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Abstract.  Common practice in the simulation of contin-
uous systems is to discretize the time in order to obtain a 
numerical solution. The Quantized State System (QSS) 
approach makes it possible that the discretisation is 
applied to the state variables, instead of the time range. 
In other words continuous systems can be simulated 
event-based with the QSS method. It also effects a new 
orientation and leads among other things to very effi-
cient state event detection. Ernesto Kofman and Sergio 
Junco presented the QSS method in the DEVS formalism 
[1]. This paper describes how the implementation of the 
QSS method in Simulink/SimEvents works and which 
restrictions still exist.  

1 Introduction 
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Quantized Function with Hysteresis. 

Figure 1: Quantized Function with Hysteresis. 
 

 
Figure 2: Block diagram of a Quantized State System, 

which consists of the static function  and the 
quantized intergrator with hysteresis. 
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1 Implementation of the QSS 
Method in Simulink 

1.1 Events and Entity Generators  

Figure 3: Implementation of the Quantized Integrator of QSS method in Simulink.
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1.3 Interaction between event and time-
based blocks 

Attribute Function
Gateway-blocks

Atomic Subsystem.

1.4 Comments 

Figure 4: Incompatible time-based blocks have to be 
placed inside an Atomic Subsystem. 
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2 Case Studies and Results 

2.1 Simple equation 

 
 

Figure 5: Numerical solutions from the different types of 
explicit solvers. 

2.2  Stiff equation 

 
 

Figure 6: Stiff equations effect a fast oscillation in the 
state. 
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2.3 H-Bridge 
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Figure 7: Simulation results of the DC motor. 

 

Figure 8: Simulation results of the DC motor in the  
interval (7,13.1). 

2.4  Bouncing ball 
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Figure 9: Simulation results of the Bouncing Ball. 

Figure 10: Simulation results of the Bouncing Ball in the 
interval (5,6.2). 

 
Figure 11: Simulation results of the Bouncing Ball in the 

interval (5.8,6.8). 
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