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Abstract. Heart diseases are amongst the most com-
mon causes of death in the industrialized world. Since
the cardiological system is very complex and hard to
capture in its entirety, researchers are looking for indica-
tors of its health. A promising one is the heart rate varia-
bility (HRV), i.e., the variation of the time intervals be-
tween two heartbeats. It reflects physiological processes,
which influence the rhythm of the heart. An approach by
researchers is a visualization tool, the Poincaré plot, to
analyse HRV. Numerous data models exist in order to
automatically quantify Poincaré plots.

To extract as much information as possible from Poinca-
ré plots, it has to be filtered from artefacts and outliers
before applying the data models.

The goal of this work is to test the influence of two dif-
ferent filtering methods on the Poincaré plot quantifica-
tion methods.

A test case was constructed were a database with
healthy heart rates and one with pathological heart rates
were filtered with the two methods. Thereafter two Poin-
caré plot measures were evaluated using the filtered
data sets. Afterwards the differences between these data
sets were statistically examined.

It can be concluded that the fully automated filtering via
clustering shows no large drawbacks compared to the
traditional method of ECG annotation based filtering for
HRV-analysis via Poincaré plots.

Introduction

According to a report by the European Society of Car-
diology, heart failure is a leading cause of death in the
EU and is on the rise due to an increasing age of the
population [1]. Since an early diagnosis of heart condi-
tions leads to more successful treatments, researchers
look for markers of heart diseases [2].

More than 30 years ago HRV was introduced as
such a method [3]. HRV is the variation of the time
interval between consecutive heartbeats. It highly de-
pends on the extrinsic regulation of the heart rate, i.c.,
the time interval between two beats, and reflects chang-
es in the balance of the different regulatory systems,
including the autonomous nervous system [3].

Studies show a connection between the balance of
the autonomic nervous system measured with HRV and
cardiovascular diseases [4].

In studies of HRV, both time- and frequency-domain
measures are typically used by practitioners and re-
searchers [3]. Since the influences of the generation of
beats are also non-linear [5], a visualization tool origi-
nating in chaos theory, the Poincaré plot and models to
quantify it, have become popular tools to analyse HRV
in the last 20 years [6].

The data basis of most HRV-measures, including the
Poincaré plot used in this work, consists of so called
RR-Intervals. These are the time distances between two
consecutive R-peaks in an ECG Signal, as shown in
Figure 1.
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Figure 1: An ECG signal of two heart beats and the
corresponding RR-interval.

Since hardly any ECG recording is ever without any
artefacts or outliers (due to movement or ectopic beats,
i.e., irregular heart beats) the signal has to be filtered to
improve the information density of the Poincaré plots
and the corresponding HRV-measures [7].

In most cases, this is done based on ECG annota-
tions, where each heartbeat in the ECG signal is la-
belled, e.g. as a normal beat or as a premature beat.
These annotations are either created manually by a
physician, automatically by a computer, or semi-
automatically, where the computer output is reviewed
manually. All beats not labelled as normal are filtered
out.Since the creation of annotations is a very time
consuming task, which can only be done by trained
personal, fully automatic methods should be considered.
One of these approaches is to find artifices and outliers
via clustering algorithms and filter these out. The ques-
tion we examine in this work is, what the impact of the
two filter methods is on HRV analysis via Poincaré plots.

1 Methods & Models

1.1 Poincaré plot

As mentioned beforehand Poincaré plots are a visualiza-
tion tool for heart rate data. They are constructed as
follows.

Given a data set of N RR-intervals {RR,,..,RRy} a
Poincaré plot is defined as the following mapping:

R—->RXR
{RRy, ..., RRy} »
{(Rth RRZ)J (RRz, RR3), ey (RRN—li RRN )}

A typical Poincaré plot of a non-pathological, 2 hour-
long, unfiltered heart rate recording is shown in Fig-
ure 2.
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1.2 Filtering via cluster algorithms

Clustering is defined as the grouping of data points
based on similarities between these points [8]. Which
similarity is measured depends on the used data, in our
case we cluster based on the distances of the points in
the Poincaré plot.
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Figure 2: Unfiltered Poincare plot of a non-pathological
2 hour-long heart rate recording.

After considering different algorithms (k-means,
single linkage and mean-shift), we chose the DBSCAN-
Algorithm, because it does not require an a-priori num-
ber of clusters and shows a high robustness against
noise. DBSCAN stands for Density-Based Spatial Clus-
tering of Applications with Noise and was proposed by
Ester et al. in [9].

The algorithm needs the parameters & and MinPts
as inputs, where ¢ is a neighbourhood threshold and
MinPts is the minimum number of points a cluster con-
sists of. DBSCAN distinguishes three types of data
points:

e Core points. These have MinPts or more different
points in their e-environment.

e Density reachable points: These have at least one
other data point in their e-environment, but less than
MinPts.

e Noise: These are neither core points nor density
reachable points.
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The following pseudo code describes the algorithm:

function=DBSCAN (D, ¢ , MinPts)
for (all unvisited points P in dataset D)
mark P as visited
N=getNeighboringPoints (P, ¢)
if (sizeof (N) < MinPts)
mark P as noise
else
C = next cluster
add P to cluster C
for (P' in N)
if (P' is not a member of any cluster)
recursiveExpandCluster (P',C, ¢ ,
MinPts)
end
end
end
end
end

function=recursiveExpandCluster (P,C, ¢
,MinPts)
add P to cluster C
if (P is not visited)
mark P as visited
N = getNeighbors (P, ¢)
if (sizeof (N) >= MinPts)
for{ P' in N}
if (P' is not member of any cluster)
recursiveExpandClus-
ter (P',C, ¢,MinPts)
end
end
end
end
end

One of the difficulties lies in the choice of €. If it is too
small, the algorithm overclusters, i.e., it separates visi-
bly connected clusters, or it underclusters if ¢ is too
large, i.e., it merges visibly unconnected clusters.

Therefore, we applied a refinement of DBSCAN, the
Ensemble-DBSCAN (EDBSCAN) proposed by Xia et
al. in [10].

This algorithm runs DBSCAN r-times iterating &
equidistantly from &, t0 £,4x, With:

mean __ Dinin

4
.— pmean
Emin *= D4- - ’
8
Xnax _ Dinean
.— pmean
Emax *= D4 + 8

The variable D, stands for the set of distances be-
tween the data points and their fourth nearest neighbour,
D% is its mean value and DJ*™ and DJ*** are the
minimal and maximal value of the set. The result of
every iteration is saved in the co-association matrix A,
by adding 1 to each entry A;, if the i-th and the j-th
data point are in the same cluster and 0 otherwise. After
all iterations the co-association matrix is normalized via
element-wise division by 7.

The final clusters are then constructed by using a
voting method, described in the following pseudo code:

assign first data point to first cluster
for (all other points of D)
calculate Apgy i=maxj_y ;1 4;;
if (Apax < 0.5)
assign current point to a new cluster
else
assign current point to cluster
ofD(k),
whered;, = Anax
end
end

Afterwards, clusters with less data points than a given
threshold are considered as noise. The threshold for this
categorization is set so that clusters consisting of pre-
sumably non-pathological extrasystoles are ignored.
Therefore, a number of 10 extrasystoles per hour is used
as a threshold, based on the findings in [11], [12].

The sinusoidal beat cluster was then chosen as the
one closest to the mean value of {RR,...,RRy}. To
reduce assignment errors a correction by adding a small
shift of 0.01 seconds to both coordinates of the mean
was implemented.

This can be justified by the following reasons. First,
most of the errors occur because of arrhythmias with a
shorter RR-interval length. Therefore, these beats move
the mean closer to zero, away from the actual sinus
beats. Second, no case was observed were the mean
value was above the sinusoidal cluster, which would be
the case for very atypical heart rates of a high amount of
single slow beats in connection with a very fast sinus
beat. Third, the small shift of 0.01 seconds only slightly
alters the mean value, but enough to prohibit most of the
incorrect assignments.
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1.3 Deleting points of a Poincaré plot

Since Poincaré plots represent the relation between two
consecutive beats, the filtering can not be done by delet-
ing one beat interval in RR, :={RR,, ..., RRy_;} and
the same in RR, :={RR;, ..., RRy}, but the preceding
one in RR, and the following one in RR, has to be

deleted as well, as shown in Figure 3 [7].

Figure 3: Deletion of the incorrect RR-interval "d" (Dele-
tion 1) and the corresponding counterparts "c"
in RR, and "e"in RR, (Deletion II).

1.4 Poincaré plot measures

Different methods exist to automatically quantify Poin-
caré plots. In this work the following were used.

Ellipse Fitting Method.

The commonly used method to quantify Poincaré plots
is the ellipse fitting method [13]. For this method an
ellipse is fitted to the Poincaré plot, as shown in figure
4. The center of the ellipse is the mean value of the RR-
intervals, the length of the major axis (SD2) is the
standard deviation in the direction of the line of identity
and the length of the minor axis (SD1) is the standard
deviation perpendicular to the line of identity. The val-
ues SD1, SD2 and their ratio are used as Poincaré plot
measurements.

R, [s]
o
&

L.ty . . . I . I
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RR [s]

Figure 4: The ellipse fitting method to measure
Poincaré plots.
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Longitudinal-Transversal Measure.

Another method to quantify Poincare plots was pro-
posed by Toichi et al. in [14]. It consists of the meas-
urement of the Poincaré plot’s maximal extension in the
direction of the line of identity (L) and perpendicular to
it (T), as shown in Figure 5. Their ratio is used as an
additional measure.
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Figure 5: Longitudinal (L) and transversal (T)
measurements of a Poincaré plot.

2 Data and Tests

2.1 Data

All data used to test the indices were taken from
Physionet.org [15], a free-access, on-line archive of
physiological signals. Physionet.org guarantees that all
data have been fully anonymised, and may be used
without further institutional review board approval.

To create a control group, the Normal Snus Rhythm
RR Interval Database was used. It consists of 54 ECG
recordings, each one approximately 24 hours long. It
contains semi-automatically annotated heart rate data of
subjects with normal sinus rhythm (30 men, aged 28.5
to 76, and 24 women, aged 58 to 73) digitized at a sam-
ple frequency of 128 Hz [15].

For pathological heart rate data the Massachusetts
Ingtitute of Technology (MIT) - Boston's Beth Israel
Hospital (BIH) Arrhythmia Database was used. It con-
tains 48 half-hour recordings, sampled with a frequency
of 360 Hz, from 47 subjects (25 men aged 32 to 89
years and 22 women aged 23 to 89 years) [16]. It con-
sists of a set of randomly chosen recordings and 25
recordings especially chosen to include examples of
uncommon but clinically important arrhythmias record-
ed at the BIH Arrhythmia Laboratory [16], all annotated
manually.
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2.2 Test procedure

For both data sets 1500 data points were taken from the
middle of all recordings. These were filtered either
according to the semi-automatic annotations as provided
by Physionet, i.e., excluding all beats, which are not
labeled as normal, or filtered via clustering, where only
the sinusoidal cluster, i.e., the cluster consisting of the
regular beats, is retained for analysis. The first 1000
data points were taken from these filtered points, in
order to create a baseline, because after the filtering the
recordings had different amount of data points. After-
wards their Poincaré plot measures were calculated.

To test if the measures show significant differences
between the non-pathological and the pathological data
set, a Wilcoxon rank sum test was applied to calculate
the p-value, as recommended in [17], since most of the
results were not normally distributed.

A test outcome was declared significant for p <
0.05 and very significant for p < 0.01.

3 Results

The results of the Wilcoxon rank sum test are shown in
Table 1, with significant differences are marked with *
and highly significant differences with **.

Annotation Filtering  Cluster Filtering

SD1 0.8789 <0.01**
SD2 0.0149* 0.0564
SD1/SD2 0.0288* <0.01**
L 0.0187 * 0.1290
T 0.5953 0. 1962
L/T 0.3210 <0.01**

Table 1: The p-values of differences between
pathological and non-pathological data sets of
different Poincaré plot measures, either filtered
via clustering or via annotations.

The ellipse fitting measures SD2, and SD1/SD2 have
significant differences for pathological and non-
pathological heart rate data filtered with annotations. Of
the longitudinal-transversal measures only L shows
significant differences for the same data sets.

Data filtered via clustering have very significant dif-
ferences for the two ellipse fitting measures SD1 and
SD1/SD2. These data sets have also very significantly
different longitudinal-transversal measure L/T.

The following tables show the parameters of distri-
bution for data filtered via annotations, see Table 2, and
based on clustering, see Table 3. The first value is the
median value of the measure for all recordings in this
data set and the following two values describe the cen-
tral range, i.e. they are the 2.5™ and 97.5™ percentiles.

Non-Pathological

Pathological Data

Data
SD1  0.0288,(0.0113,  0.0290, (0.0113,
1.6299) 0.2172)

SD2  0.0865,(0.0236,  0.0589, (0.0204,
1.5946) 0.3944)
SD1/SD2 0.3554,(0.1358,  0.5618, (0.1696,
1.2175) 1.5005)

L 0.6933,(0.1991 0.5003, (0.2609,
32.8089) 1.7208)

T 05359 (0.0710,  0.4639,(0.1034
64.5699) 2.2881)

L/T  1.2444,(0.5082,  0.9605, (0.6488,

4.7220)

3.5580)

Table 2. Parameters of distributions (median, 2.5" and 97.5"

percentile) of data filtered via annotations.

Non-Pathological

Pathological Data

Data
SD1  0.0184, (0.0078, 0.0249, (0.0113,
0.1313) 0.1729)

SD2  0.0743, (0.0230, 0.0544, (0.0188,
0.1856) 0.1592)
SD1/SD2 0.2527, (0.1089, 0.5354, (0.1925,
0.8478) 1.6819)

L 0.4558, (0.1428, 0.3564, (0.1319,
1.0422) 0.9899)

T 0.1933, (0.0599, 0.2157, (0.0661,
0.7737) 0.9868)

L/T 2.0893 (1.2270, 1.3403, (0.6908,

4.7136)

3.1703)

Table 3. Parameters of distributions (median, 2.5" and 97.5"

percentile) of data filtered via clustering.
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4 Discussion

No instances were found in literature, where Poincaré
plots were filtered via clustering. If mentioned at all
the filtering was done either manually or semi-
automatically.

A visual comparison of the data sets showed that
both filtering methods could not find every outlier, but
data filtered via annotations had a higher rate of unfil-
tered outliers, which also had a greater distance to the
rest of the points, compared to the unfiltered outliers
after cluster based filtering.

Therefore, Table 1 could be interpreted as an indica-
tor for a higher sensitivity of the ellipse fitting method
to outliers, which also reduce the differences between
pathological and non-pathological data sets.

Comparing Table 2 and 3 one sees, that data filtered
via annotations has larger 95t percentiles for SD1, SD2,
L and T. This is also due to a higher number of outliers
and their larger distances for these data.

The Ellipse fitting measures indicate in Table 2 and
Table 3 wider but shorter Poincaré plots for pathological
heart rate data filtered via annotations. The same is true
for the longitudinal measures in Table 3. This behaviour
is in accordance to the traditional interpretation of Poin-
caré plot shapes [18].

5 Conclusion

The fully automated filtering via clustering shows no
drawbacks compared to the traditional method of ECG
annotation based filtering for HRV analysis via Poinca-
ré plots. This is done with a largely reduced effort in
contrast to the annotation based filtering method.
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