. The initial
condition describes a pollutio n sources which releases
all the pollution atti me t = 0 without inj ecting any
further pollution. B oth so lutions, one- and two-
dimensional, are used to validate the different methods.
One-dimensional. Using the regarded equation is
given as follows

dc d%c dc

FTa FeR ™
and has to fulfill the initial c¢(x,, 0) = §(x) and the
boundary conditions lim,_, 4 c(x,t) = 0. Using sub-

@

stitutions described in [1] the equation (2) can be writ-
ten as

v
T = Dt, b= D
y=x—bt, y,=Dbr (3)
dc(y, 1) _ 9%c(y,T)
ot Oy?
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The resulting line in equation (3) can be multiplied by
e~PT. After integration with respect to T one obtains an
ordinary differential equation which can be solved using
basic m athematical tools. A La place ba ck tra nsfor-
mation and backward substitution gives the solution of
equation (2).

%0 = e B 4
c(x,t) = e
V4nDt

Two-dimensional. In the tw o dimensional case the
obtained equation changes to

ac d%c d%c ac
E=D'Q+D'a—yz—v'& (5)
Analogue to the one-dimensional case certain initial and
boundary conditions are defined as follows
C(XO' Yo 0) = 5(95)5(}’)
lim c(x,y,0) =0
Xx,y—00

lim c(x,y,0)=0
X,y—>—00

In order to s olve equation (5) as pecific form of the
solution is assumed.

cx,y,t) = g1(%,%0,982(¥, Yo, V) (6)

The f unctions g, and g, are so lutions of t he on e-
dimensional convection- diffusion equation with ¢  on-
stant coe fficients. Therefore g, and g, can be taken
from the one-dimensional analytical solution (4).

( ) A, _(x=xo—-vt)?

X, Xg, ) = e 4Dt

g% %o 2vDrt o
A,  _-y)?

e 4Dt

gz(y' Yo, t) - 2\/D—7It
The source is located at the origin therefore the val ues
Xo =0and y, =0canb ein serted. Additionally the
integral over the whole domain has to be 1.

1=f J- cx,y,t) =

:f gl(xi Olt)dx j gz(Y: O;t)dy=A1A2

[ee] —00

®)

This integration result leads to the analytical solution in

two dimensions.

1 (x-vt)?
4Dt

9
4Dtm € ©)

cx,y,t) =

2 Numerical Approximation

This section introduces two t ypes of numerical approx-
imations. On the one ha nd there is the finite diffe rence

method (FDM). In this approximation the derivative of
the d ifferential eq uvation is approached by tak ing the

difference quotient of the neighboring grid points. The
method is easy to use but slightly weak concerning the
accuracy. T he second m ethod is the  finite elem ent
method (FEM) and is based on formulating variations of
the differential equation. FEM determines approximated
solutions c onsisting o f piece wise de fined polynomials
on a fi ne resolution of the domain. T he a dvantage of
FEM is the suitability for any geometry.

2.1 Finite Difference Method
One-dimensional. Using finite diffe rences to ap-
proximate the first and seco nd derivatives the partial
differential equation (2) tra nsforms into an or dinary
differential equation.

dc Ciy1 — 2C; + Cjg C; — Ci—1
g —p- 10
dt dx? VT dx (19
The time derivative can be replaced as follows
k+1 _ .k
de_c¢o —¢ (1
dt At

Using (11) equation (10) can also be written as a matrix
product

—C.qk 12
A7 S-c (12)

whereas cX is the current concentration of pollution and
ck*1 the concentration in the next time step. In order to

k+

determine c**1 using the Explicit Euler equation (12) is

rearranged.
K+l = (S- At + I)ck (13)

It is well known that the Explicit Euler can be un stable
using the wrong step size relation. Notation (12) can be
also used to find the Im  plicit Euler form ulation. The
current concentration on the right hand side in equation
(13) is re placed by the c oncentration of the future time
step in order to obtain the implicit formulation.

kKl = (I—=S-At)~1ck (13)

Two-dimensional. Regarding the p roblem form ula-
tion in tw o d imensions t he finite di fference m ethod
looks a little bit different. Due to the fact that an equi-
distant grid, dx = dy is used th e approximation can be
given as follows
E =D- Cx+1y + Cx-1y — 4'Cx,y + Cxy+1 + Cxy-1
2
dt Cx,yd_x Cory (14)
dx
In contrary to the two-dimensional case the matrix nota-

—p-

7,
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tion is not as easy as in one dimension.
S (15)

Therefore only the Explicit Euler method is implement-
ed as shown in (15).

2.2 Finite Element Method
The finite elem ent method was only realized for the
convection-diffusion equation in one dimension.

dc Dazc N dc 0inQ
ot Coe TVax T (16)
c=0o0ndQ

First of all the weak solution of (16) is formalized using
a test function of the according Sobolev space peHg.

dc

—¢dﬂ+f (DVeVo+vVed) =0  (17)
o Ot Q
The formulation of the Gale rkin approximation is nec-

essary to form ulate the sol ution e quation of the finite

element method.
n

0= ) (9 + co(9) (18)

=1
The unk nown variables ¢; in e quation ( 18) have to be
determined. Using linear ba sis functions called ‘hat-
functions' for ¢ a linear system of n equations with n

unknowns, called the Galerkin formulation, results [3].
Ne

Zacif da +
at e @i @

=1

ne (19)
=

In equation (19) n, is the num ber of elem ents in every

finite elem ent and %k ist he domain of ele ment ey.

Equation (19) can also be written in a short form.
¢-M+c-S5=0

o= -0 dQ
ml] Lek (‘pl (10] (20)

5= | (0 Ve;Ve;+ ey o) do
08k

The matrices of (20) are called mass matrix M and stift-
ness matrix S. Considering the mentioned “hatfunctions’
it is clear, that only a few of the possible integrals are
not equal zero.

Those basis functions which corres pond to the cor-
ner points of the element will lead to non trivial results.
Because the element i is connectedto i —1and i+ 1
the profile of the m atrices is a band m atrix with widt h

three.
ck+1 k

C
M——— 4+ 6Sc**1 + (1 — 6)Sck =0

At

0<6<1 @
Equation (22) is called #-method and will be used to
present implicit and e xplicit methods for solving (21).
The most common values for q are:
e 0 = 0, Eplicit Euler
¢ 0 = 1, Implicit Euler
e 0= %, Implicit Heun
Using this method the Explicit and Im plicit Euler algo-
rithm can be given.

= M~Y(M — AtS)c*

22
= (M + AtS)™IM c* (22)

3 Random Walk

An alternative method for simulating transport is the so-
called random walk. This appro ach is contrary t o the
numerical solutions. T he focus changes from a macro-
scopic view t o the sim ulation of m icroscopic be havior
of diffusion by analyzing movements of single particles.

3.1 Intuitive Approach
The intuitive approach describes a model which uses no
grid or collision rules. It is implemented again for both
dimensions.
One-dimensional. Att he beginningt =0 all the
particles are placed in the origin presenting the source
of pollution. The pollution injection happens only at t =
0. The simulation focuses on the c onvection and diffu-
sion behaviour of these initial particles. In this approach
the movement of particles is described by:

EpRiv @3)
The particle m otion in (23) consists of three parts. In
order to get the new position p,,, attime t + At these
three ¢ omponents a re s ummed up. T he variable p,;4
stands for the position at time t. The velocity field v is
multiplied by the step size. T he variable r describes the
diffusive movement of a particle for one time step and is
added to the former particle position p,;4-

The second equation in (23) defines the movement r
in particular. It consists of the step size in space Ax and
a norm ally distribute d ra ndom variable X with m ean
zero and unit variance. In every time step the new posi-
tion of every particle is calcu lated with equation (2 3).
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The simulation ends when the chosen simulation tim e
tend is reached.
Two-dimensional. For
dimensional domain the movement has to be define d in
a different way. There is no 1initial velocity but there is

expansion in a tw o-

an initial direction of every particle d,. T he diffusive
transport is realized by us  ing a norm ally distributed
random variable X and a uniformly distributed random
number U. X is used to generate a random length and U
chooses a coincidental direction.
r=X-Ax a=U"2m

do= () r=(Gng o)t Y
In (24) r stands for the distance the particle moves in a
certain tim e s tep. The influence of this param  eter is
similar to the diffusi on coefficient. X is the mentioned
normally distributed random variable and Ax describes
the step size in space . The second equation of (24) sets
the direction for the particle’s ne xt m ove. The initial
direction d; is only necessary for the recursive de fini-
tion. During sim ulation the direction of the last move-
ment is used to calculate the next one. The convection is
realized by a shift in fl ow direction along x. The final
formulation of the random walk movement can be given
as follows

Pnew = Powa +d 17+ VAL (25)

3.2 Gaussian Approach

This approach shows the connection between a random
walk approach and the analytical solution.
One-dimensional. The an alytical so lution ofth e
convection-diffusion e quation (2) is used to de fine the
particle movement. Considering the probability density
function of a normal or Gaussian distribution

1 _(x—w)? 26)
= 202
)= et

At the beginning t = 0 all the particles are placed in the
origin presenting the source of pollution. The pollution
injection happens only at t =0 . The simulation focuses
on t he conve ction and diffusion be haviour of t hese
initial particles. In this approach the movement of parti-
cles is described by:

Tk @
the formal equivalence to t he analytical solu tion (4) is
obvious. The parameters used in (27) stand for the mean
value m and the standard deviation s which characterize

the position and the width of the Gaussian bell curve in
a unique way. Therefore the according parameters in (4)
can be read out. [4]

u=v-t c?=2-Dt (28)

Due to the properties and m eaning of the parameters in
(28) t he hei ght and wi dth of't he conce ntration peak
depending on time is given. The corresponding particle
movement using (29) can be formulated as follows

Pnew = Pold + v At +V2DAt- X (29)

The variable X stands for a normally distributed random
number with mean zero and unit variance as in the intui-
tive approach. X is newly generated in eve ry step for
each particle. Ide ntifiable by the velocity v the second
term stands fort he convective m otion. This term is

equal to the term of the in tuitive approach. The radical
term describes the diffusive motion and is based on the
standard derivation.

Two-dimensional. In order to en large this ap proach
in two dim ensions the m ovement along y- direction has
tobe a dded. For an e xpansion in atw o-dimensional
domain the y-component of the m ovement hast o be
defined. Due to the fact that there is no flux the new

particle position can be calculated using

prev — pgld +v At +V2DAt - X,
P =3+ DB X,

The variables X, and X, stand for independent normally

(30)

distributed random numbers which are newly generated
in every step for each particle. The term vAt describes
the convective transport. Due to the fact that the diffu-
sion coe fficient is equal for the x- and y-direction the
diffusive movement V2DAt in the random walk de fini-
tion (30) is the same.

4 Results

In the following section the analytical solutions in bot h
dimensions a re com pared t o the various approac hes.
The different conce ntration errors a re discussed. In
general the pa rameter settin g is: diffusion coefficient
D = 0.02 and velocity v = 0.02.

The step sizes At and Ax are variable. The regarded
simulation time varies between tena = 250 and

tend = 500
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4.1 Analytical vs. Finite Difference Method
Results

First of all the numerical solutions are considered.

One-dimensional. In the plot below in Figure 1 the

red curve i s the analyti cal solution and the blue line

sketches the numerical approximation using the Implicit

Euler algorithm.

.

Figure 1. Comparison of the analytical solution and
FDMusing matrix notation.
The results in Table 1 show the instability of the Explic-
it Euler m ethod. The I mplicit Euler algorithm is not
only ultra-stable but also faster and more exact than the
Explicit Eu ler. The a pproximation u sing finite differ-
ences is well-fitting.

Explicit Euler Implicit Euler

At Ax e 1 [ | Il 11
1 1 0.016 4.231E~* 0.016 4.753E~*
1 % 0.009 1.404E~* 0.010 1.600E~*
L i 0.005 0.831E75 0.005 7.323E75
2

L é NaN NaN 0.002 3.531E°5
2

Table 1. Error values of FEM using Explicit and Implicit Eu-
ler.

Two-dimensional. The results re  garding t he two-
dimensional im plementation show a similar be haviour.
In the following the error values are studied in detail.

Also in the two-dimensional case the Explicit Euler
works not for all parameter choices. The error values are
again quite good. The finite d ifference meth od of the
two-dimensional dom ain approximates the convec tion-
diffusion equation in an appropriate way.

Explicit Euler
At Ax Il lleo [l 111
1 1 0.027 1.5624E~*
1 § 0.017 3.779E75
1 % 9.148E~* 1.464E~5
2

1 1 i E11‘9 . E120

Table 2. The error values for FDM are shown.

4.2 Analytical vs. Finite Element Method
Results

The accuracy of the finite element method is better than

of the finite difference method.

[

>

oy

Figure 3. The error for the Implicit Euler algorithm of the
FEM is shown.

In Figure 3 above the upper plot shows t he analytical
solution as well as the finite element method using Im-
plicit Euler. It is hard to distinguish the different curves.

Explicit  Euler Implicit  Euler
At Ax [l leo Il e Il 111

1 1 718E~* 3.16E5 995E~* 3.03E~°

% 623E™* 8.60E~5 6.09E™* 8.54E7°
1 % 313E™* 1.02E~* 274E~* 1.01E™*
2
1 % NaN NaN 249E™* 1.05E7*
4

Table 3. Depending on the used FEM error values are
shown.

The instability of the Implicit Euler is shown in the last
row of table 3. In general the error results are smaller
compared to the results of the finite diffe rence method
in one dimension. The finite element me thod a pproxi-
mates the conve ction-diffusion equation better than the
finite difference method.
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4.3 Analytical vs. Stochastic Results

The acc uracy of the random w alk a pproaches is dis-
cussed in the following paragraph.
One-dimensional. In the plot below in Figure 1 the
red curve i s the analyti cal solution and the blue line
sketches the numerical approximation using the Implicit
Euler algorithm.

[ E] £ ®

Figure 4. Results of stochastic based random walk are
shown.

The gra phic i n Figure 4 sho w th e Gaussian r andom
walk approach coloured inred and the analytical solu-
tion in blue. In the num erical com parisons the si mula-
tion time is t,,q = 500s. Due to long execution times
for the particle movement this pa rameter is reduced to
tena = 250s. The diffusion coefficient is usually set to
D = 0.02 but m odifies if the i ntuitive ap proachi s
used.

Gaussian Random Walk

At [l lleo Il 111

>
x

1 g 0.012 8.948E77
1 % 0.008 9.707E~7
% g 0.007 8.948E77
i % 0.010 9.707E~7

Table 4. Comparison of random walk analytical solution.

The Table 4 shows all the error results of the para meter
study comparing the analytical solution and the random
walk. The diffusion co efficient for t he Gaussian-based
algorithm is setto D = 0.02. Regarding simulation of
the convec tion-diffusion equation, th e im plementation
of the Gaussian-based random walk fits better tha n the
intuitive approach. The number of particles is 6000.

Two-dimensional. In order to compare the analytical
solution to a random walk ap proach the results have to
be adapted. In the random walk the output describes the
smoothed amount of pa rticles in every cel 1. Due to the
initial Dirac-fun ction the integral at the beginning has
value one. The area of the random walk domain is dis-
cretizised. Th erefore th e output has to be divided n ot
only by the nu mber of partic les but also b y the area of
the cells used for the flattening. Table 5 s hows the ap-
proximation results. The parameter r describes the used
radius for the flattening. I the spatial ste p size is de-
creasing a greater radius r can be used. If r is chosen too
big compared to Ax the result loses t he shape of a b ell
curve. Compared to the results of the numerical simula-
tion th e rand om walk appro ach lead s to greater e rror
values. The number of particles is 4000.

Implicit ~ Euler

At Ax r N I lleo 1111

1 1 3 4000 3.395E73 6.349E~*
% 8 4000 5.033E73 3.737E°°

1 % 15 4000 4.526E~% 1.005E~*

2

1 % 20 4000 2.801E~3 2.206E73

2

1 % 20 8000 6.764E73 1.826E~*

Table 5. Comparison of random walk analytical solution.

5 Conclusion

In general the finite element method app roximates the
convection-diffusion e quation the best. Ofcoursethe
very best solution is the analytical one. In spite of it all
random walk approaches are quite good approximations
of the convection-diffusion equation.
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