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Abstract.  In this study, the perdurantist modeling ap-
proach in which entities have four dimensions (spatial and 
temporal) and only  briefly exist during the different stages 
of their lifespan is extended by a reasoning mechanism. 
The extension allows a modeler to manage behaviors de-
pending on reasoning results and also provides well-
designed support for time-delayed systems. Language 
support is provided  for this purpose, starting with an on-
tological commitment and covering design and coding 
phases, including conceptual model description. 
This paper discusses how an agent-driven simulation lan-
guage supports extending a perdurantist modeling to on-
tology-based modeling by high-level action descriptions, 
higher-order world envisionment, dynamic relation man-
agement and a knowledge base for reasoning purposed as 
the necessities of ontology based modeling.  One of the 
study’s main aims is to match the predicate logic ontologi-
cal commitment with the ontological commitment pre-
sented here and bring them into a comment framework to 
handle behavioral management in simulation. 

Introduction 

Agent-driven Simulation Framework (AdSiF) [1], [2] is 
a declarative simulation language and a development 
environment for simulation and agent programming. It 
basically provides a state-oriented interpreter and a sim-
ulation layer to manage simulation execution algorithms 
for both discrete-event and continuous-event systems.  

Compared to current agent programming systems 
(such as Jason [3]), AdSiF gives a different perspective 
by fusing the agent-based programming paradigm, ob-
ject-oriented paradigm, aspect-oriented paradigm [4] 

and logic programming paradigm [5] into a single para-
digm, referred to  here as a state-oriented paradigm [1], 
[6]. State-oriented programming (SOP) was originally 
introduced in 1987 by D. Harel [7] as a visual forma-
lism to model complex reactive systems. SOP was 
adopted by OMG in 1997 as a part of UML 2.0 specifi-
cation and  is based on state charts [8]. AdSiF enhances 
state-oriented programming using multi-programming 
paradigms and defines it as a programming language.  

As a language, AdSiF provides programming by 
states instead of the programming states as performed  
in the state charts. It interprets the extended state charts 
and does not require coding the chart itself. State-
oriented programming handles the state transition pro-
cess, which is declared in the form of the State Charts of 
AdSiF. In each state, the simulation model spends a cer-
tain amount of time to pass through the entire state (or, 
at least, the model attempts to pass through the whole 
state) in an orderly fashion, and the simulation models 
are capable of executing many behaviors in parallel, at 
any time. The execution of a state-oriented program has 
a timeline due to the duration that the simulation model 
spends in each state.  

The power of this paradigm stems from its onto-
logical commitment, which extends from describing 
what exists to include the modeling of mental abilities 
through the use of a reasoning mechanism, thereby dri-
ving behaviors. 

From the ontology-based modeling point of view, 
AdSiF provides a strong programming background to 
satisfy the fundamental ontological notions, which are 
identity, unity, rigidity and dependency. Ontologically, 
AdSiF constructs a world composed of entities capable 
of managing their behaviors reactively and proactively. 

The behavioral aspect of an entity consists of a set of 
behaviors, which is defined as a sequence of states, a set 
of events triggering behaviors and behavioral declara-
tion of the relations it has.  
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A behavior is created by putting states, each of 

which represents a specific atomic action, in order ac-
cording to a reasonable sequence, so that they represent 
the behaviour  captured in state charts. In this respect, 
behaviors undertake an important role in  sharing do-
main semantic. In addition, because of the logic pro-
gramming paradigm, capabilities of agent-hood model-
ing characteristics, continuous/discrete simulation sup-
port and symbolic time management, AdSiF provides a 
perdurantist modeling environment. Perdurantist ap-
proaches assume that objects have four dimensions 
(spatial and temporal) and only briefly exist during the 
different stages  of their life span [9]. That is entities on-
ly exist for a period of time and continually change over 
such periods. Such entities are unfolding themselves 
over time in successive temporal parts [10]. Therefore, 
objects are viewed from the past, present and future. 
According to this paradigm, entities are usually referred 
to as ‘space-time worms’ or a slice of such a worm [11] 
given that they are identified based on space and time 
dimensions. 

The paper focuses on ontology-based modeling en-
riched with logic programming and reasoning. It aims to 
give an answer and a means of connecting logic and on-
tology with each other. The role of relations, behavioral 
aspects and reasoning mechanism are also emphasized 
in ontology-based modeling and the perdurantist model-
ing approach is extended by a reasoning mechanism. 
The extension allows modelers to manage behaviors de-
pending on reasoning results and also gives well-
designed support for time-delayed systems.  

One of the main aims of the study is to match the 
predicate logic ontological commitment with the onto-
logical commitment presented here and bring them into 
a comment framework to handle behavioral manage-
ment in simulation. A language support is provided for 
this purpose, beginning with  an ontological commit-
ment and covering design and coding phases, including 
conceptual model description. 

 
The paper is organized as follows: The first section 

introduces brief information about ontology-based mod-
eling. The second section (2) focuses on logic pro-
gramming and how it supports entity description and a 
relation concept between entities. In the fourth section, 
AdSiF ontology support is presented in the following 
section with the paradigms it covers.   

1 Ontological Commitment of AdSiF 

An ontological commitment refers to a relation between 
a language and certain objects postulated to be extant by 
that language. The overall philosophical project of on-
tology is categorized into  at least two parts: the first 
part is about what there is, what exists and what the 
thing is made from and the second part concerns what 
are the most general features and relations of these 
things. 

Concepts, relations of the phenomenon and the ob-
jects surrounded by this phenomenon are strongly relat-
ed to  the conceptual model and the conceptual model 
paradigm that is most effective for ontology modeling. 
From this point of view, not only does AdSiF provide 
multi-modeling paradigm support, but also it combines 
the paradigms into a single paradigm termed state-
oriented paradigm. This gives a rich expressiveness that 
is one of the quality metrics of an ontology [12]. The 
paradigms, which are supported by AdSiF and com-
bined in state-oriented programming, are logic pro-
gramming, aspect-oriented programming, agent-based 
programming and object- oriented programming.  

A system has a time base, inputs (events), states, be-
haviors, a reasoning mechanism and a mechanism that 
manages the dynamic characteristics of the system. In 
AdSiF, the dynamic characteristic of  the  system is rep-
resented by the behavior descriptions (in the specialized 
state charts). As a framework, AdSiF promotes a set of 
design rules and presumes a design skeleton, which is 
based on its programming paradigm,  called the SOP 
paradigm, and its ontological view. AdSiF provides an 
ontological view, which is defined as follows in terms 
of the paradigms, on which AdSiF are based.  

AdSiF’s ontological commitment covers time, space 
and provides  an answer as to what exists, posits  a type 
of relation definition between existances and it is given 
below.  

Entities live in a certain environment and have their 
own properties that distinguish them from each other 
and an atomic action that manages their properties 
(OOP perspective). The atomic action creates the inter-
actions that change the environment where the entities 
reside and share the interactions with other entities as a 
communication element. The entities sequentially im-
plement their atomic actions in a reasonable semantics 
called behavior, and the behaviors are executed in par-
allel and/or sequentially.  



  M Hocao lu    Perdurantist Modeling and Reasoning in Ontology-based Modeling 

   SNE 24(2) – 8/2014 97 

T N 
Each atomic action is wrapped by a state that con-

structs the behaviors (SOP perspective). The entities in-
teract with one another using event transactions and 
constitute relations among one another. An interaction 
has autonomy, reactivity, and a goal ⎯ (Aget Oriented 
Programming - AgOP perspective). From a taxonomic 
view, the behavior categories of an entity represent dif-
ferent behavioral aspects of the entity ⎯ (Aspect Ori-
ented Programming- AOP perspective).  

An entity has beliefs and facts about the environment 
and about the other entities with which they share the 
environment. These beliefs and facts constitute a fact 
dual world envision that contains the entity; the envi-
sion may have a set of goals to succeed and a reasoning 
mechanism with a set of decision-making algorithms ⎯ 
Logic Programming (LP perspective). 

AdSiF’s ontology covers the common properties of 
entities following an inheritancy path. Common proper-
ties are defined as public or protected and inherited 
from base models, as in OOP. Agenthood perspective 
also gives another property of the ontology, such as be-
ing in an environment, reacting to events happening 
around and trying to achieve certain goals by behaving 
proactively. Also, an entity changes its behavioral as-
pects depending on the conditions which it is in .   

2 Logical Envisonment and Behavior 
Management by Reasoning 

As presented in the ontological commitment, simulation 
models and agents have facts (beliefs) about the envi-
ronment in which they exist and truth-preserved predi-
cates to infer new facts, relations and identities. The 
time-stamped facts about simulation or agent environ-
ment not only constitute a fact dual world representation 
as an inner representation of the environment in which 
the models are, but also the dual world retains know-
ledge of the time axis with past values. Dual world rep-
resentation is defined as an inner representation of the 
environment created by the entity.  

Each entity has its own representation of the envi-
ronment in which it is in and this is constituted via 
sensed and inferred information. This allows modelers 
to associate truth level and define temporally valid (for 
a certain duration) knowledge for both truths about sim-
ulation models sharing the same environments and the 
relations (dependencies) between them.  

This can be seen as a modeling characteristic sup-
porting the  rigidity notion [12] of ontology-based mod-
eling. The capabilities are enriched by a logic paradigm 
which turns a perdurandist model into a model which 
has cognitive capability and can manage relations dy-
namically.   

Semantic representation of an agent or a simulation 
model (namely, an entity) is represented by behavioral 
descriptions. Any interaction, in other words any event 
transition between simulation entities and agents, causes 
a set of behavioral reactions, either reactive or proac-
tive. Each behavior taken consists of a series of actions 
connected with each other logically. In addition to the 
behavior that is activated by an event, activated or can-
celled by a condition,  generally, managed behavior af-
ter a series of reasoning processes is a good example of 
shared semantic. An example for activating a behavior 
as a result of reasoning is given in Section 5.  

Meta-knowledge, higher-order rules are vital for 
both agents and ontology-based modelling. To enable 
the development of high-level easy-to-configure agent 
behavior, it is important to provide agents with the 
means to reason about their surrounding environment 
using a generic reasoning mechanism and knowledge 
base. The agents must be able to analyze unexpected 
situations to dynamically adapt their behavior to achieve 
their personal goals [13]. This means agents must be ca-
pable of evaluating situations using abstract, higher-
order rules.  

One of the higher-order sources comes from the an-
swers to such ontology questions as “what is it?” or 
“what  can be said to exist”, because the answers given 
consist of a set of relations from a specific instance to 
more abstract ones. In other words, an answer becomes  
more and more generalized up to the  infinitesimal. The 
answers constitute a fact set for rules binding to the be-
haviors. This provides a means  to be able to make a de-
cision about any new instance inserted into the know-
ledge base generalizing it.  

In AdSif, a rule consists of a head and a body, simi-
lar to Prolog syntax. The head and body are connected 
by a symbol :-, which is made up of a colon : and a hy-
phen –[14]. The “:-”  is pronounced if. Return parame-
ters of a rule are used to bind to Boolean logical expres-
sions (Figure 1) and rule truth value, which shows 
whether it has  succeeded or not, is used as bool value. 
Parameter-binding pseudo code is shown in Figure 1.  
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In the figure, the parameter numbered with no of the 

rule named rulename is compared with a value val. 
Boolexpreation name0 can be used as a trigger (activa-
tion) condition, cancel condition, suspend condition or a 
resume condition for a behavior, a guard constraint 
(whether the state is activated or not) for a state, tem-
poral relation, or a sending condition for an event, etc.  

 
rulename(param0,param1…paramN):-rule0(paramset), 

rule1(paramset),…. 

Boolexpname=<”name0”> 

Type=”<comparison/logical>” opera-

tor=<”EQ,GT,LT,GE,LE/and,or”> 

<leftvalue type=”predicate” predicate-

name=”rulename” OutputFieldNo=”no”> 

<rightvalue  type=<”constant/function/etc..”> 

value=val 

Figure 1: Rule Representation. 

An agent can behave in different ways depending on the 
situation it is in based on its dual world representation 
(inner model retained in the knowledge base). In this 
sense, behaviors can be categorized according to well-
defined world views and each category that describes 
how the model behaves under certain conditions. The 
condition is defined as a decision model and is used to 
activate or deactivate the related category or categories 
[15]. It is a very useful property to be able to change a 
model world view in both design time and run time. It 
can be seen as a dynamic description. The parameters 
and truth value of the rule are also used to shift from 
one aspect to another. It is shown in Figure 2 as pseudo 
code. The main point is to make a decision based on an 
ontological description of entities and manage behaviors 
based on the decision.  

3 Ontology-based Modeling  

Ontology is a term that originated in philosophy and 
refers to the systematic explanation and study of the na-
ture of existence, or being [16]. Ontologies are com-
posed of concepts or entities, relations between these 
concepts (or entities) and axioms to limit the interpreta-
tion of concepts for a real world phenomenon.  

 
 

Whereas in computer science, ontologies are recog-
nized as a useful means for achieving semantic interop-
erability between different systems and  are key ena-
blers for sharing precise and machine-understandable 
semantics among different applications and parties [10]. 

In the simulation world, it is aimed to use ontology to 
give meaning to entities at different abstraction levels 
by binding rules (axioms) and defining behaviors. Simi-
lar to the ontology definition used in information sys-
tems, in the simulation world a common language  is al-
so developed to be used for  an entity at each level. In 
modelling and simulation, the use, benefits and the de-
velopment requirements of Web-accessible ontologies 
for discrete-event simulation are investigated [17]. 

 
<BehaviorList ListA> 

<behavior A> 

<behavior B> 

<behavior C> 

.. 

<driveCond> 

<activation cond=”<gettingLower>” 

<cancel Cond=”<>”> 

</driveCond 

</ BehaviorList > 

Figure 2: Shifting Aspects by Reasoning. 

Ontology studies are related to questions such as “what 
is it?” or “what exists” and “what relations has it?”. 
Looking for an answer for the first question is strictly 
related to generalizing a particular situation and/or an 
entity. This allows us to create more general rules and 
management capabilities for behaviors using higher-
order reasoning. The second question is related to the  
relation concept. An entity (both an agent and a simula-
tion model) may have relations with other objects.  

In AdSiF representation, the relations are catego-
rized under three main headings:  1) Predicate (Logical), 
2) Functional (Behavioral) and 3) Structural. A predi-
cate relation consists of facts (e.g. position information 
of a missile time-by-time), higher-order descriptions 
(e.g. missile types and their behavioral patterns, such as 
being in boost phase, etc.) and rules (decisions about 
what an object is or how to behave). 
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Answers to “what is it?” are given at different ab-

straction levels each time it is asked. The answer given 
on each occasion makes the entity definition one more 
level abstracted. For example, the answer “it is a fight-
er” given for a question asked about an F16. The F16 is 
a multi-role fighter aircraft designed in the 70s and still 
being produced and actively used by the airforces of 
various nations. After having the answer, a new ques-
tion arises, such as about “what a fighter is”. The an-
swer carries the definition one more level up, such as  it 
is a plane, and so on.  

This continues until arriving at  the most primitive, 
minutest  definition, such as it is an object. All these ab-
stracted declarations are linked to each other with a 
predicate such as 

 is_a_kindof (f16, fighter), is_a_kindof(fighter, plane)  

and continues  until arriving at  an answer referring to 
the most basic well known entity or concept. Quality of 
the answer is measured by whether a behavior set and a 
set of properties are defined at each level, determined by 
the answer given or not.   

As mentioned earlier, the relation concept is consid-
ered to be functional, predicate or structural. Functional 
relations that are established between two parties force a 
definite behavior set for both sides. In this sense, the re-
lations define behavioral templates at different abstract 
levels. The relations create a behavior set which is acti-
vated for the entities on both sides of the relation. The 
behavior set being activated differs depending on the 
model type, entity abstraction level and environment or 
entity state vector.  

The entity drives a function in regard to  any other 
entity; for example,  “f16 carries missiles” shows a 
functional relation and the relation triggers functions or 
behaviors on both of the side objects, namely f16 and 
missiles, at the phases in which the relation is estab-
lished and detached. In Figure 3, the behavior sets are 
shown to be executed in the “carry” relation establish-
ment phase and detachment phase for both F16 and mis-
siles. F16 executes “RelationBehaviorList.A” and “Rela-
tionBehaviorList.B” any time relation is established and 
detached, respectively. Similarly, missiles does the 
same thing in the same phases for “RelationBehav-
iorList.C” and “RelationBehaviorList.D”. The represen-
tation presented in Figure 3 is executable and is inter-
preted by AdSiF core engine.  

 

Figure 3: Functional Relation Declaration. 

A predicate relation defines declarations between two 
objects or among more than two objects constituted on 
stative descriptions of the objects. The declarations are 
taken into consideration as rules that are used to manage 
a behavior or a set of behaviors. As an example, let us 
take the premises “F16 is equipped with missiles” and 
“F16 is over 1000 ft at time t0 ” into consideration. 

They can be symbolized as equipedWith(f16,missile) 
and altitudeOver(1000, t0). In the first, relation is repre-
sentation and we have two objects, F16 and a missile or 
a set of missiles, and the second is related to  the object 
itself. Whereas the functional relation is categorized as a 
relation that forces objects on both sides of the relation, 
a specific behavior set, and the predicate relation is also 
related with third object decision. The object that knows 
or infers the relation between two objects uses the in-
formation for decision-making and the result of the de-
cision triggers a behavior or a set of behavior.  An entity 
possibly uses relations that it has to handle its own be-
havior. In other words, an entity can manage its own 
behaviors using its own predicate relations.  

For example, F16 (or a missile) that has predicate 
equippedWith(f16, missile) can trigger a behavior set by 
using the predicate.  
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Similarly, any other model, such as an air defense 

site, can detect the relation between F16 and missiles 
and  uses this knowledge as a rule to trigger engagement 
behavior. The inference made by the air defense site is 
translated into natural language, such as “I (the air de-
fense site) have detected an f16 with missiles”. The in-
ference is evaluated using a rule such as “if an aircraft 
is detected with missiles and its altitude is over 900 ft, 
then start an engagement with it” (Figure 3). It is clear 
that this is triggering a behavior.  

In the rule given here, it does not say directly any-
thing about F16 specifically, but it was previously 
known, after a set of “what it is” questions, that an F16 
is  an aircraft. In this sense, predicate relation is strongly 
related to propositional logic. The predicates detected or 
inferred about entities in the environment are kept as 
time-labeled facts in a knowledge base (such as position 
information set time-by-time). The knowledge base 
constituted by the facts is defined as a dual world repre-
sentation of the environment and also consists of infor-
mation other than relation predicates. 

It is important that ontologies are of a good quality, 
in order that they serve their intended purposes and be 
shared as well as reused by different applications [12]. 
A good quality depends on how clear the answers are  to 
the “what it is” question, constituted of depth of model 
abstraction sequence (such as F16 is a kind of plane, 
plane is a kind of aircraft, etc.), relations defined be-
tween entities and also the rules and behaviors attached 
to both the relations and abstract model definitions. Re-
lations follow an inheritance path. A functional relation 
constituted for any specific entity is valid for the entity 
derived from it, in other words, its child. This is valid 
for predicate relations, but exceptions can be made. In 
this respect, we can say the carry relation (F16 carries 
missiles) is valid for a fighter derived from the F16 
model. The generalized form of that relation is “An air-
craft carries missiles”. Similarly, the relation is also val-
id for any type of missiles that are derived from the missile.  

 The relation mentioned here is constituted in run 
time. In design time, composition and aggregation rela-
tions are defined. In simulation execution, the entity 
manages simulation components that it aggregates 
and/or composes. Management consists of event han-
dling and time management. Composition and aggrega-
tion are defined very similar to that between classes [18].  

 
 
 

Composition and aggregation are a way to combine 
simple objects and data types, in this  case, entities, into 
more complex ones. If the more complex one is de-
stroyed, the simple object is also destroyed. Because, it 
is a non-detachable part of the owner (more complex) 
entity. But in aggregation cases, they can still survive 
without the owner entity. One can imagine the simple 
entity as an attribute of the complex one.   

Another difference between composition and aggre-
gation is seen in task sharing in the model design of 
AdSiF. The entity undertakes the event handling and 
time management tasks of its components (both com-
posed and aggregated). In Figure 4, dashed and solid 
arcs show aggregation and composition relations, re-
spectively. EntityS, EnitityA and EntityB coordinate 
with each other and  handle their own event handling 
and time management. But Time requirement of Enti-
tiyB depends on EntityZ requirement and EntityA time 
requirement depends on the entity to which  it is con-
nected. EntityZ time requirement also depends on the 
entities to which  it is connected. The only interface of 
aggregated and composed entities is their owner entity, 
and, as a result,  they distribute and collect their event 
messages across  owner entities. The behaviors are still 
separated and the owner entity never intervenes in the 
behavior of its components.  

As seen in Figure 5, F16 undertakes behavior and 
time management of external fuel tanks and a control 
panel. This  means an entity is capable of managing the 
simulation loop of sub-entities. In Figure 5, F16 has 
two types of behavior list. The behavior list named “f16 
behavior list” consists of the F16’s or, more generally a 
fighter’s,  capabilities. The behavior list named “Com-
posed & Aggregated model management behavior list” 
is inherited from the base model and the behaviors al-
low it to create time and event managements of sub-
components.  

 

 
Figure 4: Sub-Simulation Loops. 
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From an ontology point of view, an entity may have 

several atomic sub-components, each of which is an in-
dividual entity. They maintain their own behaviors and 
data structures, such as attributes, custom data, etc. 
Time requirement and delivering events of sub-com-
ponents are managed by the owner entity (in the exam-
ple, it is F16) and management behaviors are inherited 
from the base model that is an extended AdSiF entity 
class. This gives a new dimension to AdSiF’s ontology. 
An entity (or an existence) may be formed by a collec-
tion of single entities. Nevertheless, the owner entity has 
interfaces with the environment. 
 

 
Figure 5: Composition and Aggregation. 

4 Ontology-based Modeling Language 
Support  

Fundamental ontological notions are summarized by 
[19] as identity, a unity that is related to the problem of 
distinguishing the parts of an instance from the rest of 
the world by means of a unifying relation that binds 
them together (not involving anything else); rigidity, 
which is a property it necessarily holds for all its in-
stances; and dependence, which is the property of an en-
tity that is dependent of the existance of other entities. 

The ontological commitment of AdSiF embraces the 
identity notion by giving a unique id to each object; the 
unity notion by relations, the rigidity notion by time-
framed and consistent facts about objects, and the de-
pendence notion by composition and aggregation de-

pending on design choices; it also extends notions by 
logical commitments, behavioral semantics and condi-
tional aspects notions.   

In the literature, it is possible to find several ontolo-
gy-based modeling tools, such as Anemone [20], Proté-
gé [21], OilEd [22], Apollo [23], OntoLingua [24], On-
toEdit [25], WebODE [26], Kaon [27], DOE (Differen-
tial Ontology Editor) [28], WebOnto [29] and K-Infinity 
[30]. Anemone provides a methodology which differs 
from previous methodologies in the way that it defines 
concrete development steps, to facilitate use by both 
novice  and expert ontology developers. This methodol-
ogy is also supported by ontology design patterns and a 
prototypical ontology development tool [20]. System 
Entity Structure and Model Base (SES/MB) is devel-
oped for modeling and simulation domain [31]. 

The distinguished and prominent supports provided 
by AdSiF are brought by the logic programming para-
digm and relation concept. Beyond allowing modelers 
to define environments, objects and relations between 
objects at meta-level, it also affords the possibilities of  
developing a reasoning mechanism simultaneously op-
erating on past and present time-stamped knowledge - 
such as 
 position(f16, x0,y0,z0, time0), position(f16, x1, 
y1 ,z1, time1), position(f16, x2 ,y2 ,z2, time2),  

.etc.) and driving behaviors depending on inferences - 
such as 

gettingLower(X):-position(X,_,_,Z,T),  
position(X,_,_,Z2,T2), T2>T, Z2>Z  
an object X getting lower) 

which constitute future information sets. Driving a be-
havior is defined as activating, cancelling, suspending 
and resuming it. This is seen as distilled knowledge in-
ferred from a set of meta-level knowledge and declara-
tions that are placed at the kernel of ontology-based 
modeling.  

Both relation predicates and facts about the world 
maintained in the knowledge base are used for decision. 
Decision-making results in a truth value and a set of 
output parameters. Truth value is directly bound as a 
drive condition (in Figure 6, drive conditions are shown 
in pseudo code form) to behaviors. The output parame-
ters are used as input parameter for boolean expressions, 
such as logical expressions or comparisons. The boolean 
expressions are also used to manage behaviors, such as 
to activate, cancel, suspend and reactivate and as guard 
constraints in any place required. 
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First order predicate logic (FOL) and propositional 

logic are the fundamental reasoning techniques used in 
predicate relation and fact-based reasoning. Both logics 
are perfectly matched with AdSiF’s ontology. FOL con-
sists of variables for individual objects, quantifiers, 
symbols for functions and symbols for relations [32].  

 
<behavior A> 

<state Set> 
<driveCond> 

<activation type=”predicate” 
cond=”<gettingLower>” 

<cancel type=”boolExp” Cond=”name0”> 
<suspend Cond=”<>”> 
<reactivate Cond=”<>”> 

</driveCond 
</behavior> 

Figure 6: Drive Conditions. 

5 Ontology Example  

A simple example from a defense modeling and simula-
tion is chosen to show how the concepts are implement-
ed. In Figure 7, the relations between objects are de-
picted. The relation between different objects with the 
same name activates different behavior and action sets. 
Each relation states a meaning depending on the behav-
ior space of models that are the relation constituted be-
tween them. This is also valid for the abstraction level 
of models. The behavioral description of the relations is 
shown in Figure 8 for the relation use between “F16” 
and “Missile”.   

The relation rule is applicable to all types of F16 and 
missiles and any type of models derived from these 
models.  In the plane domain of Figure 7,  it can be  
seen what behaviors are executed in both activations, 
which constitute the relation and passivation phase, 
which  means breaking it. All ontology commitment is 
not given here; a good example of  missile phase and 
dynamic modeling can be seen in [33].  

In Figure 9, an ontological description is given from 
the more abstract class level up to instance level. The 
second part of the figure shows a set of predicates infer-
ring what the target is and what kind of missile is to be 
fired using the facts given in the third part and populat-
ed by sensory data. The sensors providing detection in-
formation send their detections to commanders, which 
drive F16, using the relation “informs”. The decision 
triggers the behavior seen in Figure 10.  

The behavior selects a missile as a result of an infer-
ence using target information received from event-
named detection and a set of predicates, facts and onto-
logical descriptions given in the knowledge base shown 
in Figure 9. 

 

 

Figure 7: Relations Between Objects. 

6 Discussions 

AdSiF programming approach and state-oriented 
paradigm, which  is the  main programming paradigm, 
expands a perdurantist modeling approach to a reason-
ing-capable model by a logic programming paradigm 
and ontology-based modeling world view.  

The ontological commitment that AdSiF is based on 
matches the predicate logic ontological commitment and 
bring them into a comment framework to handle behav-
ioral management in simulation. 

Logic programming and modeling paradigms enrich 
ontologies by giving inference capability, keeping the 
information as time-framed and allowing it to expire, 
defining relations between objects and conditions in 
them. 
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Figure 8: Behavioral Descriptions 

 

 

Figure 9: A Part of the Knowledge Base 

 

 

Figure 10: Driving Behavior by Inferences  

In addition to inference, logic programming com-
bined with state-oriented programming allows modelers 
to model domain information at meta-level. Each meta-
level system model has  a model family rather than a 
specific implementation model.  

This study points out how to use concepts and axi-
oms defined as logical premises and how the relations 
between higher-order entity descriptions are used to 
combine in a behavior management structure. Logical 
premises define model structures at different abstraction 
levels of domain information. Relations provide indirect 
interaction based on entity description, not direct inter-
action with objects, and also straightforward behavioral 
descriptions. Similarly, conditional aspect management, 
that means, shifting from one aspect to another presents 
a dynamic ontology in run time.  

The proposed solution also provides a logic based 
solution for time-delayed systems [34], allowing simu-
lation and agent models to use time-stamped facts stored 
in the knowledge base of the model. A time-delayed 
system needs an earlier value of the decision variables 
and the time-labeled facts in the knowledge base of enti-
ties provide a good solution to the problem.   
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