SNE TECHNICAL NOTE

Tool-Independent Distributed Simulations using
Transmission Line Elements and the Functional
Mock-up Interface

Robert Braun*, Petter Krus

Division of Fluid and Mechatronic Systems, Linképing University, SE-58183 Linkdping, Sweden;

*robert.oraun@liu.se

Simulation Notes Europe SNE 24(3-4), 2014, 149 - 154

DOI: 10.11128/sne.24.tn.10259

Received: Jan.10, 2014 (Selected SIMS 2013 Postconf. Publ.);
Accepted: June 15, 2014;

Abstract. This paper describes how models from differ-
ent simulation tools can be connected and simulated on
different processors by using the Functional Mockup
Interface (FMI) and the transmission line element meth-
od (TLM). Interconnectivity between programs makes it
possible to model each part of a complex system with
the best suited tool, which will shorten the modelling
time and increase the accuracy of the results. Because
the system will be naturally partitioned, it is possible to
identify weak links and replace them with transmission
line elements, thereby introducing a controlled time
delay. This makes the different parts of the system natu-
rally independent, making it possible to simulate large
aggregated system models with good performance on
multi-core processors. The proposed method is demon-
strated on an example model. A suggestion of an XML
extension to the FMI standard for describing TLM ports is
also presented.

Introduction

If different parts of a simulation model can be run on
different processor cores, execution time can be consid-
erably shortened. By using the transmission line element
method (TLM) with independent distributed solvers, it
is possible to achieve natural parallelism. This paper
investigates the possibilities the combine this with the
Functional Mock-up Interface (FMI), a standardised
interface for connecting different simulation environ-
ments.

Using TLM and FMI together makes it possible to
run distributed simulations with sub-models from dif-
ferent tools, which can fully exploit the benefits of
multi-core processors.

First, the backgrounds of FMI, TLM, and the Hop-
san simulation environment are explained. Then the
implementations of import and export routines of FMI
are presented. Finally, the validity of the method is
confirmed by experiments on an example model.

1 Functional Mockup Interface

The Functional Mock-up Interface (FMI) is an open
standardised interface for connecting simulation envi-
ronments in a variety of ways. It is developed by the
MODELISAR consortium, initiated by Dassault Sys-
tems [1]. There are four areas where FMI can be used:

e FMI for model exchange
e FMI for co-simulation

e FMI for applications

o FMI for PLM

The basic concept is to create a Functional Mockup Unit
(FMU) from a model in one tool and then import it and
use it in a target environment. An FMU consists of a
compressed ZIP file with the FMU file extension. It
contains an XML description of the contents and the
simulation code as a set of C functions, either as binary
files and/or compilable source code, which can be used
by the host program. It can also contain documentation
and a graphical icon. The use of a plain C interface
makes FMUs compiler independent. They do, however,
still depend on platform and architecture. With FMI for
co-simulation the solver is included in the FMU, as
opposed to FMI for model exchange, where the solver
must be provided by host program.

SNE 24(3-4) - 12/2014

R Braun

Distributed Simulations using Transmission Line Elements and FMI

This paper focuses only on model exchange, mainly
because it is supported by a larger number of vendors.
In the upcoming FMI 2.0 standard, the difference be-
tween co-simulation and model exchange will be re-
duced [2]. It is, however, not yet released and is not
used in this paper.

FMU

modelDescription.xml |
™ modelName.dll LT ™

icon.png

help.html

Source Software Host Software

Figure 1: With the FMI standard, Functional Mockup
Units (FMUs) can be used to exchange models
among simulation tools.

2 Transmission Line Element
Connections

The transmission line element method (TLM) is a meth-
od for partitioning models by introducing physically
motivated time delays. It is related to the method of
characteristics [3] and to transmission line modelling
[4]. In physical systems, information propagation is
always delayed by capacitances.

The concept with transmission line elements is to
replace these capacitances in the model with transmis-
sion line elements, modelled as characteristic imped-
ances. This method makes it possible to maintain accu-
rate wave propagation, which is not possible by using
only pure time delays.

At

f1.v1 fa.va
— —

Figure 2: An example of a transmission line element is
the linear mechanical spring.

An example of a TLM element is the linear mechanical
spring, as shown in Figure 2. As can be seen it is sub-
jected to two forces, f; and f,, from the left and the
right side, respectively. According to equation (1) each
force is defined by a function of the velocity at the same
side and the delayed force and delayed velocity from the
other side. This implies that one end is always inde-
pendent of the opposite end at the same point of time.

SNE 24(3-4) - 12/2014

This enables the use of distributed solvers, where
each sub-component in the model solves its own equa-
tions. This approach is very suitable for co-simulation
and parallel execution [5].

f1(6) = F(v,(0), fo(t — AD), v,(t — AD))
f2(8) = G(v, (D), f1(t — AD), v, (t — AD))

When communicating between different programs using
TLM connections, it is important thatthe variables in
each connection are clearly specified. This can be done
manually by the user when importing the model to the
host environment, although this can be quite cumber-
some. An alternative solution would be to include this
information in the XML specification in the FMU. A
TLM connection is defined as four variables; intensity,
flow, wave variable, and characteristic impedance.
Some additional variables may also be necessary de-
pending on the physical domain, such as position and
equivalent inertia for mechanical connections.

Even though similarities between different domains
exist, it is unfortunately not possible to use a general
definition; the set of variables will always need to be
hard-coded depending on the physical type of the con-
nection. For example, an incompressible fluid needs
only one flow variable, while a compressible fluid
might need variables for both mass flow and volume
flow. It is also necessary to provide information of
whether the FMU is a resistive component (Q-type) or a
transmission line connection (C-type). In order to trans-
fer this information, the following addition to the XML
description is suggested, see Figure 3

(1)

<tlmConnections>
<tlmConnection type="q" domain="hydraulic">
(q)ql(/q)
<p>pl</p>
<c>ci</c>
<Zc>Zcl</Zc>
</tlmConnection>
<tlmConnection type="c" domain="mechanic">
<F>F2</F>
<x>x2</x>
<y>v2</v>
<me>M2</me>
<c>c2</c>
<Zc>Zc2</Zc>
</tlmConnection>
</tlmConnections>

Figure 3: An addition to the FMU XML description,
describing TLM ports, is suggested.

R Braun

Distributed Simulations using Transmission Line Elements and FMI

3 Importing Functional Mock-up
Units

All experiments in this paper are conducted in Hopsan,
a distributed simulation environment developed at Lin-
koping University [6]. It is based on the transmission
line element method and uses distributed solvers. Com-
ponents in Hopsan are quite similar to FMUs; they con-
sist of a pre-compiled shared library file and an XML
description file. The library file, however, is linked
against Hopsan from where it inherits classes and can
thus not be used standalone.

The process of importing an FMU to Hopsan is im-
plemented in the following way, see Figure 5. First the
files are extracted to a temporary directory. Then the
XML is parsed, including TLM specifications if present.
Then the source file for the component library
(fmuLib.cc) and the Hopsan component (fmu-
Name.hpp) are generated and compiled to a shared li-
brary. A simple solver that uses the forward Euler
method is also included, in order to be able to solve the
equations.

This would not be required with FMI for co-
simulation, where the solver is included in the FMU.
Finally, the XML description (fmuName.xml) is gener-
ated. The component can then be loaded from Hopsan
and will then be available from the component library.

Decompress all files using Tzip

¥

Read model information from modelDescription.xml

]

Read TLM data modelDescription.iml (if exists)

(

(

[¥
Generate fmuLib.cc and [fmuName] .hpp

(

(

(

(

ki
Compile [fmuName] .d11

]

Generate [fmuName] . xml

¥
Dynamically load [fmuName] .d11 from Hopsan

LS W A S S N SR -

Figure 4: FMUs are imported to Hopsan by compiling a
wrapper library.

Hopsan is an object-oriented simulation environment
where everything is pre-compiled. Components are
objects that can be connected by node objects [7].

During the simulation, each component solves itself
independently. Therefore no compilation prior to simu-
lation is required. The main simulation uses fixed time
steps for communication between components and
nodes. It is, however, up to each component to decide
how to perform its calculations. Thus, it is possible to
use variable time steps inside a certain component.
Theoretically, it is possible to use variable time steps
also for the whole model, but previous experiments
show that this is generally not worth the effort [8].

4 Exporting Models to
Functional Mock-Up Units

Hopsan does not contain any equations or numerical
solvers. The natural method would thus be to export an
FMU for co-simulation. For compatibility with other
software, however, the model exchange interface is
used. The exported FMU does, however, actually solve
itself and is basically working as an FMU for co-
simulation.

According to the FMI specifications, only one
shared library file is allowed. It is thus not possible to
link against a pre-compiled Hopsan library file; the
simulation core must be compiled into the FMU library.
The model file is also included as a string variable in a
header file and is loaded during initialisation.

Another factor which must be considered is that the
FMI standard requires a plain C interface to ensure
cross-compiler compatibility. Because the Hopsan simu-
lation core is written in C++, a wrapper file is used to
allow access to all required functions without using C++
features, such as classes and objects.

The export process begins with parsing the model
and generating the XML description, together with the
TLM extension if required. All source code files are
then generated, including the model header file and the
wrapper files. These files are then compiled along with
the source code from the Hopsan simulation core and
the required FMI source code. Finally, the binary and
the XML description are compressed using 7zip. It is
important to use the ‘deflate’ compression method, to
ensure compatibility.

SNE 24(3-4) - 12/2014

R Braun

Distributed Simulations using Transmission Line Elements and FMI

Parse model file

¥

Generate modelDescription.xml

L

Generate C interface wrapper

¥

Generate model . hpp

L]

Compile [fmuName] .d11

¥

Compress all files using Tzip

N Y Y Y Yy

| N T I NI, N

Figure 5: FMUs are exported from Hopsan by compiling
the simulation core with a C interface using a
wrapper.

FMUs exported from Hopsan are successfully validated
by importing them into OpenModelica, Dymola, FMU
SDK, and also back into Hopsan itself. They are veri-
fied with FMU Checker version 1.0.2. No errors or
warnings are reported.

5 Example Simulation

In order to demonstrate the proposed method, an exam-
ple model is created, see Figure 6. It consists of a four-
wheel vehicle with an engine, a mechanical gearbox,
and a hydraulic transmission. The hydraulic system is
modelled using built-in pre-compiled C++ components
in Hopsan.

@

&

The engine is modelled as a PI-controlled torque source
with velocity feedback. As a demonstration, it is export-
ed from Hopsan to an FMU and then imported back into
Hopsan. The brake component is created in the same
way. Models for the vehicle, the wheels, and the gear-
box are all equation-based models created in OpenMod-
elica, an open-source Modelica-based simulation tool
[9]. They are then exported to Hopsan as FMUs. The
vehicle consists of a linear inertia with a drag coeffi-
cient parameter. Wheels are modelled as rotating iner-
tias with ports for drive shaft, brakes, and attachments
in the vehicle. The gearbox is modelled as a rotating
inertia with changeable gear ratio.

All components are connected through transmission
line elements, representing the shafts and mechanical
connections. This means that stiffness is replaced by
characteristic impedances and a time delay, which re-
sults in a decoupled system with good wave propagation
accuracy. Pre-defined components in Hopsan are used
for this purpose.

In order to verify the functionality of the model, a
simple drive cycle is simulated. The vehicle is first
accelerated to 50 km/h and then to 70 km/h. It is then
slowed down to 30 km/h and finally comes to a stop, see
Figure 7.

1
7

Figure 6: An example model that describes a four-wheel vehicle with a simple hydraulic transmission is used to verify

the proposed method.

SNE 24(3-4) - 12/2014

R Braun

Distributed Simulations using Transmission Line Elements and FMI

Velocity [km/h]

0 5 10

15 20 25 30 35 40
Time [s]

Figure 7: A simple drive cyxle is used to verify the
functionality of the example model.

Load balancing is an essential aspect in parallel pro-
gramming. If the work is not equally distributed over
the threads, the speed-up will be limited by the slowest
thread. In Hopsan this is solved by an automatic algo-
rithm that measures the simulation time for each com-
ponent over a few time steps before the actual simula-
tion. This information is in turn used to distribute the
components evenly over the simulation threads [5]. The
average measured time per iteration for each sub-
component type in the example model is shown in Ta-
ble 1. Note that these measurements are made on differ-
ent sub-models and can thus not be used to compare the
performance of different simulation tools.

Sub-model Time/iteration
Wheel (OpenModelica, FMU) 1.192 us
Gearbox (OpenModelica, FMU) 1.083 us
Vehicle (OpenModelica, FMU) 0.574 us
Brake (Hopsan, FMU) 0.476 us
Engine (Hopsan, FMU) 0.189 us
Relief Valve (Hopsan, built-in) 0.121 us
Pump (Hopsan, built-in) 0.115 us
Volume (Hopsan, built-in) 0.024 us

Table 1: The simulation time for each sub-component
ismeasured before the simulation, to achieve
good load balancing.

The resulting distribution is shown in Table 2. Compo-
nents of C-type are generally much faster than those of
Q-type. In this case they only required 5.8% of the total
time. For this reason, only the threads for Q-type com-
ponents are analysed.

Thread 1 Thread2 Thread3 Thread 4

Wheel1 Wheel2 Wheel3 Wheel 4
Gearbox Vehicle Pump 1 Pump 2
Relief Relief Valve 2
Valve 1
Pump 3 Pump 4
Pump 5 Check Valve 1
Check Valve 2
Total 2275us 1.765us 1.644us 1.606 us

time

Table 2: Sub-components are automatically distributed over
the simulation threads.

As can be seen, a decent although not perfect load bal-
ancing is achieved. There are also overhead time costs
from time measurements and thread synchronisation.
Simulation time is, however, still more than twice as
fast with four threads compared to with one thread. See
Table 3 for simulation times for 10,000 time steps with
different numbers of processors. The time reduction
from parallel simulation will increase when larger mod-
els are used. Theoretical maximum of speed-up is lim-
ited by the number of processor cores [5].

Threads Simulation time
1 3307 ms
2 2091 ms
3 1466 ms

Table 3: Parallel execution reduces simulation time.

6 Conclusions

This paper shows that it is possible to combine the
FMI standard with the transmission line element meth-
od. This makes it possible to simulate large aggregated
models, consisting of submodels from different model-
ling tools, in parallel on multi-core processors. Simula-
tion time can then be significantly reduced. An inter-
esting continuation could be real-time applications,
where simulation performance is a critical aspect.
Other possible future work could be to investigate
higher level modelling methods for describing aggre-
gated FMI models.

SNE 24(3-4) - 12/2014

R Braun

Distributed Simulations using Transmission Line Elements and FMI

Experiments were performed with FMI for model
exchange using a simple solver. FMI for co-simulation
would be more suitable, but is so for not supported by
many simulation tools. Such difficulties will be easier to
overcome with the FMI 2.0 standard, where co-
simulation and model exchange will be harmonised.

Acknowledgement. This work was supported by
ProViking research school and the Swedish Foundation
for Strategic Research (SSF).

This contribution is a post-conference publication
from SIMS 2013 Conference (54th SIMS Conference,
Bergen University College, Norway, October 16-18,
2013). The contribution was originally published in the
Proceedings of SIMS 2013, to be found http://www.

scansims.org/ sims2013/SIMS2013.pdf.

References

[1] Blochwitz T, et al. The functional mockup interface for
tool independent exchange of simulation models. In:
Modelica’2011 Conference, Proceedings of the 8th In-
ternational Modelica Conference; 2011 March; P.20-22

[2] Blochwitz T, et al. Functional mockup interface 2.0: The
standard for tool independent exchange of simulation
models. In: 9th International Modelica Conference;
2012; Munich

SNE 24(3-4) - 12/2014

[3] Auslander DM. Distributed system simulation with bilat-

—
~
flnar

[7

[8

[9

—_

—

—_

—

eral delay-line models. J. Fluids Eng. 1968; 90(2): 195—
200. doi: 10.1115/1.3605079

Johns PB, O’Brian MA. Use of the transmission line
modelling (T.L.M) method to solve nonlinear lumped
networks. Radio And Electronic Engineer. 1980;
50(1/2): 59-70. doi: 10.1049/ree.1980.0006

Braun R, Nordin P, Eriksson B, Krus P. High Perfor-
mance System Simulation Using Multiple Processor
Cores. In: Sairiala H, Koskinen KT, editors. SICFP'11.
The Twelfth Scandinavian International Conference On
Fluid Power; 2011 May; Tampere

Axin M, Braun R, Dell’Amico A, Eriksson B, Nordin P,
Pettersson K, Staack I, Krus P. Next Generation Simula-
tion Software Using Transmission Line Elements. In:
Johnston N and Plummer AR, editors. Fluid
Power and Motion Control; 2010 October; Bath, Eng-
land. 265-276

Eriksson B, Nordin P, Krus P. Hopsan NG, A C++ Im-
plementation Using The TLM Simulation Technique.
SIMS2010. In: Proceedings of The 51st Conference On
Smulation And Modelling; 2010; Oulu, Finland
Jansson A, Krus P, Palmberg J-O. Variable time step
size applied to simulation of fluid power systems using
transmission line elements. In: Fifth Bath International
Fluid Power Workshop; 1992; Bath, England

OpenModelica website [Internet]. [cited 2013 July].
Available from: https://www.openmodelica.org/

