SNE TECHNICAL NOTE

Implementation of Quantized State Systems
iIn MATLAB/Simulink

Patrick Grabher!, Matthias RoRler?”, Bernhard Heinzl®

Inst. of Analysis and Scientific Computing, Vienna University of Technology, Wiedner HaupstrafRe 8-10,

1040 Vienna, Austria; * matthias.roessler@tuwien.ac.at

2dwh Simulation Services, Neustiftg. 57-59, A-1070 Wien, Austria
3Inst. of Computer Aided Automation, Vienna University of Technology, Treitlstral3e 3, 1040 Vienna, Austria.

Simulation Notes Europe SNE 24(3-4), 2014, 185 - 190
DOI: 10.11128/sne.24.tn. 10269

Received: June 12, 2014; Revised September 25, 2014;
Accepted: October 25, 2014;

Abstract. Common practice in the simulation of contin-
uous systems is to discretize the time in order to obtain a
numerical solution. The Quantized State System (QSS)
approach makes it possible that the discretisation is
applied to the state variables, instead of the time range.
In other words continuous systems can be simulated
event-based with the QSS method. It also effects a new
orientation and leads among other things to very effi-
cient state event detection. Ernesto Kofman and Sergio
Junco presented the QSS method in the DEVS formalism
[1]. This paper describes how the implementation of the
QSS method in Simulink/SimEvents works and which
restrictions still exist.

1 Introduction

The content of this chapter is taken from [1]. Consider-
ing a model which is described by the equation

x(®) = f(x(®),u®), M
the associated QSS system is
x(t) = f(q(®),u(®)). (2)

The variable q(t) is the quantized state of x(t) and
will be obtained by a quantized hysteretic function and
is defined by:

Let Q = {Qy, Q1,0Q5, ..., Q,-} be a set of real numbers
and Q;_y < Q; for 1 <i <r. Let x € 2 be a continues
trajectory, where x: R — R. Let b: 2 — 2 be a mapping
and g = b(x) the trajectory which satisfies

Qm ift=tg
_ ) Qirrif x(£) = Qi1 Aq(tT) = Qini<Tr
MO = oif x(0) = 01 - enq(t) = Quai > 0
q(t), else
and
0, if x(to) < Qo
m= r, if x(t) 2 Q; , @

J i Q= x(t) < Qjyq

then b is the Quantized Function with Hysteresis. ¢ is
called hysteresis width und describes a delay for some
events. Generally you use a uniform quantum

AQ like in Figure 1.

q(t)
QI’ """""""""""""""""""""""

Qo

Q Q x®
Figure 1: Quantized Function with Hysteresis.

Figure 2: Block diagram of a Quantized State System,
which consists of the static function f and the
quantized intergrator with hysteresis.

SNE 24(3-4) - 12/2014



P Grabher et al. Implementation of Quantized State Systems in MATLAB/Simulink

- _QA_ | trig #d
[l
(@n, ﬁ —{new g
q u 1 previous i ~L
linitial Value: qC T = e e = = - |
- - . =l
i previous dx| - dx
lifetime je— ~F lifetime Single Server - to |
State q Event Filter - signal N our I hold an entity
never execgles the ®. (1 ltill the next Iransitiorl
Fix suatzg;nslfem Entity Sink1 Get Attribute2 EntitySink .~ T T T
“41q0
[ 0R i
Logical
4-{ : '—ﬂ I
Operator ime X
[ ] -~ - i dx
e
[ ~*previous x
- 1
Initial Value: xC ~[dx
g il Valoe: C o ~ |
J~ »»*i
"~ [ time
() Event Filter State x
Clock  Timed to
Event Signal4
[EIY P — ‘ time
(@ ! ©, #d ! L’X
ve i
o ! o IN1 Idfx i OJUT
ext. Transition . —»‘ ifetime
1 | ouT| v‘IN'OUT’L IN Ll
#d IN2 R
1 ts @, 1 - . 1 Set Attributel
ouT} Path Combiner1 1 i(q0) | time
. — h dx—
] int Transitior | 1L i + oum NBUT N
I - =l dx Ll = =7 ,  lime
1 QUT -‘INOUTr IN path Combi Single Server 3 - to avoid 11 OUTE
ath Combiner isti i i
I Initalizatior 1 r( _— ) “”iet Attribute3 Statistical relative to entity Get Atributel
i(qres
B ! w01 ?( Y our
Xneu | i b '
[Zoz! 1 ¢ ©UT| — IJIN'OUTL IN Single Server 2 - to avoid
reset | | J Set Attribute5  Statistical relative to entity
L =1

Single Server - to avoid

Reset
_ese_ Statistical relative to entity

Figure 3: Implementation of the Quantized Integrator of QSS method in Simulink.

Figure 2 shows the block diagram of a QSS. Since it is a 1.1 Events and Entity Generators

first order method, the signals q and d, are always Considering a quantized integrator, computations have
piecewise constant for every static function f (note that to be performed only in moments of events. In the QSS
f is time-invariant). So it is sufficient to implement only method there are two types of events. The first type is
the quantized integrator to obtain a legitimate QSS the input event. It describes any kind of change in the
system. state derivative. The other type is the output event, it is

a change of the quantized state. In figure 3 one can see

1 Impl ementation of the Q SS og the left s:ide the quantized sFate q and the state deriv-
ative d,, as inputs for the QSS integrator.

Method in Simulink Generally each event in the QSS system generates
an entity in at least one integrator. Additional entities
are generated in the beginning of the simulation or if the
integrator is reset. The single purpose of these kinds of
entities is to initialize the system with the according
initial values, so the lifetime of these entities are zero
seconds. For each case there exists an entity generator
(see the bottom left corner in figure 3). In some models
an input event occurs simultaneously with an output
event. For this case the event priority in the entity gen-
erator for the input events is set to 1000 in contrast to 5,
so that input events are replaced. It should be men-
tioned, that it does not matter which event is preferred
because both entities get the same attributes.

A large part of the implementation was built with ele-
ments from the SimEvents library. The general func-
tionality of this integrator is: An event, like a change in
the state derivative or in the quantized state, generates
an entity. This new entity replaces the last entity. In this
moment it describes the new state and specifies when
the quantized state has to change.

SNE 24(3-4) - 12/2014



P Grabher et al.

Implementation of Quantized State Systems in MATLAB/Simulink

1.2 Attributes and computations

The generated entities also get some attributes to de-
scribe the exact state of the integrator. Let S,, be an
entity (with sequencing entity S,,). Its related attrib-
utes time of arising t,,, exact state x,, index i, € Z of
the quantized state q, = i, - AQ, state derivative d,,
and the lifetime o, are computed and stored in the mo-
ment of the creation of S,,. The initial values x,, i, and
qo (see the blue outlined blocks in Figure 3) are given
by

xO = x(o);

0
iy = xA(—Q) , 5)
qo = ip - AQ.

The single purpose of the usage i,,, which is an Int32
data type, is that simple rounding errors can be avoided
in g,. The state x,, (see the green outlined block in
Figure 3) is obtained by

_ X, if n=20 6
n = {xn—l + dx,n—l (tn — thoy1), else’ ©)
How long this integrator holds his state q,, depends on
0,, which is given by

0, if n=0
nat2D7m e n > 0 Ady, > 0

dxn

I (n-1-8) if >0 Adyy <0 '

[dxnl

' o ifn>0Ade,=0

o, =

(M

After this attributes were assigned to S, the entity
reaches the entity (single) server (see the red outlined
block in Figure 3). It stays for o,,, if meanwhile no other
entity replaces it.

If S, reaches o, in this entity server and if o, # 0
(i.e no initialization) it generates an output event and the
quantized state changes its values by

 (qn+4Q, if dyn >0
In+1 = {qn - AQ' lf dx,n <0 (8)

In the other cases @, stays unchanged with
Qn+1 = qn (see the yellow outlined block in Figure 3).

1.3 Interaction between event and time-
based blocks

The compatibility between different blocks in Simulink
is an important issue. In principle, the integrator is built
with event-based blocks, but for the attributes q,, and x,,
computations are necessary. Therefore in Simulink exist
the possibilities to use the Attribute Function (it is an
embedded MATLAB-function), the Gateway-blocks
(does not work for every signal and produces sometimes
algebraic loops) or time-based math operations, which
need to be in an Atomic Subsystem.

In the end the third possibility is the best in view of
reliability and efficiency at the moment. Figure 3 also
shows, that all atomic subsystems are executed by
changes of only one signal, on that account all other
input signals use an event filter.

1.4 Comments

In Figure 3 you can see some additional entity servers,
that haven’t been described in the previous chapter.
They do not cause any delay for the entities. These
blocks ensure that each entity receives its corresponding
attributes. If they would not exist, the entities could
receive attributes, which belong to the last entity.

The integrator allows some types of signals and
changes to be reset. You can find these properties in the
entity generator which is responsible for the reset (see
Figure 3 in the bottom left corner).

Constant

0

x0=1 | >= 10

X az01 9 [ >
—a

Switch

I

Constant

0 —inl
x0=1 Outl
- E—
dx Q=01 q In2

Atomic Subsystem

Qss

Figure 4: Incompatible time-based blocks have to be
placed inside an Atomic Subsystem.

SNE 24(3-4) - 12/2014



P Grabher et al. Implementation of Quantized State Systems in MATLAB/Simulink E!I

If you create a model sometimes time-based blocks
are not compatible with the integrator, because they
don’t work with the event-based signal type which is
coming from the integrator. In this case you have to put
the blocks which provoke an error into an atomic sub-
system (like Figure 4).

2 Case Studies and Results

In this chapter the properties of the QSS method will be
presented. First it should be mentioned, that the solution
of QSS method usually doesn’t converge in the equilib-
rium point and so the state is finally oscillating. Also the
behaviour with stiff equations is different. We know
from time discrete systems that their solution diverges
from the analytical solution if they are not stable.

This could not happen with the QSS method, be-
cause the error is always bounded with the quantum,
although it is fully explicit. But how does the rate of
stiff systems affect the solution of the QSS method? The
answer is, the more stiff the equation is, the faster is the
oscillation of the solution.

2.1 Simple equation

Let following initial value problem be given:

x(t) = —100- (x(t)- 0.1),

x(0)= 1. ©)

Already this example shows that it is sufficient to take a
small step size h for an explicit solver like the Forward
Euler (FE) method. Figure 5 shows what happens, if h
is chosen too large with h = 0.025, namely the solution
of the FE diverges from the analytic solution.

— QSS: AQ=¢=0.2

—~ — FE: h=0.025

— — —analytic solution
T 1

0 0.05 0.1 0.15 0.2
t

Figure 5: Numerical solutions from the different types of
explicit solvers.

SNE 24(3-4) - 12/2014

This kind of problem does not appear with the QSS
method. Usually the quantized state is not able to attain
the equilibrium point, so the solution oscillates around
it, but it is always bounded with the quantum AQ. Fig-
ure 5 shows this behavior of the QSS method with
AQ = 0.2.

2.2 Stiff equation

Following equation represents a stiff problem:

x1(t) = xz(t),
%, (t) = —1000 - (x, () + x,()) + 9500,  (10)
x,(0) =0, x,(0) = 10.

To solve this system a quantum AQ = 1 is chosen. Fig-
ure 6 shows the behaviour of the QSS method, which is
overwhelmed with this situation. The second state vari-
able has 2500 changes in this simulation.

—aqy number of transistions = 10

—ay number of transitions = 2500

0 1 2 3 4 5
t
Figure 6: Stiff equations effect a fast oscillation in the
state.

The conclusion is that the QSS method is always stable,
but requires potentially many computations (see 1QSS
[2], if you are interested to avoid this problem).

Let us now consider other properties of the QSS
method. The event-based system has another two ad-
vantages over common time discrete solvers. Firstly,
events can be directly detected by the QSS system, so
especially for models with a large number of events this
method is more efficient than time discrete solvers. The
second point is the asynchronous procedure, which is
not possible for time discrete solvers. This could be
very interesting in large models. The following exam-
ples show these capabilities.



2.3 H-Bridge

This model comes from drive engineering and is used to
control a DC motor with frequently toggled (with a
PWM signal) voltage supply and shows the advantages
caused by the asynchronous procedure of the QSS
method. Basically this model [3] is described by an
electrical part

Us = Ugyr + Ug + Uy, (11)
and a mechanical part
I - &= M-k . (12)

In the first equation ug describes the DC voltage supply,
which is controlled by a PWMsignal, ug the voltage
of the electromotive force, up the voltage at the re-
sistance and u; the voltage of the inductance. In the
mechanical part (12) I is the moment of inertia of the
rotor, M the motor torque, k the motor viscous friction
constant and w stands for the angle (w angular velocity,
@ angular acceleration).

A PWM signal with a frequency of 1kHz controls
the H-Bridge for the acceleration and braking proce-
dure. The great advantage of the QSS is that the most
computations, which depends on the PWMsignal, must
be made in the electronic equation (11) only, whereas
the mechanical part (12) depends on a change in the
electric current i (input event) or @ (output event). In
contrast a time discrete solver, which works synchronous-
ly, has to update the whole system if the PWMsignal
produces an event.

Figure 7 shows a simulation, where the motor is ac-
celerated the first 8 seconds, then it runs free for 4 sec-
onds (no PWM signal) and at last it brakes.

100
——Qss
0t — — ~RK45 ]
o
0 F
_50 . . )
0 5 10 15 20
t
100
3
s 50
T
0 .
0 5

Figure 7: Simulation results of the DC motor.

E!I P Grabher et al. Implementation of Quantized State Systems in MATLAB/Simulink

For the quantum AQ the QSS method has 394 output
events at the first integrator (%i — i) and 397 at the

second (@ — w), i.e. that the second one has overall
only 791 events (output and input events). In contrast
the RK45 uses 29082 grid points for this simulation.
Although the motor was running free in the interval
(8,12) (i.e. no PWM and i = 0 A) the RK45 solver has
unnecessary many computations, caused by missing the
event i = 0 A, see Figure 8. The QSS method does not
have this problem and manages the running free opera-
tion perfectly with only 7 events in the interval (8,12).
I

‘ ——ass ||
L -~ ~RK45
TR |

“\‘W It Yl“”!“\ w\w‘\‘w &‘ ”H‘;\W\,:\w\%w"m.\“w:\b\‘:“l‘h!wl\“"h‘w“

\ i i
I Al "
™ I
1t It

1 Iyt (.
A

Figure 8: Simulation results of the DC motor in the
interval (7,13.1).

2.4 Bouncing ball

Let us now consider a model of a bouncing ball on the
floor [4]. The attention here should be pointed at the
events when the ball touches the ground and especially
what happens if the ball’s vertical speed v(t) goes to 0
m/s. The fall condition is described by

V=" (13)
x(t) = v(t).
In (13) g describes the earth gravity constant. If the
height x(t) = 0 the ball touches the ground and v has to
be reset withv(t) =k-v,,,, with the coefficient of
restitution ke(—1,0). Normally (in time discrete sys-
tems) also the height x(t) will be reset in the moment of
an event, which won’t be necessary here.

Figure 9 shows three numerical solutions. One can
see that is important which quantum is chosen.

SNE 24(3-4) - 12/2014



P Grabher et al.

Implementation of Quantized State Systems in MATLAB/Simulink

101

floor
———Q88:4Q,=0.1, 4Q,=0.001
~ — —QSS: AQ=0.1
-~ RK45: rel. Tol.=10°

-2
Figure 9: Simulation results of the Bouncing Ball.

Although the QSS method recognizes every event, some
parameters effect that the ball does not come up from
the floor at a definite time so that it has only the fall
condition from this moment. Figure 10 shows the mo-
ment of the QSS (AQ = 0.1), where the ball does not
come up from the floor any more.

05¢
floor
041~ - —QS5:4Q,=0.1, AQ,=0.001
| ~ — —QSS: AQ=0.1
031\ ~ — RK45: rel. Tol.=10°
0.2 ‘
% N
= 01r
- \
0 \
A\ \ PEEN |
-0.1 ' N o
\ |
-0.2 A -
\ |
\ |
5 52 5.4 5.6 5.8 6 6.2

t

Figure 10: Simulation results of the Bouncing Ball in the
interval (5,6.2).

Nevertheless with the QSS method it is also possible to
reach the rolling condition. Figure 11 shows that with
well chosen parameters (AQ; = 0.1,AQ, = 0.001) a
periodic oscillation on the floor can be obtained.

SNE 24(3-4) - 12/2014

0.03;
floor
0.025 —(S$:4Q,=0.1, 4Q,=0.001
- QSS:AQ=0.1
0.02 -~ RK45: rel. Tol.=10°

0.015F

0.01r

a,(t). x(t)

0.005

0

I
I
-0.005 I
I
|

-0.01 : : : : :
5.8 6 6.2 6.4 6.6 6.8

t
Figure 11: Simulation results of the Bouncing Ball in the

interval (5.8,6.8).

Such a rolling condition, which is computed with the
QSS method, is inconceivable for time discrete solvers
unless they obtain help from additional approaches, like
zero crossing detection or a reset of the height x(t) in
the moment of every event to handle this Zeno Phenom-
enon.

References

[1] Kofman E, Junco S. Quantized-State Systems: A DEVs
Approach for Continuous System Simulation. Transac-
tions of the Society for Computer Smulation Interna-
tional - Recent advances in DEVS Methodol ogy--part I.
2001; 18(3): 123-132. ISSN: 0740-6797.

Cellier FE, Kofman E. Continuous System Smulation.
New York: Springer; 2006. 643 p. ISBN: 978-0-387-
26102-7.

Control Tutorials for MATLAB and Simulink. University
of Michigan. Bill Messner, Dawn Tilbury. cited 2014
Sep 26. Available from: http://ctms.engin.umich.edu/
CTMS/index.php?example=MotorSpeed&section=Simul
inkModeling

Heinzl B, RoBler M, Korner A, Zauner G, Ecker H,
Breitenecker F. BCP - A Benchmark for Teaching Struc-
tural Dynamical Systems. In Breitenecker F, Troch I, ed-
itors. Mathematical Modelling. MATHMOD 2012 - 7th
Vienna Conference on Mathematical Modelling; 2012
Feb; Vienna University of Technology. Ziirich: Interna-
tional Federation of Automatic Control. 896-901. ISBN:
978-3-902823-23-6.

—
[\
—

—
w
—_

ﬁ
~
B




