
S N E T E C H N I C A L N O T E

 SNE 24(2) – 8/2014 59

Ontology-Assisted System Modeling and Simulation
within MATLAB/Simulink

Thorsten Pawletta*, Daniel Pascheka, Artur Schmidt, Sven Pawletta

Research Group CEA, Hochschule Wismar – University of Applied Sciences, Philipp-Müller-Straße 14,
 23966 Wismar, Germany; *thorsten.pawletta@hs-wismar.de

Abstract. Ontology-assisted system modeling combines
classic system-theoretical modeling with an ontological
system specification. Different dynamic system behavior is
modeled in configurable basic models with defined input
and output interfaces. Basic models are organized in a
model base (MB). The ontology is used to specify a set of
modular, hierarchical system structures using references to
basic models in the MB. Moreover, the ontological model
defines possible parameter settings of referenced basic
models. Thus, the ontology describes a set of different
system configurations for a specific domain. A base ontol-
ogy for mapping such problems is the System Entity Struc-
ture (SES). A combination of SES ontology with a MB for
system modeling and goal-oriented model generation was
introduced with the SES/MB framework.
Starting with the basics of SES ontology and SES/MB
framework as well as the discussion of some extensions, a
new SES toolbox for ontological modeling within the
MATLAB/Simulink environment is presented. The toolbox
architecture is then discussed. The main focus in this re-
gard is on the graphical SES editor, the toolbox methods
and the seamless integration with MATLAB/Simulink. The
latter is described by means of deriving a specific system
model from the formal specification and the automatic
generation of a corresponding executable MATLAB/ Sim-
ulink model.

Introduction
Current simulation environments support modular,
hierarchical modelling and the combination of different
modeling formalisms, and provide powerful numerical
methods for simulation and data evaluation.

The conceptual modeling phase and data modeling
according to the lifecycle model in [1], as well as exper-
iment descriptions of various system models and data
sets or a combination with other numerical methods, are
not yet considered equivalently.

Experimentation with different system designs or
variants is a requirement that is becoming increasingly
more important. Usually, all system variants have to be
modeled as separate dynamic system models and their
investigation is carried out manually or via experiment
scripts.

Some simulation environments, such as MATLAB/
Simulink, support variant modeling on the level of dy-
namic system models by using component-based tech-
niques. The activation of a certain variant is carried out
using specific control variables [17], which are defined
in the system model. This allows simplified experimen-
tation with a limited set of variants. Sometimes, this
approach is combined with external tools for variant
modeling [6] [7]. Then, the challenge is the synchroni-
zation of the external variant model with the dynamic
system models.

The ontology-assisted modeling intends a more ho-
listic approach that supports the process of modeling
and simulation from the conceptual phase to goal-
oriented experimentation with various system variants.
The term ontology originates from philosophy and
means theory of existence. In computer science ontolo-
gy is basically defined as a formal structured representa-
tion of concepts and their relations. However, ontology
is often employed differently and contradictorily in
computer science [5]. In the following, ontology is used
as defined in [5] [16] [3]. Thus, ontology is understood
as a formal specification of a shared conceptualization
in the form of a model with a ‘closed world assump-
tion’. The latter denotes that true is only what is explic-
itly specified in the model.

Simulation Notes Europe SNE 24(2), 2014, 59 - 68
DOI: 10.11128/sne.24.tn.10241
Submitted: Sept. 15, 2014 (selected ASIM SST Post-Conf. Publ.),
Revised: Oct. 20, 2014; Accepted: October 30, 2014

 T Pawletta et al. Ontology-Assisted System Modeling and Simulation within MATLAB / Simulink

 60 SNE 24(2) – 8/2014

TN
According to [20], the considered domain of concep-

tualization is modeling and simulation of modular, hier-
archical systems. In this context, ontology-assisted
characterizes a declarative specification of various sys-
tem structures and parameter settings in combination
with configurable basic models. Basic models map
different dynamic system behavior, define an input and
output interface and are organized in a model base
(MB). The ontology specifies references to basic models
and defines admissible parameter settings for them.
Similarly, ontology can be used to specify a set of dif-
ferent experiments with the system models. In this case,
the ontological specification describes the composition
of experiments using references to various experiment
methods or data, such as employed in [12] for model-
based testing [18]. The experiment methods or data are
organized in an MB or data base analogous to basic
models. Because of its declarative character an ontolog-
ical specification can be utilizsed in the early phases of
the lifecycle model, e.g. during conceptual or data mod-
eling, and can be extended stepwise.

Zeigler, et al. developed the System Entity Structure
(SES), a base ontology for system and data modelling
[19][21]. Based on the SES ontology they derived the
SES/MB framework [20]. The framework combines an
SES with an MB and proposes basic methods for deriv-
ing a concrete system model and for generating an exe-
cutable simulation model. A software implementation of
the SES/MB framework is presented in [22] and called
MS4Me. MS4Me is implemented in JAVA and based
on the Discrete Event System (DEVS) formalism ac-
cording to [19][20]. That means, basic models have to
be specified according to the DEVS formalism.

The research in [4][11][13] shows that the concept
of SES/MB is well suitable for solving complex engi-
neering problems. The SES ontology is based on a clear,
limited set of description elements and axioms. Thus, it
is more easily usable for engineers than alternative
developments such as Protegè [10]. However, an im-
portant precondition for the application of new concepts
in engineering is their availability in an engineering
software environment and their direct combination with
established methods. MS4Me does not comply with
these conditions. For this reason, an earlier toolbox,
called Tiny SES toolbox, was implemented for the well
accepted MATLAB/Simulink environment [14][15].
Use of this toolbox requires basic knowledge of first-
order logic and the connection of a PROLOG interpreter
to MATLAB. Both things are often daunting for engineers.

Based on the Tiny SES toolbox a new and extended
toolbox for MATLAB/Simulink has been developed. It
is completely implemented and integrated in MATLAB,
requires no deeper understanding of first-order logic and
provides a graphical front-end for SES-based modeling.
In addition, it provides different methods to derive sys-
tem models from an SES and to generate executable
simulation models for Simulink using predefined
blocksets or subsystems. In the same way models for
SimEvents or the MATLAB/DEVS Toolbox [2] can be
generated automatically with little effort.

The basics of SES/MB framework and originary
SES ontology, as well as new introduced features, are
first described. Then, the toolbox architecture and pro-
vided methods are discussed. Finally, a summary and a
look forward to future work are given.

1 Theoretical Backgrounds
The pragmatic research presented in this paper is based
on the long-term theoretical works of Zeigler, et al.
[20][21]. In the following, the conceptional System
Entity Structure and Model Base (SES/MB) framework
and fundamental ideas of the underlying SES ontology
are summarized. Moreover, restrictions and extensions
of the SES, related to the toolbox development that is
described in the next section, are discussed. Subsequent-
ly, the pruning process to derive a distinct system con-
figuration from an SES is considered.

1.1 SES/MB Framework
The SES/MB framework introduced by Zeigler et al. in
[20] combines the SES ontology with the classical ap-
proach of modeling and simulation of modular-
hierarchical systems. Figure 1 illustrates the principle
elements and operations.

Figure 1: SES/MB framework according to [20].

 T Pawletta et al. Ontology-Assisted System Modeling and Simulation within MATLAB / Simulink

 SNE 24(2) – 8/2014 61

T N
Configurable basic models with a defined input and

output interface are organized in an MB. They describe
different dynamic behavior. The SES is a special kind of
tree structure. It describes a set of possible system struc-
tures for a closed domain. To do so, it specifies refer-
ences to basic models in the MB and defines possible
parameter settings for them. In addition, an SES can
specify a set of goal-directed experiments, but this is not
taken into consideration. Hence, the SES can be consid-
ered as a variable construction plan for different system
configurations or variants. The selection of a specific
system configuration is based on a pruning operation.
The result of pruning is a tree structure that describes a
unique system configuration and is called Pruned Entity
Structure (PES). Based on the information of PES, and
using models from the MB, an executable simulation
model can be generated via an appropriate translator.

1.2 Originaly SES ontology and modifications
The SES ontology is based on a directed and labeled
tree. It defines different types of nodes and edges as
well as a set of axioms. They are summarized in Fig-
ure 2 with respect to their category and affiliation.

mSES:
 ELEMENTS:
 NODES:
 Entity
 Attributes
 DESCRIPTIVE NODES:
 Aspect
 -MultiAspect
 Specialization
 EDGES:
 Entity Edge
 +Selection Rules of Aspect Siblings
 Aspect Edge
 Couplings
 Specialization Edge
 Selection Rules
 MultiAspect Edge
 Replication Var. & Couplings
 +Selection Constraints
 SEMANTIC RELATIONS
 +SES VARIABLES, FUNCTIONS, PRIORITIES
 AXIOMS:
 Alternate Mode
 Strict Hierarchy
 Uniformity
 Valid Brothers
 Assigned Attributes (Variables)
 Inheritance

Figure 2: Elements and Axioms of mSES.

In the context of toolbox implementation some re-
strictions and extensions compared with the originary
SES definition in [21] are introduced. Extended or new
elements are marked with a beginning plus sign and
elements with restrictions with a beginning minus sign.
The term mSES (modified SES) is used to distinguish
from the originary definition. However, the term SES is
also still used in regards to linguistic simplification.

On the basis of a fictitious, arresting example, the
basic elements and axioms will be explained. The scope
of the subject is the conceptualization of melt behavior
of different structured ice cream portions (Ip), as illus-
trated in Figure 3.

Figure 3: mSES for the ice cream portion example.

 T Pawletta et al. Ontology-Assisted System Modeling and Simulation within MATLAB / Simulink

 62 SNE 24(2) – 8/2014

TN
The mSES is partitioned in two trees, which are

merged via the Ty node. Details of merging SESs are
explained in the next section. The composition of an Ip
is based on the following considerations:

Operators: []compose, |xor, =is, ()abbr
Ip = [Medium(Me), Sort(So), Type(Ty)]
Me = Wafer(Wa) | Sundae(Su)
So = Pure(Pu) | Mixed(Mi)
 Pu = Vanilla(Va) | Choco(Ch)
 Mi = [Va, Fruit(Fr), Cream(Cr)]
Ty = Soft(Sf) | Scoop(Sc)
 Sc = [once | twice | … | n_times]

Nodes pictured in bold are entities, the others are de-

scriptive nodes. Both node types alternate due to the 1st
axiom in Figure 2. The leaf nodes map atomic entities,
which define in their special node attribute mb a refer-
ence to a basic model in the MB. In this case the MB
contains the following types of basic models: MB={Wa,
Su, Va, Ch, Fr, Cr, Sf, Sc}. The names of leaf nodes
need not be the same as the names of the basic models,
even though they are in the example.

Descriptive nodes characterize their predecessor
node. The suffixes denote: Dec Aspect, MultiA
MultiAspect, Spec Specialization. In the ice cream
portion example, the Aspects IpDec, MiDec, SfDec
describe a decomposition of their predecessor node.
That means their predecessor entity node represents a
composed system on the base of their successor entity
nodes respectively, whereby a composition can also
consist of a single entity. In addition, an Aspect edge
can specify couplings for a composition as an attribute
in the form of (from, to) relations (see definitions of
coupling1, coupling2 in Figure 3).

Analogously, the MultiAspect ScMultiA describes a
composition of its predecessor entity node based on the
number of entities of the same type (replications) de-
fined by its successor node Sc. Moreover, each MultiAs-
pect edge defines a range for the valid number of repli-
cations in its attribute num. The coupling relations can
depend on the number of replications, such as in Figure 3
in attribute coupling3. Such kinds of variability can be
easily specified with the newly introduced SES Func-
tions. Its usage is described at the end of this subsection.

An entity node can define several Aspect or Multi-
Aspect nodes as successor nodes, which are called sib-
ling nodes. In Figure 3, the successor nodes SfDec and
ScMultiA of entity node Ty are such sibling nodes.

With respect to the SES toolbox, in such cases the
entity edge can be defined as attribute Selection Rules of
Aspect Siblings. In the case of node Ty, this is done by
the edge attribute {aspectrule}. Alternatively, a selec-
tion can also be defined using Selection Constraints,
which are represented as broken lines.

Specialization nodes like MeSpec, SoSpec or PuSpec
describe the taxonomy of their predecessor node. This
means their superior entity node is only an abstraction
with respect to their subsequent entity nodes. The condi-
tions for selecting a successor node are specified with
Selection Rules on the specialization edge, or with Se-
lection Constraints, analogous to the selection of sibling
nodes previously described (see Figure 3 selection con-
straints between Wa – Pu and Su – Mi as well as selec-
tion rules in attributes specrule1 and specrule2). The
specialization relation (taxonomy) between entity nodes
is based on the powerful inheritance axiom that defines
a unification of an abstract father entity node with a
selected child entity node, regarding the node name,
attributes and subtrees. Some effects of this axiom are
described in the next subsection.

In addition, the inheritance axiom can cause side ef-
fects, if subtrees are inherited. To guarantee a unique
specification, Priorities are introduced as an additional
SES element. A detailed description of side effects and
their avoidance using Priorities is described in [8]. The
mSES in Figure 3 contains no inheritance of subtrees.

Node and edge attributes can define constant or var-
iable expressions. The known concept of SES Variables
has been extended by SES Functions. The mSES in
Figure 3 defines the two SES Functions fun() and
cfun(num). The first one is used for defining the position
of scoops in an ice cream portion (Figure 3, attribute
pos of node Sc) and the second one for specifying the
coupling relations between scoops depending on the
number of scoops in an ice cream portion (Figure 3,
attribute coupling3 of node ScMultiA). Moreover, an
mSES can specify Sematic Relations. The evaluation of
SES Variables and SES Functions, as well as the exami-
nation of Semantic Relations are explained in the next
subsection. With respect to the developed SES toolbox
it should be mentioned, that SES Functions can be cod-
ed in pure MATLAB syntax using built-in MATLAB
functions. The pseudocode in Figure 3 is used for sim-
plification.

It can be concluded that the mSES in Figure 3 speci-
fies 14 valid compositions of an ice cream portion (Ip).

 T Pawletta et al. Ontology-Assisted System Modeling and Simulation within MATLAB / Simulink

 SNE 24(2) – 8/2014 63

T N
1.3 Deriving a PES – T

1.4 the Pruning Operation
For deriving a unique, valid system configuration Zei-
gler et al. defined in [20] a pruning operation for an
SES. The result of pruning is a tree, called Pruned Enti-
ty Structure (PES). The PES is a unique tree without
decision points and variable attributes, which means all
variabilities are resolved. The basic ideas of pruning are
described step by step by means of the mSES in Figure 3.

Before pruning, all SES Variables have unique val-
ues assigned. Let’s assume the following assignments:

ArtVar=W for wafer; SortVar=V for vanilla;
TypVar=Sc for scoop; KugVar=3 for #scoops;
WaVar=9.5 for Wafer parameter x; BeVar=Ø

The pruning operation is based on a depth-first search.
With respect to the mSES in Figure 3, it starts at root
node Ip with its subsequent Aspect node IpDec and
edge attribute {coupling1} as well as its follower nodes
Me, So and Ty. This subtree contains no decisions and
that is why it is copied without change to the PES. After
that, the Specialization node MeSpec with its edge at-
tribute {specrule1} is evaluated and the entity node Wa
is selected. Based on the inheritance axiom, the entity
nodes Me and Wa will be fused. The result is a new
entity node, Wa_Me.

In the PES, the node Me is replaced by the new node
Wa_Me with the attributes {mb=Wa; x=9.5; s=0.3}.
With respect to this, the coupling attribute {coupling1}
of IpDec needs to be updated in its first and third cou-
pling relation (see Figure 4). Furthermore, the Selection
Constraint between the nodes Wa and Pu indicates the
selection of Pu. Now, the subtree of Me is fully ana-
lyzed and the pruning is continued at node So. Because
of the pre-decided selection of entity node Pu, the Spe-
cialization node SoSpec leads to the unification of the
entity nodes So and Pu into a new entity node, So_Pu.
In the PES, the node So is replaced by the new node
Pu_So. The following analysis of PuSpec with its edge
attribute {specrule2} results in the selection of node Va.
In the same manner the new node Pu_So is fused with
node Va and its attributes. The result is a node
Va_Pu_So with the attributes {mb=Va;…}. According
to this operation, in the PES, the edge attribute {cou-
pling1} of IpDec, needs to be updated in the second
coupling relation (see Figure 4). Pruning is now contin-
ued with the entity node Ty, where the edge attribute
{aspectrule} leads to the selection of the MultiAspect

node ScMultiA.
Based on the edge attribute {num=KugVar} and the

SES Variable assignment KugVar=3, three entities of
type Sc are generated. According to the second edge
attribute {coupling3}, the coupling relations of the three
new nodes are calculated by the SES Function
cfun(num) with the actual value assignment num=3.
Due to the valid brothers axiom the generated entities
are renamed using consecutive numbers, whereby the
entity nodes Sc1, Sc2, Sc3 are created for the PES.

Regarding this, the coupling relations in attribute
{coupling3} are also renamed in the PES (see fig. 4).
Each of them has a fixed node attribute {mb=Sc}. The
variable node attribute {pos=fun()} is separately calcu-
lated for each node using the SES Function fun(). The
pos attribute describes the position of the scoop in the
ice cream portion Ip. After completing this procedure, a
complete PES, as depicted in Figure 4, is derived.

Figure 4: A unique, valid PES of the mSES in Figure 3.

Finally the validity of the PES needs to be proved by

evaluating the Semantic Relations using a logical AND
operation. The PES pictured in Figure 4 is valid and
maps a unique system configuration.

According to the attribute {coupling3} in Figure 4,
the entity node Ty describes a composed system. From
the perspective of system dynamics, it can be resolved.
The resolution of composed systems reduces system
complexity.

In context of pruning, this is a called flattening and
such a reduced PES is called Flatted Pruned Entity
Structure (FPES). Flattening requires, in this case, a
modification of coupling relations in attribute {cou-
pling1}. Figure 5a shows the resulting FPES and Fig-
ure 5b the corresponding system structure.

 T Pawletta et al. Ontology-Assisted System Modeling and Simulation within MATLAB / Simulink

 64 SNE 24(2) – 8/2014

TN

Figure 5: (a) FPES of PES in Fig. 4; (b) corresponding
system structure.

On the basis of PES or FPES, an executable simula-
tion model can be generated using basic models from
the MB, if an appropriate translator is available (see
Figure 1). At this point, it should be mentioned that the
identifiers in Figure 5b represent the names of system
components.

The names of associated basic models are coded in
the particular node attribute {mb}.

To conclude, it is noted that the pruning operation of
the SES toolbox discussed below is restricted to Multi-
Aspect nodes, with a subsequent entity node that has to
be a leaf node.

2 SES Toolbox for MATLAB/Simulink
Various research in [4][11][13] show that the concept of
SES/MB is well suitable for solving complex engineer-
ing problems, if it is available in an engineering soft-
ware environment. In the following, the fundamental
aspects of a new SES toolbox for MATLAB/Simulink
are presented. Beginning with a description of the soft-
ware architecture, the basic methods of the toolbox are
discussed.

2.1 Software Architecture and User Interface
Figure 6 shows the software architecture of the toolbox
in the form of a UML class diagram.

 Figure 6. Class structure of SES toolbox.

 T Pawletta et al. Ontology-Assisted System Modeling and Simulation within MATLAB / Simulink

 SNE 24(2) – 8/2014 65

T N

The classes are divided into five packages. The class

ses_gui implements the user interface and constitutes
the central interface class. The package GUI contains all
classes that are necessary for the design and structure of
the user frontend, as shown in Figure 7.

 The GUI consists of a menu bar and three subwin-
dows: (i) Node Properties, (ii) Model Hierarchy and
(iii) Global Settings. All GUI classes are derived from a
common superclass. In the subwindow ModelHierarchy
a SES tree can be edited in a similar manner to a data
manager. Selection Constraints are highlighted using
different colors. Node and edge attributes are edited and
displayed in the subwindow, Node Properties. The
global properties of an SES, such as SES Variables,
SES Functions and Semantic Relations, are managed in
the subwindow, Global Settings. All user-related meth-
ods are provided via the menu bar.

Data structures and methods for the internal storage
and management of an SES are defined in the classes of
the packages Entity Structure and Node Hierarchy.
Furthermore, they define methods for pruning an SES,
flattening a PES and the merging of SESs. These are
described in more detail in the next subsection.

The PES and FPES are considered as specializations
of an SES and are, therefore, defined as subclasses of
ses class. Thus, a PES or FPES can be managed and
displayed with all its information using the GUI analo-
gously to an SES.

The package Parse and Scan contains classes im-

plementing a parser for lexical and syntactical analysis.
The parser continuously checks all user inputs for their
validity. In addition to the syntax checks of user inputs,
the parser also performs semantic checks based on al-
ready saved information in order to ensure consistency.

2.2 Methods: Merging, Pruning, Flattening
Based on the fundamentals of the SES/MB framework
and the SES ontology the toolbox provides methods for
merging SESs and for pruning a SES as well as flatten-
ing a PES. These methods can be accessed in the GUI
via the menu bar or as usual MATLAB functions.

The merging method supports the concatenation of
an SES from various SESs, analogous to Figure 3. Each
SES can define its own global settings, such as SES
Variables, SES Functions or Semantic Relations. For
merging one SES has to be qualified as the main SES.
Code 1 shows the basic steps of the merging method.

load main SES; select merge node;
load imported SES;
if merging ~admissible -> Error;
for each leaf node homonymous with merge node

merge imported SES tree to main SES tree;
merge global settings;
update displays in GUI

Code 1. Basic steps of merging method.

Figure 7. Graphical User Interface of SES toolbox.

 T Pawletta et al. Ontology-Assisted System Modeling and Simulation within MATLAB / Simulink

 66 SNE 24(2) – 8/2014

TN
The selected merge node in the main SES has to be a

leaf node of type entity. A merging operation is always
applied to all leaf nodes homonymous to the selected
merge node. The admissibility of merging is proved
considering the SES axioms. During the merge process
the root node name of imported SES is replaced by the
name of the leaf node of the main SES.

Finally, the global settings of merged SESs are
fused. Name conflicts will be resolved automatically in
accordance with the SES axioms.

The toolbox provides three consecutive methods for
pruning an SES and flattening a PES. These are: (i)
First-Level Pruning, (ii) Complete Pruning and (iii)
Complete Pruning & Flattening. Code 2 shows the
basic steps of the consecutive methods.

FIRST-LEVEL PRUNING:
1. check pruning permission of SES;
2. verify SES Variables;
3. create SES Functions in MATLAB;
4. compute SES Vars which use SES Fcn;
5. transform Selection Constraints to
 Selection Rules;
6. depth-first search pruning;
7. check Semantic Relations;

->valid PES | interim_PES
8. if ~interim_PES

set PES valid; ->END
COMPLETE PRUNING:
9. detect undecidable Aspect nodes & transform
 SES Priorities to Selection Rules;
10. depth-first search pruning;
11. check Semantic Relations;

-> PES
12. if ~flattening

set PES valid; ->END
FLATTENING:
13. rename homonymous leaf nodes;
14. depth-first search flattening;
15. set FPES valid; ->END

Code 2. Basic steps of pruning and flattening methods.

An SES gets pruning permission (1) when it satisfies
the axioms. The verification of SES Variables (2) is
only related to explicit method calls from the MATLAB
prompt. In the case of method calls from the GUI, SES
Variables are checked by the previously described parser.

The creation of SES Functions in MATLAB (3)
needs to be executed uniquely for all SES Functions that
are not defined as MATLAB built-in functions. Because
an SES is saved as a data structure, SES Functions are
encoded as strings, although they are edited as ordinary
MATLAB Functions.

In step (4), SES Variables that depend on SES Func-
tions are calculated. For simplification of the depth-first
pruning (6) operation, which has been explained in
section 2, in step (5) Selection Constraints are trans-
formed into Selection Rules. Steps (7) and (8) verify
whether, the resulting PES is complete and valid.

Due to the inheritance axiom, the subtrees of the
parent node and the selected child node, at a specializa-
tion node, are combined as described in Subsection 1.2.
This can cause undecidable Aspect nodes, although all
SES axioms are considered. The First-Level Pruning (1-
8) method enables the location of such nodes. The
Complete Pruning (9-12) method uses the SES Priori-
ties, introduced in [8] to resolve such nodes. The Flat-
tening (13-15) method requires a complete, valid PES
and creates a FPES according to the statements in Sub-
section 1.3.

2.3 Problem-oriented Model Translation
As shown in Section 1 an executable simulation model
can be generated based on a PES or FPES using basic
models from the MB, if an appropriate target translator
is available. At present, the SES toolbox does not con-
tain a general target translator for Simulink. It provides
an M-file template that has to be adapted by the user.
The general translation procedure is always the same.
However, the parameter configuration of the various
Simulink blocks is very different.

Up to now, the translation script has supported only
a subset of the current Simulink blocksets. That is why
we call the current translator, problem-oriented, because
it has to be extended if new blocks are used. To mini-
mize translation and model execution time, the transla-
tor is based on an FPES. Moreover, in most cases the
structure of an executable model is of no relevance. The
basic translation procedure, independent of a specific
target, is depicted in Code 3. The basic translation steps
for generating a Simulink model are then discussed.

If FPES is ~valid -> Error
INITIALIZATION:
Instantiate empty model
optional: set solver parameters

TRANSLATION:
for each leaf node instance MATLAB obj.
for each MATLAB obj. instance model obj.
 from the MB
from Aspect attrib. instance model coupl.

FINALIZATION:
 optional: e.g. start simulation

Code3. Basic steps of model translation and execution.

 T Pawletta et al. Ontology-Assisted System Modeling and Simulation within MATLAB / Simulink

 SNE 24(2) – 8/2014 67

T N
Firstly, the validity property of the FPES that had to

be set by the pruning method is checked. In the initiali-
zation phase a new, empty model is created. Its name is
derived from the root node of FPES (see fig. 5(a)). Op-
tionally, solver parameters and others can be adjusted.
Solver adjustments depending on system variants can
also be specified within the SES, which means they will
also be encoded in the FPES. In this case, they will be
generated in the translation phase.

Basically, solver parameters belong to an experiment
specification, which should be clearly separated from
the model specification. The real translation phase
consists of three steps. In the first step, a MATLAB
object is created for each leaf node of FPES. It stores all
information of the leaf node, separated using the crite-
ria: (i) node name, (ii) special attribute mb and (iii)
remaining attributes. The special attribute mb stores the
reference to a basic model in the MB; here, a Simulink
block or subsystem.

In the next step a model object (here, a Simulink ob-
ject) is instantiated and configured using the infor-
mation in the MATLAB object. In the third translation
step, the coupling relations, defined in the attribute of
the Aspect edge (see fig. 5(a)), are evaluated and, ac-
cording to this, the couplings of the target model are
generated. It should be recalled that an FPES contains
only one Aspect node. The finalization phase is optional.

Examples of engineering applications using the au-
tomatic generation of executable Simulink models from
a SES specification can be found in [15][11][8][9].

3 Summary
The SES toolbox provides a comprehensive and user-
friendly tool for ontological modeling in the
MATLAB/Simulink environment. The toolbox is fully
integrated in MATLAB/Simulink and can be used in
seamless combination with other toolboxes and block-
sets.

For the important domain of model-based system
development the toolbox offers new ways of variant
modeling within MATLAB/Simulink. The basic proce-
dure has been demonstrated by means of a Simulink
example. Current working priorities are the removal of
existing restrictions when using the Multi-Aspect ele-
ment, the development of further examples using other
MATLAB toolboxes, such as Stateflow or Simscape,
and a more general target translator for Simulink.

The toolbox can be accessed for free by registering at
http://www.mb.hs-wismar.de/cea/sw_projects.html.

Acknowledgment. This work was partly supported by
the German Research Foundation (DFG) under code
number PA 631/2-2.

References
[1] O. Balci. Verification, validation and testing. In: J.

Banks, ed., Handbook of Simulation, John Wiley & Sons
Inc., 1998, 335 – 393.

[2] C.Deatcu, T. Schwatinski, T. Pawletta. DEVS Toolbox
for MATLAB – MatlabDEVS Tbx., 2013, [Online]
http://www.mb.hs-
wismar.de/cea/DEVS_Tbx/MatlabDEVS_Tbx.html.

[3] T.R. Gruber. A translation approach to portable ontolo-
gy specifications. Knowledge Aquisition, Vol. 5(1993)2,
199 – 220.

[4] O. Hagendorf, T. Pawletta, R. Larek. An approach to
simulation based parameter and structure optimization
of MATLAB/Simulink models using evolutionary algo-
rithms. In: SIMULATION – Trans. of the Soc. for Mod-
eling and Simulation Int., Vol. 89(2013)9, 1115 – 1127.

[5] B. Henderson-Sellers. On the Mathematics of Modelling,
Metamodelling, Ontologies and Modelling Languages.
Springer Pub., 2012.

[6] H. Holdenschick, W. Commerell. Variantenmanagement
in der modellbasierten Produktentwicklung von Fahr-
zeugsystemen. (Variant Management in Model Based
Produkt Development of Automotive Systems von Fahr-
zeugsystemen. In German) In: Proc. ASIM Meeting
STS/GMMS, Düsseldorf, ARGESIM Report 41 / AM 145,
2013, 111 – 118.

[7] J. Möck, J. Weiland. Advancing Virtual Commissioning
with Variant Handling. In: Proc. ASIM Meeting
STS/GMMS 2014, Reutlingen, ARGESIM Report 42 / AM
149, 2014, 7 – 13.

[8] D. Pascheka. Implementierung eines graphischen SES-
Editors mit integriertem Pruning Algorithmus in der
MATLAB/Simulink Umgebung. (Implementation of a
Graphical SES Editor with Integrated Pruning Algo-
rithm within MATLAB/Simulink. In German) Bachelor
Thesis, Hochschule Wismar – Univ. of Applied Sciences,
RG CEA, 2014.

[9] T. Pawletta, D. Pascheka, A. Schmidt. System Entity
Structure Ontology Toolbox for MATLAB/Simulink:
Used for Variant Modelling. In: F. Breitenecker, I.
Troch eds., Proc. of MATHMOD 2015 - 8th Vienna Int.
Conf. on Mathematical Modelling, Vienna, Austria,
2015, 2 pages (submitted for publishing).

 T Pawletta et al. Ontology-Assisted System Modeling and Simulation within MATLAB / Simulink

 68 SNE 24(2) – 8/2014

TN
[10] Protégé. A free, open-source ontology editor and frame-

work for building intelligent systems. [Online]
http://protege.stanford.edu/, (Accessed on: 01/04/2014).

[11] A.Schmidt, T. Pawletta. Ein Ontologie-basierter Model-
lierungs- und Simulationsansatz am Beispiel der res-
sourceneffizienten Planung spanender Prozessketten.
(An Ontology-Based Modeling and Simulation Approach
using the Example of Planning Resource Efficiency
Manufacturing Process Chains. In German) In: Proc.
15th ASIM Fachtagung Simulation in Produktion und
Logistik, Paderborn, HNI-Verlagsschriftenreihe Bd. 316,
2013, 481 – 490.

[12] A. Schmidt, U. Durak, C. Rasch, T. Pawletta. Model-
Based Testing Approach for MATLAB/Simulink using
System Entity Structure and Experimental Frames. In:
Proc. of Spring Simulation Multi-Conf., Alexandria/VA,
USA, April 12th-15th, 2015, 8 pages (submitted for publi-
cation).

[13] T. Schwatinski, T. Pawletta, S. Pawletta. Flexible task
oriented robot controls using the System Entity Structure
and model base approach. SNE - Simulation Notes Eu-
rope, Vol. 22(2012)2, 107 – 114.

[14] T. Schwatinski, A. Schmidt, T. Pawletta. Tiny SES
Toolbox for MATLAB/Simulink. 2012, [Online]
http://www.mb.hs-wimar.de/cea/SES_Tbx/.

[15] T. Schwatinski, T. Pawletta. Ontologische Modellierung
und Modellgenerierung in der MATLAB/Simulink Um-
gebung – Die Tiny SES Toolbox. (Ontological Modeling
and Model Generation within MATLAB/Simulink – The
Tiny SES Toolbox. In German) In: Proc. ASIM Meeting
STS/GMMS, Düsseldorf, ARGESIM Report 41 / AM 145,
2013, 57 – 64.

[16] H. Stuckenschmidt. Ontologien (Ontologies. In Ger-
man), 2nd Ed. Springer Pub., 2011.

[17] The MathWorks. Simulink User’s Guide R2014a, Natick,
USA, 2014.

[18] M. Utting, B. Legeard. Practical Model-Based Testing:
A Tools Approach. Morgan Kaufman Pub. Inc., 2007.

[19] B.P. Zeigler. Multifaceted Modeling and Discrete Event
Simulation, Academic Press, 1984.

[20] B. P. Zeigler, H. Prähofer, T.G. Kim. Theory of Model-
ing and Simulation 2nd Ed. Academic Press, 2000.

[21] B.P. Zeigler, P. Hammonds. Modeling and Simulation-
Based Data Engineering. Elsevier Academic Press,
2007.

[22] B.P. Zeigler, H.S. Sarjoughian. Guide to Modeling and
Simulation of Systems of Systems. Springer Pub., 2013.

