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Abstract. Several approaches to detect or even predict
abnormal events as early as possible will be discussed.
The model input is a time series of frequently collected
data. The approaches presented in this document use
various methods originating in the field of data mining,
machine learning and soft computing in a hybrid man-
ner. After a basic introduction including several areas of
application, the focus will lie on the modular parts of the
proposed server outage model, starting with a discussion
about different approaches to time series prediction
such as SARIMA models and specific artificial neural
networks. After the presentation of several algorithms
for outlier detection (angle-based outlier factor, one-
class support vector machines) the gained results of the
simulation are put up for discussion. The text ends with
an outlook for possible future work.

Introduction

Before we want to discuss abnormal event detection in
general, we state the following two definitions.

Definition 1 (Event): An event shall be defined as an
occurrence happening at a determinable time and place
with a certain duration. It may be a part of a chain of
occurrences as an effect of a preceding occurrence and
as the cause of a succeeding occurrence. It is possible
that more than one event occurs at the same time and/or
place.

Definition 2 (Abnormal Event): An abnormal event
shall be defined as an outlier in a chain of events, an
event that deviates so much from the other events as to
arouse suspicion that it was caused by something that
does not follow the usual behavior of the considered
system and that it could change the entire system behav-
ior.

Applications of abnormal event detection can be
found in a broad variety of areas, almost all of them
following the idea to guarantee a certain level of safety
for the system considered. Examples are the prediction
or detection of server outages, of natural catastrophes
like flooding, hurricanes or earthquakes, of stock market
breakdowns and of network intrusions. In the area of
audio and video surveillance crowd behavior or traffic
might be analyzed, but abnormal event detection also
plays an important role in ambient assisted living.

Various approaches have been suggested for abnor-
mal event detection. This paper is going to focus on
time series forecasting with artificial neural networks
(ANN) and outlier detection of the prediction errors
with one-class support vector machines (OC-SVM) as
proposed by [4], [5], [6], [7] as well as by [8]. Other
applied methods in the field of abnormal event detection
are listed below:

e sparse reconstruction cost ([14])

e wavelet decomposition ([15])

o clustering based abnormal event detection ([12])
o change point detection ([11])

e explicit descriptors statistical model

e bayes estimation

e maximum likelihood

e correlation analysis

e principal component analysis (PCA).
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1 Data Generation and Data
Preprocessing

1.1 Data generation

Server monitoring is rampant nowadays. Server moni-
toring software allows to measure lots of features of a
server that somehow describe its status. For our simula-
tions, we had a total of up to 1439 features per server
which were measured at a sampling rate from about one
per fifteen minutes up to one per minute.

Besides historic data sets of several servers that were
logged in the past, IBM Lotus Domino Server.Load was
used to generate artificial data sets. The capacity-
planning tool was used to run tests, also called scripts
and workloads, against a targeted server to measure its
server capacity and response metrics. During these tests,
each client generated a simulated user load of transac-
tions against the server under test, which reported server
statistics back to the client.

1.2 Data preprocessing

First of all, the size of the recorded data set is rather
large. All the simulations for a rapid server alert system
have to be carried out at least nearly online. Thus a
reduction of the original data set is indispensable. We
used expert knowledge and did a feature selection by
categorizing the features into four groups of different
priorities, resulting in up to 14 features of the highest
priority 0 and up to 73 features of the two most im-
portant priorities 0 and 1. Most simulation runs were
implemented using the data labelled with these two
priorities.

As the model intends to recognize the actual and fu-
ture status of a server, those features that accumulate
values (e.g., number of mails sent since the start of the
server monitoring) were transformed into their differ-
ences.

Wrong measurements are also an issue that has to be
dealt with for the server outage detection model. Espe-
cially features that deal with the queue length of hard
disks delivered impossible values in a few cases. These
values were substituted by their predecessors (if those
were possible values) during the learning process. Of
course, this substitution is also possible during on-line
simulation runs.

Another possibility is to delete those wrong values
like it needs to be done, when a measurement cannot be
carried out correctly due to any reason and the feature at
this time is NaN. The distribution of these NaNs can be
investigated separately. The algorithms proposed in the
following sections are not able to deal with NaNs.

The ranges of the features considered in the model
differ a lot. To make them comparable, the whole data
set needs to be normalized. When using the neuro-
predictor for the rapid server alert model, is seems best
to use the following minmax-mapping to normalize the
data:

Vmax = Ymin) (¢ — Xin)
(xmax - xmin)

This is an affine transformation from [X,;in, Xmax]

to [ymint ymax]~

f(x) = Ymin + (D

2 Predictor

Given any process that is checked for abnormal events,
usually some features of this process can be measured at
a constant sampling rate. Let m be the number of ob-
served features. This results in m univariate time series.
Given some past values and the actual value x, of a
certain feature, it is possible to predict the next observa-
tion x,,, with a predictor and to calculate the prediction
error as soon as the true new value x,,, is measured.

Besides the classic ARIMA models that can be used
for time series prediction, a certain kind of ANNs has
proven to be an efficient predictor. Both models are
going to be introduced in the following subsections. A
multivariate approach is not recommended based on the
simulation results for the server outage prediction as
well as based on the results of various other authors. If a
multivariate approach is desired nevertheless, we sug-
gest to cluster the features first into several groups and
to use an own multivariate predictor for each group.

The basic idea for any predictor of the abnormal
event detection model is that the predictions are very
good, if there are no abnormal events, i.e., the system’s
status is normal. The predictions become worse and do
not originate from the usual distribution at least at the
beginning of an abnormal event.

From a time series point of view, the most difficult
task for the predictor is to consider the seasonality of the
time series of some features.
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For example, the number of logged in users of a
company on a certain Monday at 9:00 a.m. will proba-
bly strongly depend on the number of logged in users on
Monday one week before at the same time. Feasts and
holidays can cause problems for such models.

2.1 Neuro-Predictor

ANNs are non-linear and data-driven by nature and
therefore at least theoretically very well suited to model
seasonality interacting with other components.
[16] refers to Simon Haykin, who suggests choosing
the number of training patterns based on
w

N=— 2)
&

W shall be the number of weights used in the ANN,
€ shall be the error the training examples should be
classified with and N shall be the number of patterns in
the training set in this context.

When using ANNs to forecast time series, data nor-
malization is a key issue. Various normalization meth-
ods can be applied; logarithmic or exponential scaling
can be used if problems with non-linearities are ex-
pected during the network training. Linear normaliza-
tions like (1) can be used to meet the requirements of
the network input layer, as the input range must not be
too wide.

Significant patterns as seasonality and trends should
be removed, if possible, to make the ANN time series
model easier. To be able to use the concept of cross-
validation, appropriate training, test and validation data
sets need to be chosen. For our simulations the training
data includes 70%, the test and the validation set in-
cludes 15% of the preprocessed data each.

The tasks of structuring the data and choosing the
number of input nodes n; of the ANN predominantly
depend on the number d of lagged values to be used for
forecasting of the next value in the standard case of a
one-step-ahead prediction. Thus the function to be mod-
eled by the ANN is of the type

X1 = [ Xn—1) oor Xn—gs1) 3)

This function can also be alternated to

Xn1 = f(xn'xn—lt o Xn—d+1 Xn—s) - r Xn—2s ) (4)

for a seasonality s. If the seasonality was not re-
moved and the data preprocessing produces suitable
input data blocks, seasonality can thus be modeled in an
explicit way by the neuro-predictor.

The number of output neurons n, directly corre-
sponds to the forecasting horizon, i.e. in the case of a
one-step-ahead forecast there is only one output neuron.
Usually only one hidden layer is used. The number of
the neurons in the hidden layer n;, was chosen accord-
ing to the geometric pyramid rule:

n, = a/n;n,, a € [0.5,2] 5)

Choosing the number of hidden neurons as well as
the data normalization involves trial-and-error experi-
mentation.

We used the hyperbolic tangent as activation func-
tion in the hidden layer (the sigmoid function is also
possible) and the linear activation function for the out-
put layer. According to [2], a non-linear activation func-
tion in the output layer is only needed, if the time series
shows a significant trend even after the data prepro-
cessing.

For the training of such neuro-predictors we use the
Levenberg-Marquardt algorithm. The training sets are
presented to the ANNs in several epochs. The super-
vised learning stops as soon as one of the following
three break conditions is met:

1. The number of training epochs exceeds the value of a
chosen tuning parameter.

2. The number of back-to-back epochs, which the error
function of the validation set increases in, exceeds
the value of a chosen tuning parameter.

3. The error value of the test data set falls below some
minimal error value (e.g. 10°).

If there are several ANN models that we can finally
choose from, an adapted version of the AIC can be
applied:
AIC = Nn, In(c?) + 2k 6)
The model with the smallest AIC shall be preferred.
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Figure 1. Prediction errors of a certain server feature,
using a neuro-predictor.
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2.2 SARIMA Models

B being the backshift operator, autoregressive integrated
moving average models with parameters p, d and q for a
time series {x;} with error terms {¢,} are given by

p(B)x, = 0(B)e; (7

14
$(B) = (1 - 2@8") (1- B ®)

with

and
q
6(B)=1- ) 6,8 )
2

If the time series exhibits a strong seasonality, the mod-
el is adapted to a seasonal autoregressive integrated
moving average model with parameters (p,d,q) X
(P, D, Q),, which is given by

P(B)(B)VVex, = O(B*)0(B)e (10)

with V being the differencing operator, D the number of
seasonal differences, ® a polynomial of degree P, © a
polynomial of degree Q and

0@ =(1-)" 45, (i)

First of all, the orders of differencing have to be identi-
fied to attain a stationary time series, several transfor-
mations like the logarithmic one might be useful. By
looking at the plots of the autocorrelation function
(ACF) and the partial autocorrelation function (PACF) —
they are in fact bar charts — of the differenced series, the
numbers of AR and/or MA terms that are needed can
tentatively be identified, for example following the
advices that can be found in [1].

2.3 Comparison Between Neuro-Predictors
and SARIMA Models

When using ANNs for prediction, the results obtained
by various authors differ widely in quality: Some sug-
gest that ANNs are better than other forecasting models,
others contradict them. Some have seemed to obtain
better results with seasonally adjusted data, others think
that ANNSs are able to directly model seasonality in an
implicit way, without any seasonal adjustments on the
input data. Detailed research results are presented in [2].

In 1991, Sharda, Patil and Tang identified a number
of facts that determine which method is superior by
experiments:

e For time series with long memory, both approaches
deliver similar results.

¢ For time series with short memory, ANNs outperform
the traditional Box-Jenkins approach in some exper-

iments by more than 100%.

 For time series of various complexities, the optimally
tuned neural network topologies are of higher effi-
ciency than the corresponding traditional algorithms.

[16]

A hybrid combination of neural networks and traditional
approaches — maybe also including GARCH models —
seems very promising.

For the server outage detection model, some time se-
ries involved might have a long memory, others a short
one. All in all, it seems reasonable that it is less inexact
to choose the same parameters for all the feature predic-
tors, if the neuro-predictors are used. Choosing the same
parameters for all the predictors simplifies the model a
lot.

General Model Assumption.

The predictors work in a rather exact way, if and only if
the server status is ok.

3 Outage Detector

An analysis of prediction errors is the basis for the
anomaly detector. The outage detector decides in a
multivariate way, whether the prediction errors of all the
features belong to the class ,normal‘ or not. We did not
only let the anomaly detector decide upon the most
recent prediction errors, but we also made him judge
upon a moving average of the prediction errors, which
increases the tolerance against weaknesses within the
prediction models.

Depending on the number of features predicted, the
dimension of the prediction error vector is a key issue
for choosing a good anomaly detector. For increasing
dimension the relevance of distance converges against 0
— a phenomenon which is part of the curse of dimen-
sionality.

7,
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[17] distincts three fundamental approaches to de-
tect outliers:
e Model neither normality nor abnormality. Determine

the outliers with no prior knowledge of the data. This
is essentially a learning approach analogous to unsu-
pervised clustering.

e Model both normality and abnormality. This ap-
proach is analogous to supervised classification and
requires pre-labeled data, tagged as normal or ab-
normal.

e Model only normality; maybe tolerate abnormality in
very few cases. Authors generally name this tech-
nique novelty detection or novelty recognition, espe-
cially if only normal data is given. It is analogous to
a semi-supervised recognition or detection task. Only
the normal class is taught but the algorithm learns to
recognize abnormality. Theapproach needs pre-
classified data but only learns data marked normal.

3.1 Threshold

For lower dimensions a simple threshold for a prediction
error norm like the Euclidean norm can be sufficient to
detect anomalies (assuming that all the features have been
transformed to similar ranges during the preprocessing).
If the predictions of several features are as bad as the
ones on the outside margin of the Gaussian bell of figure
2, they will be detected by simple threshold.

(=] X
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Figure 2. A typical histogram of the predictioﬁ errors of
a single server feature: A Gaussian bell and a
few outliers clearly visible on the outside mar-

gin

3.2 Angle-Based Outlier Detection

Angles are more stable than distances in high-
dimensional spaces, which suggests the use of angles
instead of distances for high-dimensional data. In fact,
the situation is contrary for low-dimensional data. The
angle-based outlier detection (ABOD) method alleviates
the effects of the notorious curse of dimensionality
compared to purely distance-based methods.

Following the idea of the algorithm developed by
Kriegel, Schubert and Zimek (2008, see [9]), a point is
considered as an outlier, if most other points are located
in a similar direction, and a point is considered as an
inlier, if many other points are located in varying direc-
tions. The broadness of the spectrum of the angles be-
tween a certain point A and all pairs of the other points
is a score for the outlierness of A: The smaller the score,
the greater is the point’s outlierness. The idea of the
algorithm is illustrated for two dimensions in figure 3.

The angles in the so-called angle-based outlier factor
are weighted by the squared inverse of the correspond-
ing distances to avoid bigger problems with low-
dimensional data sets.

_ (4B, AC)
ABOF(A) =VARgccp (W) (12)

A possibility to approximate the computationally
expensive ABOF is to calculate the variance of the
angles only of the pairs of points which belong to the k
nearest neighbors of 4, since these are the ones with the
largest weights in the formula (12). [10] provides fur-
ther details on this issue.

outlier
no outlier

Figure 3. Idea of angle-based outlier detection

3.3 One-Class Support Vector Machine

In general, one-class support vector machines (OC-
SVMs) are designed for the certain type of a (1 + x)-
class learning task. This is a model with an unknown
number of classes, but the modeler is only interested in
one specific class. Typical examples for these kinds of
tasks are content-based image retrieval or document-
retrieval in general. Making research for this paper on
the internet can be seen as such a task: Papers which
treat relevant topics are alike, they represent the class
the modeler is interested in. These are the positive ex-
amples and it is easy to find some good representatives
of this class. The negative examples are simply the rest
of the web pages or papers, and they originate from an
unknown number of different negative classes.

It is daunting and wrong to try to characterize the
distribution of the negatives in such cases; they could
belong to any negative class, and the modeler is not
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even interested which exact negative classes they might
belong to. Each negative example is negative in its own
way, but as the positive ones are alike, it is possible to
model their distribution. According to this the OC-SVM
is a typical example of a model of normality, matching
the third approach described at the beginning of this
section.

The OC-SVM tries to fit a tight hypersphere W to
include most, but not all positive examples. If it is at-
tempted to fit all positive examples, this would lead to
overfitting. In fact, the OC-SVM searches for the max-
imal margin hyperplane

wx+b=0 (13)

with a normal vector w and a bias b which separates the
training data from the origin in the best way. It may be
interpreted as a regular two-class SVM, where almost
all the training data lies in the first class and the origin is
the only member of the second class.

If the one class the modeler is interested in is con-
sidered as the regular data, resulting from normality, the
negative examples detected by the OC-SVM can be
considered as outliers of a different nature resulting
from anomaly. This makes the OC-SVM an effective
outlier detection tool.

Let {xq,..,x,},x; € X S R™ be a training set of
n € N observations that belong to a single class. The
OC-SVM aims to define the minimum volume region
enclosing (1 —v)n observations. The parameter
v € [0,1] thus controls the fraction of observations that
are allowed to be outliers. K shall be a kernel with a
mapping function ¢. & shall be the slack variables for
observations on the wrong side; non-zero slack varia-
bles correspond to the tolerated outliers. The OC-SVM
algorithm results in the following minimization prob-
lem:

ol b+ 1S 14
mglelf-b+50 6 09
i=
subject to
wTe(x)—b=&=0 (15)

Solving the OC-SVM optimization problem is
equivalent to a dual quadratic programming problem
with Lagrangian multipliers a; that can be solved with
standard methods:

1 n n
max,, — —Z Z al-ajl{(xl-,xj) (16)
2 i=1 j=1

subject to
n 1
2 =1 0<a<— a7
i=1 vn
Those patterns with corresponding @; > 0 are the sup-
port vectors. By using the Karush-Kuhn-Tucker condi-
tions w and b can be obtained as

n
w ZZ a;x; (18)
i

=1
n

b= Z a;x] x; (19)
i=1

for any support vector x;.

SV on the margin

Enclosed
data points

Separation
Hyperplane
w

SVnoton
the margin
(outlier/abnormal)

Figure 4. One-class support vector machine [8]

A new observation x is labeled by the OC-SVM via the
decision function

fO)=we()—b (20)

which is positive for inliers and negative for outliers.

According to [8], it is easily possible to define a
family of decision rules introducing a threshold y € R
by using an adaption of (20) and dividing inliers and
outliers along y instead of 0. This formulation allows
controlling the trade-off between the probability to miss
outliers and the probability to falsely declare an obser-
vation an outlier.

3.4 Combined Detector

As all the proposed outlier detector methods return an
outlierness score for a feature vector, they could be used
in a hybrid way. Then a weighted sum of the outlierness
scores of each method is the final outlierness score of an
observation. The ideas to compare outlier scores provid-
ed by [19] should be obeyed.

7,
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4 Results and Outlook

First of all, it has to be stated that it is almost impossible
to precisely define the term server outage, wherefore a
definition is not given in this paper. Any limitation to
the normal operation of a server is unwanted. Many
times only a certain kind of tasks is delayed or cannot
be executed at all. The severity of this limitation also
depends on the fact whether users can carry out other
tasks in the mean time. The only possibilities to give the
modeler an idea about the severity of an outage are the
total downtime minutes or downtime minutes per user.
Thus the basic idea of this model is to be able to provide
the administrator of a server with the detec-
tion/prediction of irregularities, of anomalies which
differ from the usual server operation. A classification
of outages would be very useful, but requires labelled
outage data to learn from. This remains future work.

Within the proposed model, the numbers of lagged
time series elements that are relevant for the univariate
prediction models for each server feature are not very
easy to determine and the optimal number probably
varies for each variable. Also the seasonality of the
feature time series is not easy to diagnose. Nevertheless,
the prediction models with global parameters for all the
predictors worked very well during a normal operation
of servers and seem to be sufficient for an online server
outage detection model.

During several test runs, the anomaly detectors easi-
ly detected when the servers changed their status from
idle to busy and vice versa (see figure 5). They also
detected abnormal events within the gas price time
series which was used as a benchmark data set (see
figure 6). For this time series, an abnormal event is for
example the oil crisis of 1979, which was caused by the
Islamic revolution in Iran and the first gulf war, i.e. by
external events. For the server outage detection model,
the verification is rather difficult and there will be done
further research on this topic: Besides the difficulty to
define a server outage, the model needs to be tested in a
real-life scenario which is planned in near future. So far,
the detectors worked well with the test data sets.
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Figure 5. Angle-based outlier detector detecting the
server change from idle to busy (green) and
busy to idle (red)

Median Fintesed Prediction Err of the Gas Prices Tine Senes
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Figure 6. Median-filtered prediction error of the gas
prices time series using a neuro-predictor with
a delay of 3 months, 10 hidden neurons and a
threshold for abnormal event detection. The
median was calculated over 6 months. The
first peak above the threshold 20 corresponds
to the 1979 oil crisis.

Of course, a server outage prediction software has a
cold start: During the training some internal model
parameters that are required to run the model need to be
adjusted, before an expert can adjust several tuning
parameters to control the alert sensitivity of the soft-
ware. The most important tuning parameters are part of
the anomaly detector. One could say that the server
outage detection model needs to get to know the server
that the outages shall be predicted of. As parts of the
model are able to learn from the past, the software is
expected to highly improve its performance after several
days.

An important question that still remains unanswered
is when the neuro-predictors should be retrained or
when the ARIMA models should be updated. Certainly,
if the way the server is used changes considerably, a re-
start of the model is necessary.
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