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Abstract.  Ontology-assisted system modeling combines 
classic system-theoretical modeling with an ontological 
system specification. Different dynamic system behavior is 
modeled in configurable basic models with defined input 
and output interfaces. Basic models are organized in a 
model base (MB). The ontology is used to specify a set of 
modular, hierarchical system structures using references to 
basic models in the MB. Moreover, the ontological model 
defines possible parameter settings of referenced basic 
models. Thus, the ontology describes a set of different 
system configurations for a specific domain. A base ontol-
ogy for mapping such problems is the System Entity Struc-
ture (SES). A combination of SES ontology with a MB for 
system modeling and goal-oriented model generation was 
introduced with the SES/MB framework. 
Starting with the basics of SES ontology and SES/MB 
framework as well as the discussion of some extensions, a 
new SES toolbox for ontological modeling within the 
MATLAB/Simulink environment is presented. The toolbox 
architecture is then discussed. The main focus in this re-
gard is on the graphical SES editor, the toolbox methods 
and the seamless integration with MATLAB/Simulink. The 
latter is described by means of deriving a specific system 
model from the formal specification and the automatic 
generation of a corresponding executable MATLAB/ Sim-
ulink model. 

Introduction 
Current simulation environments support modular, 
hierarchical modelling and the combination of different 
modeling formalisms, and provide powerful numerical 
methods for simulation and data evaluation.  
 

The conceptual modeling phase and data modeling 
according to the lifecycle model in [1], as well as exper-
iment descriptions of various system models and data 
sets or a combination with other numerical methods, are 
not yet considered equivalently. 

Experimentation with different system designs or 
variants is a requirement that is becoming increasingly 
more important. Usually, all system variants have to be 
modeled as separate dynamic system models and their 
investigation is carried out manually or via experiment 
scripts.  

Some simulation environments, such as MATLAB/ 
Simulink, support variant modeling on the level of dy-
namic system models by using component-based tech-
niques. The activation of a certain variant is carried out 
using specific control variables [17], which are defined 
in the system model. This allows simplified experimen-
tation with a limited set of variants. Sometimes, this 
approach is combined with external tools for variant 
modeling [6] [7]. Then, the challenge is the synchroni-
zation of the external variant model with the dynamic 
system models. 

The ontology-assisted modeling intends a more ho-
listic approach that supports the process of modeling 
and simulation from the conceptual phase to goal-
oriented experimentation with various system variants. 
The term ontology originates from philosophy and 
means theory of existence. In computer science ontolo-
gy is basically defined as a formal structured representa-
tion of concepts and their relations. However, ontology 
is often employed differently and contradictorily in 
computer science [5]. In the following, ontology is used 
as defined in [5] [16] [3]. Thus, ontology is understood 
as a formal specification of a shared conceptualization 
in the form of a model with a ‘closed world assump-
tion’. The latter denotes that true is only what is explic-
itly specified in the model.   
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According to [20], the considered domain of concep-

tualization is modeling and simulation of modular, hier-
archical systems. In this context, ontology-assisted 
characterizes a declarative specification of various sys-
tem structures and parameter settings in combination 
with configurable basic models. Basic models map 
different dynamic system behavior, define an input and 
output interface and are organized in a model base 
(MB). The ontology specifies references to basic models 
and defines admissible parameter settings for them. 
Similarly, ontology can be used to specify a set of dif-
ferent experiments with the system models. In this case, 
the ontological specification describes the composition 
of experiments using references to various experiment 
methods or data, such as employed in [12] for model-
based testing [18]. The experiment methods or data are 
organized in an MB or data base analogous to basic 
models. Because of its declarative character an ontolog-
ical specification can be utilizsed in the early phases of 
the lifecycle model, e.g. during conceptual or data mod-
eling, and can be extended stepwise. 

Zeigler, et al. developed the System Entity Structure 
(SES), a base ontology for system and data modelling 
[19][21]. Based on the SES ontology they derived the 
SES/MB framework [20]. The framework combines an 
SES with an MB and proposes basic methods for deriv-
ing a concrete system model and for generating an exe-
cutable simulation model. A software implementation of 
the SES/MB framework is presented in [22] and called 
MS4Me. MS4Me is implemented in JAVA and based 
on the Discrete Event System (DEVS) formalism ac-
cording to [19][20]. That means, basic models have to 
be specified according to the DEVS formalism. 

The research in [4][11][13] shows that the concept 
of SES/MB is well suitable for solving complex engi-
neering problems. The SES ontology is based on a clear, 
limited set of description elements and axioms. Thus, it 
is more easily usable for engineers than alternative 
developments such as Protegè [10]. However, an im-
portant precondition for the application of new concepts 
in engineering is their availability in an engineering 
software environment and their direct combination with 
established methods. MS4Me does not comply with 
these conditions. For this reason, an earlier toolbox, 
called Tiny SES toolbox, was implemented for the well 
accepted MATLAB/Simulink environment [14][15]. 
Use of this toolbox requires basic knowledge of first-
order logic and the connection of a PROLOG interpreter 
to MATLAB. Both things are often daunting for engineers. 

Based on the Tiny SES toolbox a new and extended 
toolbox for MATLAB/Simulink has been developed. It 
is completely implemented and integrated in MATLAB, 
requires no deeper understanding of first-order logic and 
provides a graphical front-end for SES-based modeling. 
In addition, it provides different methods to derive sys-
tem models from an SES and to generate executable 
simulation models for Simulink using predefined 
blocksets or subsystems. In the same way models for 
SimEvents or the MATLAB/DEVS Toolbox [2] can be 
generated automatically with little effort.  

The basics of SES/MB framework and originary 
SES ontology, as well as new introduced features, are 
first described. Then, the toolbox architecture and pro-
vided methods are discussed. Finally, a summary and a 
look forward to future work are given. 

1 Theoretical Backgrounds 
The pragmatic research presented in this paper is based 
on the long-term theoretical works of Zeigler, et al. 
[20][21]. In the following, the conceptional System 
Entity Structure and Model Base (SES/MB) framework 
and fundamental ideas of the underlying SES ontology 
are summarized. Moreover, restrictions and extensions 
of the SES, related to the toolbox development that is 
described in the next section, are discussed. Subsequent-
ly, the pruning process to derive a distinct system con-
figuration from an SES is considered. 

1.1 SES/MB Framework 
The SES/MB framework introduced by Zeigler et al. in 
[20] combines the SES ontology with the classical ap-
proach of modeling and simulation of modular-
hierarchical systems. Figure 1 illustrates the principle 
elements and operations. 

 

 

Figure 1: SES/MB framework according to [20]. 
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Configurable basic models with a defined input and 

output interface are organized in an MB. They describe 
different dynamic behavior. The SES is a special kind of 
tree structure. It describes a set of possible system struc-
tures for a closed domain. To do so, it specifies refer-
ences to basic models in the MB and defines possible 
parameter settings for them. In addition, an SES can 
specify a set of goal-directed experiments, but this is not 
taken into consideration. Hence, the SES can be consid-
ered as a variable construction plan for different system 
configurations or variants. The selection of a specific 
system configuration is based on a pruning operation. 
The result of pruning is a tree structure that describes a 
unique system configuration and is called Pruned Entity 
Structure (PES). Based on the information of PES, and 
using models from the MB, an executable simulation 
model can be generated via an appropriate translator. 

1.2 Originaly SES ontology and modifications 
The SES ontology is based on a directed and labeled 
tree. It defines different types of nodes and edges as 
well as a set of axioms. They are summarized in Fig-
ure 2 with respect to their category and affiliation.  

 
mSES: 
  ELEMENTS: 
    NODES: 
      Entity 
        Attributes 
      DESCRIPTIVE NODES: 
      Aspect 
     -MultiAspect 
      Specialization 
    EDGES: 
      Entity Edge 
       +Selection Rules of Aspect Siblings 
      Aspect Edge 
        Couplings 
      Specialization Edge 
        Selection Rules 
      MultiAspect Edge 
        Replication Var. & Couplings 
       +Selection Constraints 
    SEMANTIC RELATIONS 
   +SES VARIABLES, FUNCTIONS, PRIORITIES 
  AXIOMS: 
    Alternate Mode 
    Strict Hierarchy 
    Uniformity 
    Valid Brothers 
    Assigned Attributes (Variables) 
    Inheritance 

Figure 2: Elements and Axioms of mSES. 

In the context of toolbox implementation some re-
strictions and extensions compared with the originary 
SES definition in [21] are introduced. Extended or new 
elements are marked with a beginning plus sign and 
elements with restrictions with a beginning minus sign. 
The term mSES (modified SES) is used to distinguish 
from the originary definition. However, the term SES is 
also still used in regards to linguistic simplification.  

On the basis of a fictitious, arresting example, the 
basic elements and axioms will be explained. The scope 
of the subject is the conceptualization of melt behavior 
of different structured ice cream portions (Ip), as illus-
trated in Figure 3.  

 

 
Figure 3: mSES for the ice cream portion example. 
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The mSES is partitioned in two trees, which are 

merged via the Ty node. Details of merging SESs are 
explained in the next section. The composition of an Ip 
is based on the following considerations: 

 
Operators: []compose, |xor, =is, ()abbr  
Ip = [ Medium(Me), Sort(So), Type(Ty) ]  
Me =  Wafer(Wa) | Sundae(Su)  
So =  Pure(Pu)  | Mixed(Mi)  
    Pu = Vanilla(Va) | Choco(Ch)  
    Mi = [ Va, Fruit(Fr), Cream(Cr) ] 
Ty = Soft(Sf) | Scoop(Sc) 
    Sc = [ once | twice | … | n_times ] 

 
Nodes pictured in bold are entities, the others are de-

scriptive nodes. Both node types alternate due to the 1st 
axiom in Figure 2. The leaf nodes map atomic entities, 
which define in their special node attribute mb a refer-
ence to a basic model in the MB. In this case the MB 
contains the following types of basic models: MB={Wa, 
Su, Va, Ch, Fr, Cr, Sf, Sc}. The names of leaf nodes 
need not be the same as the names of the basic models, 
even though they are in the example. 

Descriptive nodes characterize their predecessor 
node. The suffixes denote: Dec  Aspect, MultiA  
MultiAspect, Spec  Specialization. In the ice cream 
portion example, the Aspects IpDec, MiDec, SfDec 
describe a decomposition of their predecessor node. 
That means their predecessor entity node represents a 
composed system on the base of their successor entity 
nodes respectively, whereby a composition can also 
consist of a single entity. In addition, an Aspect edge 
can specify couplings for a composition as an attribute 
in the form of (from, to) relations (see definitions of 
coupling1, coupling2 in Figure 3).  

Analogously, the MultiAspect ScMultiA describes a 
composition of its predecessor entity node based on the 
number of entities of the same type (replications) de-
fined by its successor node Sc. Moreover, each MultiAs-
pect edge defines a range for the valid number of repli-
cations in its attribute num. The coupling relations can 
depend on the number of replications, such as in Figure 3 
in attribute coupling3. Such kinds of variability can be 
easily specified with the newly introduced SES Func-
tions. Its usage is described at the end of this subsection. 

An entity node can define several Aspect or Multi-
Aspect nodes as successor nodes, which are called sib-
ling nodes. In Figure 3, the successor nodes SfDec and 
ScMultiA of entity node Ty are such sibling nodes.  

With respect to the SES toolbox, in such cases the 
entity edge can be defined as attribute Selection Rules of 
Aspect Siblings. In the case of node Ty, this is done by 
the edge attribute {aspectrule}. Alternatively, a selec-
tion can also be defined using Selection Constraints, 
which are represented as broken lines.  

Specialization nodes like MeSpec, SoSpec or PuSpec 
describe the taxonomy of their predecessor node. This 
means their superior entity node is only an abstraction 
with respect to their subsequent entity nodes. The condi-
tions for selecting a successor node are specified with 
Selection Rules on the specialization edge, or with Se-
lection Constraints, analogous to the selection of sibling 
nodes previously described (see Figure 3 selection con-
straints between Wa – Pu and Su – Mi as well as selec-
tion rules in attributes specrule1 and specrule2). The 
specialization relation (taxonomy) between entity nodes 
is based on the powerful inheritance axiom that defines 
a unification of an abstract father entity node with a 
selected child entity node, regarding the node name, 
attributes and subtrees. Some effects of this axiom are 
described in the next subsection. 

In addition, the inheritance axiom can cause side ef-
fects, if subtrees are inherited. To guarantee a unique 
specification, Priorities are introduced as an additional 
SES element. A detailed description of side effects and 
their avoidance using Priorities is described in [8]. The 
mSES in Figure 3 contains no inheritance of subtrees. 

Node and edge attributes can define constant or var-
iable expressions. The known concept of SES Variables 
has been extended by SES Functions. The mSES in 
Figure 3 defines the two SES Functions fun() and 
cfun(num). The first one is used for defining the position 
of scoops in an ice cream portion (Figure 3, attribute 
pos of node Sc) and the second one for specifying the 
coupling relations between scoops depending on the 
number of scoops in an ice cream portion (Figure 3, 
attribute coupling3 of node ScMultiA). Moreover, an 
mSES can specify Sematic Relations. The evaluation of 
SES Variables and SES Functions, as well as the exami-
nation of Semantic Relations are explained in the next 
subsection. With respect to the developed SES toolbox 
it should be mentioned, that SES Functions can be cod-
ed in pure MATLAB syntax using built-in MATLAB 
functions. The pseudocode in Figure 3 is used for sim-
plification. 

It can be concluded that the mSES in Figure 3 speci-
fies 14 valid compositions of an ice cream portion (Ip). 
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1.3 Deriving a PES – T 

1.4 the Pruning Operation 
For deriving a unique, valid system configuration Zei-
gler et al. defined in [20] a pruning operation for an 
SES. The result of pruning is a tree, called Pruned Enti-
ty Structure (PES). The PES is a unique tree without 
decision points and variable attributes, which means all 
variabilities are resolved. The basic ideas of pruning are 
described step by step by means of the mSES in Figure 3. 

Before pruning, all SES Variables have unique val-
ues assigned. Let’s assume the following assignments: 

 

ArtVar=W for wafer; SortVar=V for vanilla; 
TypVar=Sc for scoop; KugVar=3 for #scoops; 
WaVar=9.5 for Wafer parameter x; BeVar=Ø 

 

The pruning operation is based on a depth-first search. 
With respect to the mSES in Figure 3, it starts at root 
node Ip with its subsequent Aspect node IpDec and 
edge attribute {coupling1} as well as its follower nodes 
Me,  So and Ty. This subtree contains no decisions and 
that is why it is copied without change to the PES. After 
that, the Specialization node MeSpec with its edge at-
tribute {specrule1} is evaluated and the entity node Wa 
is selected. Based on the inheritance axiom, the entity 
nodes Me and Wa will be fused. The result is a new 
entity node, Wa_Me.  

In the PES, the node Me is replaced by the new node 
Wa_Me with the attributes {mb=Wa; x=9.5; s=0.3}. 
With respect to this, the coupling attribute {coupling1} 
of IpDec needs to be updated in its first and third cou-
pling relation (see Figure 4). Furthermore, the Selection 
Constraint between the nodes Wa and Pu indicates the 
selection of Pu. Now, the subtree of Me is fully ana-
lyzed and the pruning is continued at node So. Because 
of the pre-decided selection of entity node Pu, the Spe-
cialization node SoSpec leads to the unification of the 
entity nodes So and Pu into a new entity node, So_Pu. 
In the PES, the node So is replaced by the new node 
Pu_So.  The following analysis of PuSpec with its edge 
attribute {specrule2} results in the selection of node Va. 
In the same manner the new node Pu_So is fused with 
node Va and its attributes. The result is a node 
Va_Pu_So with the attributes {mb=Va;…}. According 
to this operation, in the PES, the edge attribute {cou-
pling1} of IpDec, needs to be updated in the second 
coupling relation (see Figure 4). Pruning is now contin-
ued with the entity node Ty, where the edge attribute 
{aspectrule} leads to the selection of the MultiAspect 

node ScMultiA.  
Based on the edge attribute {num=KugVar} and the 

SES Variable assignment KugVar=3, three entities of 
type Sc are generated. According to the second edge 
attribute {coupling3}, the coupling relations of the three 
new nodes are calculated by the SES Function 
cfun(num) with the actual value assignment num=3. 
Due to the valid brothers axiom the generated entities 
are renamed using consecutive numbers, whereby the 
entity nodes Sc1, Sc2, Sc3 are created for the PES.  

Regarding this, the coupling relations in attribute 
{coupling3} are also renamed in the PES (see fig. 4). 
Each of them has a fixed node attribute {mb=Sc}. The 
variable node attribute {pos=fun()} is separately calcu-
lated for each node using the SES Function fun(). The 
pos attribute describes the position of the scoop in the 
ice cream portion Ip. After completing this procedure, a 
complete PES, as depicted in Figure 4, is derived. 

 
Figure 4: A unique, valid PES of the mSES in Figure 3. 

 
Finally the validity of the PES needs to be proved by 

evaluating the Semantic Relations using a logical AND 
operation. The PES pictured in Figure 4 is valid and 
maps a unique system configuration. 

According to the attribute {coupling3} in Figure 4, 
the entity node Ty describes a composed system. From 
the perspective of system dynamics, it can be resolved. 
The resolution of composed systems reduces system 
complexity.  

In context of pruning, this is a called flattening and 
such a reduced PES is called Flatted Pruned Entity 
Structure (FPES). Flattening requires, in this case, a 
modification of coupling relations in attribute {cou-
pling1}. Figure 5a shows the resulting FPES and Fig-
ure 5b the corresponding system structure. 

 



 T Pawletta  et al.     Ontology-Assisted System Modeling and Simulation within MATLAB / Simulink 

 64 SNE 24(2) – 8/2014 

TN

 
 

 
 

Figure 5: (a) FPES of PES in Fig. 4; (b) corresponding  
system structure. 

 
 

 

On the basis of PES or FPES, an executable simula-
tion model can be generated using basic models from 
the MB, if an appropriate translator is available (see 
Figure 1). At this point, it should be mentioned that the 
identifiers in Figure 5b represent the names of system 
components.  

The names of associated basic models are coded in 
the particular node attribute {mb}.  

To conclude, it is noted that the pruning operation of 
the SES toolbox discussed below is restricted to Multi-
Aspect nodes, with a subsequent entity node that has to 
be a leaf node.  

2 SES Toolbox for MATLAB/Simulink 
Various research in [4][11][13] show that the concept of 
SES/MB is well suitable for solving complex engineer-
ing problems, if it is available in an engineering soft-
ware environment. In the following, the fundamental 
aspects of a new SES toolbox for MATLAB/Simulink 
are presented. Beginning with a description of the soft-
ware architecture, the basic methods of the toolbox are 
discussed. 

2.1 Software Architecture and User Interface 
Figure 6 shows the software architecture of the toolbox 
in the form of a UML class diagram.  
 

 

 Figure 6. Class structure of SES toolbox. 
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The classes are divided into five packages. The class 

ses_gui implements the user interface and constitutes 
the central interface class. The package GUI contains all 
classes that are necessary for the design and structure of 
the user frontend, as shown in Figure 7. 

 The GUI consists of a menu bar and three subwin-
dows: (i) Node Properties, (ii) Model Hierarchy and 
(iii) Global Settings. All GUI classes are derived from a 
common superclass. In the subwindow ModelHierarchy 
a SES tree can be edited in a similar manner to a data 
manager. Selection Constraints are highlighted using 
different colors. Node and edge attributes are edited and 
displayed in the subwindow, Node Properties. The 
global properties of an SES, such as SES Variables, 
SES Functions and Semantic Relations, are managed in 
the subwindow, Global Settings. All user-related meth-
ods are provided via the menu bar.  

Data structures and methods for the internal storage 
and management of an SES are defined in the classes of 
the packages Entity Structure and Node Hierarchy. 
Furthermore, they define methods for pruning an SES, 
flattening a PES and the merging of SESs. These are 
described in more detail in the next subsection.  

The PES and FPES are considered as specializations 
of an SES and are, therefore, defined as subclasses of 
ses class. Thus, a PES or FPES can be managed and 
displayed with all its information using the GUI analo-
gously to an SES. 

 
 

 
 
The package Parse and Scan contains classes im-

plementing a parser for lexical and syntactical analysis. 
The parser continuously checks all user inputs for their 
validity. In addition to the syntax checks of user inputs, 
the parser also performs semantic checks based on al-
ready saved information in order to ensure consistency. 

2.2 Methods: Merging, Pruning, Flattening 
Based on the fundamentals of the SES/MB framework 
and the SES ontology the toolbox provides methods for 
merging SESs and for pruning a SES as well as flatten-
ing a PES. These methods can be accessed in the GUI 
via the menu bar or as usual MATLAB functions. 

The merging method supports the concatenation of 
an SES from various SESs, analogous to Figure 3. Each 
SES can define its own global settings, such as SES 
Variables, SES Functions or Semantic Relations. For 
merging one SES has to be qualified as the main SES. 
Code 1 shows the basic steps of the merging method. 

 
load main SES; select merge node; 
load imported SES; 
if merging ~admissible -> Error; 
for each leaf node homonymous with merge node 

merge imported SES tree to main SES tree; 
merge global settings; 
update displays in GUI 
 

Code 1. Basic steps of merging method. 
 
 

Figure 7. Graphical User Interface of SES toolbox. 
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The selected merge node in the main SES has to be a 

leaf node of type entity. A merging operation is always 
applied to all leaf nodes homonymous to the selected 
merge node. The admissibility of merging is proved 
considering the SES axioms. During the merge process 
the root node name of imported SES is replaced by the 
name of the leaf node of the main SES.  

Finally, the global settings of merged SESs are 
fused. Name conflicts will be resolved automatically in 
accordance with the SES axioms.  

The toolbox provides three consecutive methods for 
pruning an SES and flattening a PES. These are: (i) 
First-Level Pruning, (ii) Complete Pruning and (iii) 
Complete Pruning & Flattening. Code 2 shows the 
basic steps of the consecutive methods. 

 
FIRST-LEVEL PRUNING: 
1. check pruning permission of SES; 
2. verify SES Variables; 
3. create SES Functions in MATLAB; 
4. compute SES Vars which use SES Fcn; 
5. transform Selection Constraints to 
   Selection Rules; 
6. depth-first search pruning; 
7. check Semantic Relations; 

->valid PES | interim_PES 
8. if ~interim_PES 

set PES valid; ->END 
COMPLETE PRUNING: 
9. detect undecidable Aspect nodes & transform 
   SES Priorities to Selection Rules; 
10. depth-first search pruning; 
11. check Semantic Relations; 

-> PES 
12. if ~flattening 

set PES valid; ->END 
FLATTENING: 
13. rename homonymous leaf nodes; 
14. depth-first search flattening; 
15. set FPES valid; ->END 
 

Code 2. Basic steps of pruning and flattening methods. 
 

An SES gets pruning permission (1) when it satisfies 
the axioms. The verification of SES Variables (2) is 
only related to explicit method calls from the MATLAB 
prompt. In the case of method calls from the GUI, SES 
Variables are checked by the previously described parser. 

The creation of SES Functions in MATLAB (3) 
needs to be executed uniquely for all SES Functions that 
are not defined as MATLAB built-in functions. Because 
an SES is saved as a data structure, SES Functions are 
encoded as strings, although they are edited as ordinary 
MATLAB Functions.  

In step (4), SES Variables that depend on SES Func-
tions are calculated. For simplification of the depth-first 
pruning (6) operation, which has been explained in 
section 2, in step (5) Selection Constraints are trans-
formed into Selection Rules. Steps (7) and (8) verify 
whether, the resulting PES is complete and valid.  

Due to the inheritance axiom, the subtrees of the 
parent node and the selected child node, at a specializa-
tion node, are combined as described in Subsection 1.2. 
This can cause undecidable Aspect nodes, although all 
SES axioms are considered. The First-Level Pruning (1-
8) method enables the location of such nodes. The 
Complete Pruning (9-12) method uses the SES Priori-
ties, introduced in [8] to resolve such nodes. The Flat-
tening (13-15) method requires a complete, valid PES 
and creates a FPES according to the statements in Sub-
section 1.3. 

2.3 Problem-oriented Model Translation 
As shown in Section 1 an executable simulation model 
can be generated based on a PES or FPES using basic 
models from the MB, if an appropriate target translator 
is available. At present, the SES toolbox does not con-
tain a general target translator for Simulink.  It provides 
an M-file template that has to be adapted by the user. 
The general translation procedure is always the same. 
However, the parameter configuration of the various 
Simulink blocks is very different.  

Up to now, the translation script has supported only 
a subset of the current Simulink blocksets. That is why 
we call the current translator, problem-oriented, because 
it has to be extended if new blocks are used. To mini-
mize translation and model execution time, the transla-
tor is based on an FPES. Moreover, in most cases the 
structure of an executable model is of no relevance. The 
basic translation procedure, independent of a specific 
target, is depicted in Code 3. The basic translation steps 
for generating a Simulink model are then discussed.  

 
If FPES is ~valid -> Error 
INITIALIZATION: 
Instantiate empty model 
optional: set solver parameters 

TRANSLATION: 
for each leaf node instance MATLAB obj.  
for each MATLAB obj. instance model obj.   
    from the MB 
from Aspect attrib. instance model coupl. 

FINALIZATION: 
 optional: e.g. start simulation 

 

Code3. Basic steps of model translation and execution. 
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Firstly, the validity property of the FPES that had to 

be set by the pruning method is checked. In the initiali-
zation phase a new, empty model is created. Its name is 
derived from the root node of FPES (see fig. 5(a)). Op-
tionally, solver parameters and others can be adjusted. 
Solver adjustments depending on system variants can 
also be specified within the SES, which means they will 
also be encoded in the FPES. In this case, they will be 
generated in the translation phase.  

Basically, solver parameters belong to an experiment 
specification, which should be clearly separated from 
the model specification. The real translation phase 
consists of three steps. In the first step, a MATLAB 
object is created for each leaf node of FPES. It stores all 
information of the leaf node, separated using the crite-
ria: (i) node name, (ii) special attribute mb and (iii) 
remaining attributes. The special attribute mb stores the 
reference to a basic model in the MB; here, a Simulink 
block or subsystem.  

In the next step a model object (here, a Simulink ob-
ject) is instantiated and configured using the infor-
mation in the MATLAB object. In the third translation 
step, the coupling relations, defined in the attribute of 
the Aspect edge (see fig. 5(a)), are evaluated and, ac-
cording to this, the couplings of the target model are 
generated. It should be recalled that an FPES contains 
only one Aspect node. The finalization phase is optional. 

Examples of engineering applications using the au-
tomatic generation of executable Simulink models from 
a SES specification can be found in [15][11][8][9]. 

3 Summary 
The SES toolbox provides a comprehensive and user-
friendly tool for ontological modeling in the 
MATLAB/Simulink environment. The toolbox is fully 
integrated in MATLAB/Simulink and can be used in 
seamless combination with other toolboxes and block-
sets.  

For the important domain of model-based system 
development the toolbox offers new ways of variant 
modeling within MATLAB/Simulink. The basic proce-
dure has been demonstrated by means of a Simulink 
example. Current working priorities are the removal of 
existing restrictions when using the Multi-Aspect ele-
ment, the development of further examples using other 
MATLAB toolboxes, such as Stateflow or Simscape, 
and a more general target translator for Simulink.  
 

The toolbox can be accessed for free by registering at 
http://www.mb.hs-wismar.de/cea/sw_projects.html. 
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