SNE TECHNICAL NOTE

Computational Aspects of Models for Minimizing
the Effects of Ectopic Beats on
Heart Rate Variability

Martin Frank™?, Martin Bachler'?", Siegfried Wassertheurer?, Christopher Mayer?

! Institute of Analysis and Scientific Computing, Vienna University of Technology, Wiedner Haupstra3e 8-10,

1040 Vienna, Austria; * martin.bachler@tuwien.ac.at

2 AIT Austrian Institute of Technology GmbH, Health & Environment Department, Biomedical Systems, Donau-City-

StralRe 1, 1220 Vienna, Austria

Simulation Notes Europe SNE 24(3-4), 2014, 143 - 148
DOI: 10.11128/sne.24.tn.10258

Received: June 10, 2014; Revised August 15, 2014;
Accepted: October 10, 2014;

Abstract. Several studies have highlighted the need of
reliable markers to determine cardiac health. One of the
most promising markers is the heart rate variability
(HRV). However, artifacts, such as ectopic beats, have to
be corrected before HRV parameters can be reliably
used. This paper reviews several recently established
models that are used for ectopic beat correction, with an
emphasis on execution time and memory requirements.
In general, physiologic models require far more execu-
tion time, while memory demand is compareable to
simpler algorithms. Moreover, physiologic models result
in better corrections, compared to simpler methods.
Therefore, we conclude that physiologic models are
prefferable since the execution time is low enough to use
all models in an online approach.

Introduction

The latest reports of the “American Heart Association”
and the “European Heart Network™ highlight that the
leading cause of death are heart diseases in the United
States [1], and diseases of the heart and circulatory
system in Europe [2]. Since early action is the key of
surviving heart failure, reliable markers have to be es-
tablished [1]. The so called heart rate variability (HRV)
is one of the best suited markers for the relationship
between the autonomic nervous system and cardiovas-
cular mortality [3]. HRV parameters are immensely
influenced by the presence of ectopic beats, which have

to be corrected before performing HRV analysis [3][7].

In the last few years several different processing and
correction methods have emerged. However, no com-
prehensive comparative study is available yet. The ap-
proaches may be categorized in (1) interpolation and
removal [8]-[10], (2) filtering [6],[11][14] and (3) mod-
el-based approaches [4][15]-19].

The goal of this work is to provide a comparative
review of different model-based approaches for the
correction of ectopic beats. Thus, different test cases are
defined to perform an objective comparison using artifi-
cally corrupted error-free RR interval time series. In this
work we focus on the computational aspects, i.e. the
execution time and the required memory, of the models
under investigation. A comprehensive evaluation of the
medical parameters and inplications of ectopic beat
correction on HRV measures can be found elsewhere.

1 Methods & Models

In total, seven model-based approaches were compared.
All these algorithms were entirely self-implemented and
tested in Matlab version 2007b (The Mathworks Inc.,
Natick, US) based on literature.

1.1 Ectopic Beat Correction models

The first correction model is called “buffer with combi-
nation rules” (BUFFER), a fast online correction algo-
rithm that was introduced by Rand et al. [18]. It uses
several combination and/or splitting rules of neighbour-
ing RR intervals in the following pre-defined order, as
given in Figure 1.
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Correction l Description
Split Missed heartbeat; divide IBI into two equal intervals
Split 3 ‘Two missed heartbeats: Split IBI into three equal intervals
Combine False trigger; combine two IBIs into one

Combine 2/ Split 2 | Replace two IBIs with their average

Combine 3/ Split 2 | Get two new IBIs as average of three

Combine 2/ Split 3 | Get three new IBIs as average of two
Combine 3/ Split 3 | Replace three IBI values with their average

Uncorrected Could not apply any rule, but IBI appears faulty

Figure 1: BUFFER algorithm by Rand et al. [18].

Before applying the correction, its usefulness is deter-
mined by comparing the RR interval under considera-
tion to statistical parameters of the output buffer con-
taining N preceding correct RR intervals (five RR inter-
vals were used, as suggested in the original work). In
addtion, the new RR interval must fit to those of the
intervals in the input buffer covering munprocessed RR
intervals accounting for at least 6s. The buffer is also
able to detect ectopic beats on its own.

‘Gross positioning of beats’ (GP-IIA) was suggested
by Mateo et al. as coarse positioning of beats [4]. This
method also performs a classification of all beats. By
means of Lagrange's interpolation formula the deriva-
tive of the instantaneous heart rate is estimated at the k™
beat by

tk—1 = 28 + tiys
(k-1 = tr) (o1 = L) (b — Ciyr)
where U is a predefined threshold that is calculated by
U = 4.3 - std(ry,), 2

Tl =2 <U,1)

and limited by 0.5. Based on six different test cases the
beat type is determined. Single ectopic beats are simply
shifted to an intermediate position between the previous
and following normal sinus beat. False-positives (FPs)
are deleted and false-negatives (FNs) are corrected by
insertion of an intermediate evenly spaced beat. Con-
secutive ectopic beats are corrected by insertion of mul-
tiple evenly spaced beats.

In contrast to the former mentioned algorithms, the
‘integral pulse frequency modulation’ (IPFM) model
relies on a physiological relationship. This model is able
to predict the autonomous nervous system (ANS) activi-
ty on the sinoatrial (SA) node by simulating the series of
cardiac events as firings of the SA node [20]. The [IPFM
model integrates the input signal until a beat is generat-
ed and is then reset to zero [4]. Hence, the k" beat can
be interpreted as the integration of the instantaneous
heart rate over the actual RR interval.
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The index of the k" beat can be calculated by
k= f Hlm© 3)
0 T
where t;, denotes the occurrence time of the k" beat,
m(t) is the modulating part of the heart rate and T is the
mean RR interval length.

The IPFM model with s-parameter (IPFM-S) was in-
troduced by Mateo et al. [4]. According to the IPFM
model, the integrator is reset too early if an ectopic beat
occurs, resulting in a lower integration value than ex-
pected (denoted as s). An indexing function of the beat
occurrence times is introduced, which is split into a for-
ward and a backward function. The forward function is
based on the normal sinus beats prior to the ectopic beat
and the backward function is based on the normal sinus
beats afterwards. Both functions are extrapolated to the
neighbouring beat until they overlay. The vertical dif-
ference of the two indexing functions is the s-parameter:

1

tey) —tlky—1+5s)
t(ke) 4)
. J- &/ () —2°(1))dt,
t

(ke—1+5)

S =

where k, denotes the index of the ectopic beat, £/ is the
forward indexing function, and £”is the backward in-
dexing function.

The IPFM model with §-parameter (IPFM-D) was
suggested by Solem et al., since calculation of the s-
parameter may be rather time consuming [15]. The &-
parameter corresponds to the time shift of the beat oc-
currence times followed by an ectopic beat and is relat-
ed to the IPFM model by

t
kl +m(7)dr = kT, + 6. (5)
0
Different 6 - parameters may be used, dependent on

how many beats prior to the ectopic beat are involved in
the calculation (31, 62 and 63). Solem et al. mentioned
that the consideration of more than one prior beat does
not enhance the correction ability [15]. Hence, the 61-
parameter was used in this work. Its performance is
nearly identical to that of the s-parameter, despite of a
reduction in computation time.

The IPFM model with cost function (IPFM-C) was
introduced by Brennan et al. [16]. It was designed to
only account for single premature ventricular contrac-
tions (PVCs).
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Basically, the cost function C(t,) calculates the
quadratic deviation from the mean of the impulse height
of the integration function in dependence of the beat
occurrence time points:

C(t,) = Z Sk — E[D? (6)
Skep
where Sy denotes the height of the integration value at
each beat occurrence time at the reset point, and can be
calculated as follows:

k+M+1

1
S = E,-;M Sinf.(tiss — &) — Si@nf.(t — 1), (7)

where Si is the sinc function and f; is calculated as the

reciprocal of the doubled mean RR interval length I:
1

fe=37 ®)
Further, I is the threshold for the integrate-to-threshold
process (the integration function). The mean integration
height E[y] may be approximated by the following

equation:
e+M

1
Bl ElSd=5— > 5. ©)
k=e—M-1
Thereby, just the M adjacent impulse heights 1, with
respect to t,, are considered. The new beat insertion
time corresponds to the lowest costs.

‘Trend predict correction’ (TPC-HT) was developed
by Wen et al. as a method that corrects ectopic beats
based on trend correlation of the heart timing signal
[17]. Each predicted RR interval is composed of two
parts, the trend and the turbulence:

RRIpred = RRlgeng + RRIyp- (10)

The trend is simply calculated as the weighted mean of
the n previous NN intervals:
tk-1
RRIeng = ) w(t)-RR(), an
t=tg—n
where w(t) are time dependent exponential weights as
described by Citi et al. [19]. The turbulence can be seen
as the slope of the previous NN intervals and is approx-
imated by the following calculation:
RRIpyrp = 1[te] - E[ti], (12)
where [t ] is just the sign of the turbulence and E[t;]
is the quantity. I[t;] can be judged by the signs of the
slopes at t,_; and t;_,:
ki - ko - (kg + ko)
o = ey ey + Rl ()

The slopes are determined by the following calcula-
tion (a tiny value is added to avoid zero, not shown):

Y1) =y (tr—2)

Yt + Y (te-s)

_ Y(te—2) — y(tx-3) . (15)
Y(tr-2) + y(ti-3)

The quantity of the turbulence E[t;] is calculated by

consideration of the two slopes k; and k5, RRl;yenq and

the standard deviation of the previous RR intervals

SDgri :
\/|k1 "k,

E[ty] = RRirena Ta¥b (16)
SDgri
The two coefficients a and b are not specified byWen et
al. [17] and thus were approximated by comparison of
several values in different magnitudes.

‘Point process with history dependent inverse
Gaussian distribution’ (PPHDIG) is an approach based
on a physiologically motivated model, as the IPFM
model. Citi et al. mentioned that the Gaussian random

and (14)

1

2

walk model with drift is an elementary, stochastic inte-
grate-and-fire model that is able to reflect afferences to
the SA node [19]. These excitatory inputs are responsi-
ble for the basal cardiac rhythm and the influence of the
autonomic nervous system through the sympathetic and
para-sympathetic inputs. They used a history-dependent,
time-varying model based on the inverse Gaussian
probability distribution of the waiting time until the next
beat occurs. The probability of the length of the next RR
interval, T — uy, is described at any beat event u; by the
probability density function (PDF):

f (T - “k|u(Hk, g(f)),l(Q(t))) =

260) OO (-u-n(He6©®)).  (17)
= |[—x 7 52 (t-up)n?
21m(T — uy)3 ¢ o

H, is the history vector and contains the P previous RR
intervals (standard parameter P = 5). Further, A4 de-
notes the shape parameter and p the mean of the inverse
Gaussian distribution.

Both depend on the time varying parameters
0(t) = 6,(t), ..., 0p11(t), whereby A(6(t)) is simply
0p.1(t). The history dependent mean is a regression of

the past P RR intervals with time-varying weights:

1(Hi 6() = > 0wy (18)
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The unknown time-varying parameter set 6(t) is es-
timated by a local maximum likelihood method. At each
time t, the parameter vector that maximizes the local
log likelihood in a given observation interval U,,., is
obtained. m denotes the index of the first beat in this
interval and n the index of the last beat.

n—1
L(e(t)lUm:n) =

) (i)(t - u‘k+1) ’ log[f(uk+1 (19)

=m+P

— w| W(He, 6(0)), 2(8(D))],

where w(t) = e™*" is an exponential weighting func-
tion for the local likelihood.

Logarithmic probabilities of the following beat types
are calculated [19]: Extra beat, missed beat, misplaced
beat, two misplaced beats and resetting beat. The beat is
only then classified as normal, if none of a set of hy-
potheses holds. Erroneous beats are corrected by dele-
tion, insertion or shifting of beats. Before acceptance of
a correction, an improvement check is performed. This
ensures that the new RR interval time series is always
more reliable than the original one.

2 Population and Tests

2.1 Study population

The used dataset contains 151 recordings, obtained from
17 women, aged 24 to 84, 109 men, aged 30 to 84, and
from 25 unknown subjects. All known subjects, except
of 22 patients, where just the ECG is described, suffer
from at least one of the following heart diseases: Myo-
cardial infarction, coronary artery disease, resting angi-
na, effort angina, mixed angina or 1-, 2-, or 3-vessel
disease. Only 5-min excerpts of ectopic free regions
were used. All tests were performed 10 times with inde-
pendently corrupted signals (N = 1510). The data is
available via physionet [21], an online free-access-
database of physiological datasets, and is composed of
the European ST-T Database [22], the MIT-BIH Ar-
rhythmia Database [23], and the QT Database [24].

2.2 Test cases

Two test cases were designed to determine the computa-
tional performance of each correction approach. In more
detail, we monitored the computation time and peak
memory using the built-in profiler function of Matlab.
Further, we determined the correction ability of each
method, whereby detailed results can be found else-
where.
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Test 1 contains only RR time series with single ec-
topic beats at a moderate density (about one to five
ectopic beats with or without compensatory pause per 5-
min signal).

Test 2 includes various ectopic beat types (PVC,
premature atrial contraction (PAC), PVC couplets and
triplets, bi- and trigeminy, sustained and non-sustained
ventricular tachycardia).

3 Results

3.1 Test 1: Weakly corrupted RR interval
time series

We could observe that physiologic models required far
more computation time than simpler ones. The mean
execution time is highest for PPHDIG (30 ms), followed
by IPFM-C (26 ms, see Figure 2). In contrast, TPC-HT
shows the lowest computation time (0.5 ms). However,
we could not see this trend in peak memory. It is highest
for IPFM-C (9.7 - 10° kB), whereas all other algorithms
result in a rather similar memory usage, ranging from
0.8-10° kB to 2.6-10° kB (see Figure 3).

T =
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Figure 2: Box plot of computation time of test 1.
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Figure 3: Box plot of peak memory of test 1.
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Further, we could demonstrate that all presented
models result in a remarkable reduction of the errors in
the HRV (data not shown). Correction of single ectopic
beats is best achieved by IPFM-S, IPFM-D, TPC-HT
and PPHDIG, illustrating the better correction ability of
physiologically based models.

3.2 Test 2: Strongly corrupted RR interval
time series

Figure 4 illustrates that increasing the amount of arti-
facts results in a longer median computation time, with
respect to test 1. It increased for PPHDIG from 30 to
285 ms, for IPFM-C from 26 to 222 ms and is lowest
for GP-IIA (2 ms). On the contrary, peak memory near-
ly stayed constant. IPFM-C required 9.7-10° kB, where-
as all other algorithms still resulted in a rather similar
memory demand, ranging from 0.8:10°kB to
2.6-10° kB (see Figure 5).

Similarly to test 1, the correction ability decreased,
especially for physiologically motivated approaches.

4 Discussion

Our findings clearly demonstrate the effictiveness of
all algorithms to correct both, weakly and strongly cor-
rupted RR interval time series in less than 300 ms for
one 5 min ECG signal. Therefore, all of the presented
algorithms may also be used in an online fashion. How-
ever, attention has to be paid that some algorithms, like
the PPHDIG model, require an input of 50 s ECG-signal
before the actual correction starts. Thus, some of the
models induce a time lag, while still be able to perform
an online correction.

The complexity of the different algorithms is well
reflected by the median computation time. The PPHDIG
model and all [IPFM models require more computation
time, since they rely on a physiologic relationship. In-
creasing the error density in test 2 results in a nearly 10-
fold rise in computation time for PPHDIG and IPFM-C.
This result is not only caused by the higher error densi-
ty, but also by the fact that both methods were not de-
signed to deal with more complicated artifacts. Therefore,
physiologic models just perform best when correcting
those specific artifacts they were actually designed for.

Interesstingly, we could not observe any relationship
between the complexity of an algorithm and its required
peak memory. Most models require a rather similar
amount of peak memory, except of IPFM model with
cost function.

Computation Time [s]

& &S E
Figure 4: Box plot of computation time of test 2.
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Figure 5: Box plot of peak memory of test 2.

The reason is that the calculation of sinc functions is
very memory consuming. Therefore we used a look-up
table to improve the computation. Although we could
decrease the computation time and the peak memory,
the values were still much higher than those of the other
algorithms. The original design of this algorithm to
correct just single PVCs seems to be responsible for the
high computational effort when correcting other types
of artifacts.

As stated by Solem et al. IPFM model with 6-
parameter requires much less computation time and
peak memory [15]. However, the correction perfor-
mance is compareable only for single ectopic beats,
since the range for IPFM-D is much higher when cor-
recting multiple ectopic beats (data not shown).

4.1 Limitations

Though all methods under investigation were imple-
mented to the best of our knowledge and belief, one
cannot completely rule out the possibility of program-
ming errors. However, as our results do not show any
unexpected outliers, we consider the chances for this
scenario negligible. Further, the memory measurement
of the MATLAB profiler is an undocumented feature
and thus not officialy supported by the Mathworks
Company.
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5 Conclusion

Physiologically motivated models are best suited to
correct single ectopic beats at a compareable memory
demand as simpler algorithms. Considering the still very
low computation time (below 300 ms per 5 min ECG-
signal), these models are also capable to be used in an
online fashion.
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