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Abstract. The aim of this paper is to simulate the blood-
stream through a network of blood vessels with a Finite
Element Method in one dimension. A one dimensional
system of partial differential equations is used. This
system can be written in hyperbolic conservation form
with the state variables cross-sectional area, the flow, the
velocity and the pressure. To solve the system of partial
differential equations, numerically correct boundary
conditions have to be considered. For the input, a pres-
sure function is used. To simulate the load downstream
and the compliance of the arterial segments, a Windkes-
sel model consisting of three elements is used. By simu-
lating bifurcations the considered abstract vascular net-
work can be build up. For that a nonlinear system of
equations is set up and solved. The partial differential
equation system cannot be solved analytically. Hence, to
solve it a numerical Finite Element Method is used. In
this context, a Taylor Galerkin method of second order
with basic functions of first order is used. The model is
implemented by using the mathematical software
MATLAB. To verify the model, several simulations are
done, using an abstract arterial tree built up by thirteen
central arterial segments. In all simulations, the parame-
ters of the Windkessel model and the parameters of the
arterial segments are based on experiments and on
physiological values. In all tests, physiologically realistic
results are obtained.

It can be concluded that the application of a one dimen-
sional Finite Element Method approach along with the
particular implementation presented can describe the
effects in a system of human arteries in a realistic way.

Introduction

Cardiovascular diseases are the most common cause of
death in the modern society. To improve the diagnosis
and further on the therapy of such disease, more often
dynamic models for the heart circulation system are
used. In these models the main factors which must be
considered are accurateness, computing time and identi-
fiability of the parameters. Therefore one dimensional
models, which have in fact a hight efficiency, come to
the centre of attention.

1 Methods & Models

1.1 The model

A one dimensional model of the following form is used

dA dQ

—+—=0

dt dz |
dQ+ sz+AdP+KQ—O v
dt * %dz A pdz Ra™

In this system of partial differential equations the calcu-
lated parameters will be the area of the arterial segments
A, the pressure Pand the flow Q.
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The other occurring values are set to be constant and
are namely the blood density p, the Coriolis coefficient
a, which defines the velocity profile, and a friction
parameter which is given through

Kr = 8mv (2)

where v is the viscosity of blood. In equation (1), one
has two equations for the three parameters.

To find an unique solution for this problem another
third equations must be specified through equation (3).

p=pYi—h G)
Ao

This equation gives a connection between the pressure
and the area of a vessel. Additionally the parameters
Ay, b = tho\/mare set to be constant. A,Is the initial
value for the area, Ejis the Young modulus and hyis the
wall thickness of the arterial segments. The system of
differential equations can also be written in a matrix
conservative form:

dUu dF
—+ =, W) =BW),U=[4,QIF() =

. Q 0 4)
= @, B B(U) = (_ 2)
a7+mA3/2 KRA

By setting @ = 1, a flat velocity profile is supposed,
which is reasonable for blood stream simulation [1,4,5].

1.2 Boundary conditions

Boundary conditions have to be set to get an unique
solution. Here one distinguish between the proximal,
namely the inflow and the distal, namely the outflow
boundary conditions.

Figure 1 shows a pressure curve which which will be
used as the input function for the proximal boundary
condition. The pressure of the left ventricle in the heart
is approximated by these two sine functions.

For the outflow a Windkessel model consisting of
three elements is used. In this case the flow and the area
must fulfil the following relation, given trough a ordi-
nary differential equation.
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Figure 1: Approximated Pressure Input function for the

model.
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The Windkessel parameters are the resistances R, and
R; the and the compliance C of the arterial segment [3].

1.3 Bifurcations

A bifurcation is the branching of an artery in two. There
are two conditions which has to be fulfilled. Suppose
one has an arterial segment (A) which is split up in two
arterial segments namely (B) and (C). First of all the
condition

p@ = pB) = p© (6)

must be fulfilled, meaning that the pressure is is the
same at all three boundaries and secondly that

QW =Q® 4+ Q© (7

meaning that the flow of the first arterial segment is
spilt up in the the flow of the following arterial seg-
ments [2].
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1.4 The arterial network

The atrial tree consists of 13 central arterial segments.

The rest of the arterial segments will be modelled by
choosing the Windkessel parameters in a correct way.
Figure 2 shows the abstract arterial tree. The values
which will be used are shown later in Table 1 and Ta-
ble 2 and are taken from physiological data.

Figure 2: Abstract arterial tree, consisting of the
13 central arteries.

1.5 Taylor-Galerkin method

The system of partial differential equations cannot be
solved analytically, that is why the numerical Finite
Element Method is used. The basic idea of this method
is to do a discretization in time and space.

Lets start with the discretization in time, to do so one
uses a Talyor approximation of second order. After this,
the discretization in space has to be done. For that the
domain 2 = [0,L], which is namely the arterial seg-
ment, is decomposed into N equally spaced elements
[z;,7;41] and the solution U is discretisized by basic
functions of first order through equation (9).

Up = 2£1Ui¢i (3

To be more precise for ¢;(z) first order basic func-
tions or hat functions will be used. Now the weak for-
mulation of the problem has to be calculated. To do so,
the term, gained from the second order Taylor approxi-
mation, has to be multiplied by a test function and inte-
grated over the domain. After inserting the discretisized
solution and discretisized test function the result has the
following form:

(WU, ¢n) = (UR, ¢n) + At (FR(U) +
& in(up)Br(Up), L) 4=
BEUD - (UR), dn)

—-At? ddp ©)
At
+At(B"(Up) + - By (Up)B"™ (Ur), én)

dz

CRUSESTSY

2

Equation (9) is the final result and in the implementa-
tion the integral terms of the left and the right side will
be calculated. This will be done by a numerical quadra-
ture. The implementation is done in MATLAB although
some parts of the code are written in C to get more
efficient results [7].

1.6 Discretization of boundary conditions

To get unique results boundary conditions must be de-
fined. Before one can do so, the characteristic values
have to be calculated. For this system of differential
equations one gets the characteristic variables

W= L s a [ La - (10

Because the system of differential equations is a hyper-
bolic one, only one boundary condition on each side of
the arty has to be set. [2]

Proximal boundary conditions

An pressure input function should be used as an input.
To do so one manipulate the definition of the inflow
characteristic variable to

2p\[4y

so that the pressure p(t) can be used as input directly [7].

1
W1=W2°+8\]$p(t)+i—co, (11)
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Distal boundary conditions

For the distal boundary conditions the Windkessel mod-
el is used. The new value of 4 is found by solving the
non-linear equation (12)

R, [@ + 4c, (AR)] A — 4Ryc; (A)A —
Ag

(12)
—P(A)+ P} =0,
where P is calculated through (14)
o At Pt
P = P 4 = (Qp = )PET!
! (13)

= P(Ag) — QgRy.

To solve this non-linear equation a Newton method with
start value A = Ay is used. Ag and Q are the values at
the end of the arterial segment. The new value of Q is
then found through equation (14). [7]

_P(4)-P. (14)
¢S R

1.7 Boundary conditions at the bifurcations

When one artery is split up into two others, the two
conditions from equations (6) and (7) has to be fulfilled.
This is done by solving a system of six non-linear equa-
tions given through (15). [7]

QW =Q® 4

A @y
4 _ Q B (AN1/4 (4)
W = +4( (AW)1/4 — 4y
4 (4) 0
A ’ZpAO
B ®
(B) _ Q B (B)\1/4 (B)
W™ =" — A ’ (AN =)
(€)) (B) 0
A 2pAy

© ©
© _¢ B ©
W™ = A0 4( 254 (A% — )
P4 (15)
VA® — 4%
3(A)—
@
AO
VAB — AP A@ — [P
=p® ® po @)
AO AO
VA© — |45
= [g(C)—

A
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2 Implementation

In this section, a part of the code is presented and de-
scribed. This part realizes the bifurcations in the arterial
tree. As a starting point one has a matrix (Tree) consist-
ing of the numbers of the parent and the child arteries.

First of all, out of this matrix the connection are read
out.

Place_1=Tree(:,1);
Place_2=Tree(:,2);
Place_3=Tree(:,3);

bif=@(ub)[
ub(2)/ub(1)+4*(sqrt(beta(Place_1)
/(2*rho*A0(Place_1)))*(ub(1))~(1/4)-
cO(Place_1))-WiL(1,1,Place_1);...

ub(4)/ub(3)-
4*(sqrt(beta(Place_2)/(2*rho*A0(Place_2)))*(u
b(3))"(1/4)-cO(Place_2))-W20(1,1,Place_2);...

ub(6)/ub(5)-
4*(sqrt(beta(Place_3)/(2*rho*A0(Place_3)))*(u
b(5))"(1/4)-cO(Place_3))-W20(1,1,Place_3);...

ub(4)+ub(6)-ub(2);...

beta(Place_2)*(sqrt(ub(3))-
sqrt(A0(Place_2)))/A0(Place_2)-
beta(Place_1)*(sqrt(ub(1))-
sqrt(AO(Place_1)))/A0(Place_1);...

beta(Place_3)*(sqrt(ub(5))-
sqrt(A0(Stelle_3)))/A0(Place_3)-
beta(Place_1)*(sqrt(ub(1))-
sqrt(AO(Place_1)))/A0(Place_1)];

After setting up the six nonlinear equations (bif) taken
from equation (16), the system can be solved with the
MATLAB function fsolve and the new boundary val-
ues can be set.

[Ub(:)]=Fsolve(bif,Ub);

UAL(Place_1)=(Ub(1));
uQL(Place_1)=(Ub(2));
uAl(Place_2)=(Ub(3));
uQl(Place_2)=(Ub(4));
uAl(Place_3)=(Ub(5));
uQl(Place_3)=(Ub(6));

M
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3 Results

The parameters which where used for the simulation
are shown in Table 1 and Table 2. The unit for the radi-

dyns
Y -, for the
cm

us and length are cm, for the resistances is

compliance it is “ 10~5and for the Young modulus is
dyn

222108,
Parameters  Values Unit
p 1 g/cm?
ho 0.15 cm
B Eg % hy * \/m dyn/cm
Ky 8mv Poise
v 0.035 Poise
dt 2%107° sec
time 0.8 sec

Table 1: Values of the parameters used for the
simulation .

Artery  Child r RO R1 C EO

1 2\3 14 4 - - - 4

2 -\ - 0.6 3 50 1000 8 1.8
3 4\5 13 2 - - - 3.8
4 -\ - 04 6 60 1200 8 1.2
5 6\7 1 4 - - - 3.5
6 -\ - 03 5 70 1400 9 0.9
7 8\9 09 3 - - - 32
8 ovir 08 5 - - - 2.9
9 -\ - 03 6 90 1600 9 0.9
10 -\ - 02 7 90 1600 9 0.7
11 12\13 06 2 - - - 2.7
12 -\ - 04 6 100 1800 82 1.2
13 -\ - 0.5 2 100 1800 82 24

Table 2: Artery parameter used for the simulation of the
arterial tree .

For every arterial segment one gets the pressure, the
flow, the velocity and the cross-section area as an out-

put.
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Figure 4: Flow and pressure results for the first, the
third, the fifth and the seventh arterial
segment. The values are read out in the
middle of the arterial segments.

First of all the results from a way through the arterial
tree, from Figure 2, is presented. The way goes from the
first to the third, then to the fifth and finally in the sev-
enth arterial segment. Figure 4 shows the results for the
pressure and the flow in these arterial segments taken at
the midpoint of the arterial segments.

Two effects can be seen: First that the pressure level
rises and secondly the flow is decreasing from arterial
segment to arterial segment.

Figure 5: Pressure-position-time plot of the eight arterial
segment (a)-(b) and the first arterial segment (c)-
(d) in two different perspectives.
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Figure 5 shows the pressure-position-time plot of the
eight arterial segment from two different perspectives
(a) and (b) and the the pressure-position-time plot of the
first arterial segment from two different perspectives (d)
and (c). Here one can observe again the influence of the
Windkessel model and also the time dependent delay in
place can be seen in Figure 5 (b) and (d).

4 Conclusion and Outlook

In comparison to already accomplished models and
physiologically data the gained results with this model
are very similar. That is why it can be concluded that
the application of a one dimensional Finite Element
Method approach along with the particular implementa-
tion presented can describe the effects in a system of
human arteries in a realistic way.

A field of application for this model is the early di-
agnosis of cardiovascular diseases. With measurements
gained from healthy patients, the model can be parame-
terized. The calculations from this model can be com-
pared with measurements from patients with cardiovas-
cular diseases in order to conclude about abnormal
changes in the cardiovascular system [6].
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