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Abstract. Post combustion CO; capturing holds an im-
portant position in the area of carbon capture and se-
questration (CCS). Research in this area range from ex-
perimental work to modeling work. Dynamic models are
interesting since these describe the plant operation
during variations, up-stream or down-stream, and due to
their use-fulness in control design. To take full advantage
of state space models in control design, it is necessary to
have on-line knowledge of all states, also states that are
not measured directly. Techniques for state estimation,
such as Kalman filter based methods, thus form key
technology for advancing control solutions. But state
estimation is also of interest in its own right for making
available on-line knowledge of states. In this study, a
dynamic model of an amine based CO, capture plant is
used as a basis for a state estimator. A high order ver-
sion of the model is used to represent the “real” plant. A
reduced order model of the plant is then used for state
estimation, and the Ensemble Kalman filter is used.

Introduction

Power generation via fossil fuel-fired power plants is
known to be the largest single source of CO, emission in
the world [1]. The development of capture technologies
targeting such sources therefore is important for achiev-
ing the goals in CO, emission reduction. Post-
combustion capture, pre-combustion capture and oxy-
fuel combustion are the three main technologies availa-
ble at present [2], and much research is done with the
prospect of developing those techniques further.

Post combustion capture is still the best known tech-
nique, possibly due to the large number of existing
power plants, and the promising developments that are
available. CO, capture by amine absorption and strip-
ping is currently considered to be the most feasible
option for the removal of carbon dioxide from the pow-
er plants’ exhaust gases [3].

Modelling work related to CO, capture technologies
plays an important role with respect to the design, con-
trol and optimization of the capture process. Steady
state models are important for design and optimization
purposes, and dynamic simulation models are important
for control applications. Several dynamic models for
simulating the amine based CO, absorption plants are
presented in literature [4]-[6].

A model consisting of a set of first order differential
equations to represent the system is referred to as a state
space model. To take full advantage of state space mod-
els in control design, it is necessary to have on-line
knowledge of all states, also states that are not measured
directly. Techniques for state estimation, such as Kal-
man filter based methods, thus form a key technology
for advancing control solutions. But state estimation is
also of interest in its own right for making available on-
line knowledge of states.

The Kalman filter based methods vary from basic
Kalman filter (KF) to its extensions and generalizations
such as the Extended Kalman Filter and Unscented
Kalman Filter. The basic Kalman filter is applicable for
linear dynamic systems, while the extensions and gener-
alizations of the method are there to be used with the
nonlinear dynamic systems [7]. The Ensemble Kalman
Filter (EnKF) is another alternative to the traditional
Kalman filter for better handling of nonlinear models
with large number of states [8].
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Use of traditional KF methods for models with high-
dimensional state vectors is computationally difficult as
an error covariance matrix for the model states needs to
be stored and propagated in time. The Extended Kalman
filter uses a linearized equation for the error covariance
evolution when the model dynamics are nonlinear. This
linearization can result in unbounded linear instabilities
for the error evolution [8]. These two problems can be
solved to a great extent by using the Ensemble Kalman
filter.

In this study, a dynamic model of an amine based
CO, capture plant is used as a basis for a state estimator.
The model as developed and published by Jayarathna et
al. ([6], [9] - [12]) is used in this study as the plant mod-
el. A high order version of the model is used to repre-
sent the ‘real system’ due to the absence of real plant
data. A reduced order model of the plant is then used for
state estimation, and the Ensemble Kalman filter is
used.

1 Theory

The EnKF algorithm is presented in details with the
derivation by Evensen [13]. Initialization of the estima-
tor is done by providing values for the initial ensemble.
When the number of simulations in an ensemble is N,
the values of the initial ensemble are given according to
the eq. 1.

x0|0~]\f(320, Py) (1)

Having the initial ensembles available, the state estima-
tor runs trough a propagation step and a measurement
update step at each time step. The propagation step
consists of three consecutive steps, the ensemble propa-
gation, the estimated state-output propagation and the
covariance calculation. For each simulation i (i =
1,2,...,N), the ensemble propagation step is given by
egs. 2 and 3.

Xk = frem1 (Xh—1jk—1> U—1, Wh—1) (2)

J’;;|k—1 = hk—l(xliqk—l'vlic—l) (3)

Here wi_, and v._, are the model disturbances
(W~N(wy, W)) and the
(v~ (0,1)).

measurement noise
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The propagation of the estimated state and output is
given by egs. 4 and 5.

a ?’:1 xli<|k—1 (4)
Xilk-1 = - N
N T ylic k-1
P = L = ' (5)

The covariance calculation is done according to egs. 6
and 7.

eJic,klk—I = (Xlic|k—1 - fk|k-1) (6)
p _ Z?Izl(eaic,mk—l)(e9ic,k|k—1)T (7)
klk-1 = N1

After completing the propagation step, the state estima-
tor updates the predictions using the available meas-
urements. The measurement update step consists of two
consecutive stages in the used algorithm, Kalman gain
calculation and state-out-covariance update. The
Kalman gain calculations is performed according to
the eqgs. 8-11.

ey ete-1 = Vkpe1 = Pij-1) (®)
p = Z?I:l(e)i/,km—l)(e)i/.mk—l)T )
y = N-1
P = Zﬁv=1(eaic,k|k—1)(e;,k|k—1)T (10)
v N-1
K, = nyPy_l (11)

The state-out-covariance update step is given by egs.
12-14.

xliqk = xlic|k—1 + K ((}’k +vp) - y}i|k—1) (12)

P xliclk
g = Zi=17rk (13)
Kklk N
Pk|k = Pklk—l - KkuK]Z‘ (14)

Here yj = g(x). _

Updated values of the states (xj ;) are then taken as
the initial values to run the estimator for the next time
step. The averaged values (J?,id ) are the estimates for
the time step. The covariance matrix (Py;) can be used

to get an idea about the uncertainty of the predictions.
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2 Implementation

In the implementation of the state estimator, the number
of ensembles is taken to be 60 (N = 60). The Parallel
Computing Toolbox in MATLAB is used to work with
12 threads at the same time. This way, 12 simulations
are performed simultaneously to complete each ensem-
ble, and the time required for completing the simula-
tions for an ensemble is reduced by five times. Initial
state values (x;) are taken from a simulation with suffi-
ciently long simulation time, thus steady state is as-
sumed. The covariance matrix of the initial states (Py)
is given according to the magnitude of the x, values (as
a rule of thumb, the values of the diagonal matrix
(Py) are taken as a fraction of the initial state values).

A higher order model, i.e. with a higher number of
control volumes than in the state estimator, is used to
represent the “real” system due to the absence of real
plant data. According to the assumptions made during the
model development an infinite number of CVs should be
used to represent the columns in the real system. But a
finite number of CVs has to be used in practice.

Use of a finite number of control volumes introduces
diffusion into the column models. Diffusion is a phe-
nomenon that occur in the absorption and stripping
columns. Therefore, it is acceptable to have a finite
number of control volumes in the model that represents
the real plant.

Several compositions and temperatures are taken as
the measurements; we assume a total of 26 measure-
ments. Measured compositions are the composition of
the cleaned gas and the gas leaving the stripping column
(can be measured by gas chromatography). The amount
of dissolved CO, (total CO,) and MEA (total MEA) in
the solvent streams leaving the absorption tower, strip-
ping tower and the buffer tank are also taken as
measurements.

Mass flow rate of the amine solutions leaving the
absorber, stripper and the buffer tank without the mass
flow rate of the dissolved CO, are also included in the
measurements. Temperatures of the liquid and vapor
leaving the absorption tower, temperatures of the liquid
and vapor streams leaving the stripping column, tem-
peratures of the liquid streams leaving the heat ex-
changers and the temperature of the buffer tank are
taken as the temperature measurements. Measurement
noise is assumed to be white noise.

3 KF Predictions

An analysis related to the number of control volumes
used in the tower models, given in Figure 1, showed that
the execution time increases quadratically with the in-
creasing number of control volumes. Therefore the
number of control volumes to be used in the state esti-
mator is chosen to be around 50 control volumes.

When the sensitivity of the model predictions to the
number of control volumes used in the tower discretiza-
tion is considered, from Figure 1 it is noticeable that the
model predictions improves with the increasing number
of control volumes up to about 100 CVs in towers. The
predicted values remains with very little variations for
higher number of control volumes than 100, but as can
be seen from Figure 1 the execution time for the simula-
tions increases very much for higher number of CVs
than 100.
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Figure 1: Execution time of the simulations with the
number of control volumes used in the tower
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Figure 2: Dependancy of the model predictions on the
number of control volumes in the tower
descretizations. Qg5 predicted is the predicted
re-boiler duty, a,.,, predicted is the predicted lean
loading value, ag,, predicted is the predicted rich
loading value and 7¢,, predicted is the predicted
CO, removal efficiency.
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Therefore, 100 CVs is chosen as a rough limit for
the maximum number of CVs that are used in the towers
for the model that is used for representing the real sys-
tem. The dependency of the model predictions with the
number of control volumes used is shown in Figure 2.

Several different cases are studied to analyze the es-
timates of the EnKF to different scale of model errors.
The model error was increased by increasing the differ-
ence between the number of control volumes used in the
model that represents the real plant and the model used
in the state estimator. One hour of the plant operation is
simulated. Information about the cases performed for
analyzing the sensitivity of the state estimator for the
model error are given in the Table 1. Selected states are
presented in Figures 3 - 8 for the four cases of Table 1
to analyse the quality of the estimates. Figures 3 - 5
show three measured states and Figures 6 - 8 show three

Prediction of CO, concentration in the cleaned gas
leaving the absorption tower (Figure 3), which is a
measured state, appear to be a good match with the real
state in all four cases. Further, it can be seen that the
measurement noise of this state is very small, and that
should be the reason for this high quality prediction in
all the cases. The other two measured states presented,
the temperature of the rich amine steam leaving the
absorber (Figure 4) and the temperature of the rich
amine leaving the cross heat exchanger (Figure 5), are
predicted with larger errors. The pattern of the predic-
tions appears to follow the pattern of the real states, and
the error of the prediction appears to be increasing with

the model error.
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1 15 15 1 2h
2 50 50 1 20 h
3 40 50 125 6h
4 40 100 25 6h

Table 1: Details of the cases used for analyzing the
sensitivity to the model error.
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Figure 4: Temperature of the amine streams leaving
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Figure 3: CO, concentration in the cleaned gas leaving
the absorption tower. y,: measurement,
xi: real state, X;: a posteriori state,
Xk |k—1: @ priori state.
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Figure 5: Temperature of the rich amine stream leaving

the cross heat exchanger. y,: measurement,
x): real state, X, ,: a posteriori state,
Zijr-1: @ priori state.
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Figure 6: Total CO, concentration in the amine stream at

1/3 of the packing height of the absorption

tower. x,: real state, % ,: a posteriori state,
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Figure 7: Liquid phase temperature at 1/3rd of the ab-
sorber packing height. x,: real state,
Ry i+ @ posteriori state, Xy ,—: @ priori state.
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Figure 8: Total CO, concentration at 1/3rd of packing
height of the stripping tower. x;: real state,
Xy s @ posteriori state, £ ,—1: a priori state.

Estimates of the states that are not measured are also
in good accordance with the pattern of the real states
(Figures 6 - 8). Similar to the observation with the
measured states, it can be seen that the error in the esti-
mated values are increasing with the increase in the
model error.

When the computation time needed for each of the
cases is considered, it can be seen that there will always
be a time delay before the estimates are available.

4 Conclusions and
Recommendations

A state estimator for making on-line predictions of the
states of a CO, capture plant is developed. The Ensem-
ble Kalman Filter algorithm is used in the state estima-
tor, due to the suitability of the algorithm to handle
nonlinear models with a large number of states. A sim-
ple model (with small number of control volumes) is
used in the estimator while a high order model (with
large number of control volumes) is used to represent
the real system. Absence of real plant data is the reason
for using a high order model as the real system. Accord-
ing to the assumptions of the model development, an
infinite number of control volumes should be used in
the tower discretization to represent the real system. In
practice a finite number of control volumes is used,
thought. Tower discretization into finite number of
control volumes introduces diffusion into the system,
which is also there in reality. Therefore, use of a finite
number of control volumes in tower discretization is
justified.

Sensitivity of the estimates to the model error is ana-
lyzed by performing simulations with increasing model
error (by making the difference between the model and
the system to increase). Some predictions seem very
good and some predictions seems to be poorer. The
observation from the results of the sensitivity analysis,
in general, is that the deviation of the estimates from the
real states increases with the increasing model error.

According to the simulation time needed for each of
the cases considered in the sensitivity analysis, it can be
seen that the estimates are available always with a time
delay. This high computational time of the estimator is a
problem for making available the timely estimates of the
unmeasured states.
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The use of iterations with the flash calculations in
the model can be a reason for the computation time of
the estimator. Making table look-up values available to
be used instead of performing flash calculations, will be
an option to speed up the estimator.

When the tendency to increase the error in the esti-
mates with the increase of model error and the time
delay of the estimates are considered, it is concluded
that some restructuring of the model is required before
the estimator is ready for on-line use.
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