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Abstract. Groundwater represents one of the most
important sources so as to satisfy the steadily increasing
demand of pure water in modern times. However,
groundwater is very susceptible to many kinds of pollu-
tion whose causes can usually be divided into one of two
categories: point-source and nonpoint-source pollution.
In this comparison a particular focus was put on the
modelling of a 2D-homogeneous groundwater body and
the contamination of its groundwater stream caused by
a steady point-source pollution in case of a uniform
pore-water velocity. Three different tasks were regarded:
In task A, the pollution propagation was investigated and
compared to an approximated analytical solution in case
that no treatment plants are installed. In contrast, task B
and C consisted of examining the impact of treatment
plants on the actual pollution propagation in case of a
permanent activation and when the pollution reduction
works according to a set schedule instead. In total, two
different computational approaches were chosen and
implemented in Matlab whereby one consisted of a finite
difference method and the other was based on a ran-
dom walk ansatz. Similar results were obtained but fur-
ther parameter studies could be helpful.

1 Modelling & Task Definition

The modelling in this comparison is restricted to the 2D-
description of the pollution propagation within a homo-
geneous groundwater body which suffers a continuous
pollution by a point-source. Hence, from another per-
spective, it is assumed that the actual groundwater body

can be approximated by a 2D-domain whereby the con-
centration in z-direction does not differ. Furthermore,
the associated groundwater stream shall be characterized
by a uniform velocity. For this setting the propagation of
the pollution concentration ¢ = c(x,y, t) with unit g/m’
can be described by the 2D transport equation
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where a denotes the constant dispersivity [m], u the
uniform vector-valued pore velocity [m/s] and A = 0 the
degradation [1/s]. Therefore, the first term on the right-
hand side of (1) represents the diffusion and the second
the convection term whereas the last term corresponds to
the sink within the domain. Moreover, without limiting
the generality, the point-source shall be located in the
origin (0,0) € R? for further consideration. Similarly, it
can be assumed that the pollution only propagates in x-
direction, i.e. u = (u, 0) which can be achieved by af-
fine transformation.

In the course of this comparison the transport equa-
tion (1) shall be solved numerically by the application of
a finite difference method (FDM) and, a possibly more
intuitive approach, the random walk (RW) method.

1.1 Task A: Unaffected pollution spread

The first task consists of the simulation of the pollution
spread associated with the assumptions as described
above. In this particular case, an analytical approxima-
tion can be stated: By assuming a steady source of pol-
lutant on an infinite area where no sink exists, i.e. degra-
dation A = 0, the analytical solution of (1) can be ap-
proximated through
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with the definitions
M
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and the (complementary) error functions

erfc(¢p) = 1 — erf(¢p)
according to [1].

The associated parameters M, h,n, represent the in-
put rate of pollutant mass, the thickness of the saturated
flow and the effective porous volume respectively.

The computed results of both the FDM and RW
based on the parameters of Table 1 shall be compared
among themselves and with the approximated solution
(2)att = 50 and t = 150 days.

Variable Description Value
u Pore velocity in x-direction 107°m
a Dispersivity 0.05m
p) Degradation 0
M Input rate of pollutant mass 0.002g/s
h Thickness of saturated flow 10m
n, Effective porous volume 0.25

Table 1: Notation and description of used parameters.

1.2 Task B: Pollution reduction by facilities

In this task the impact of treatment facilities on the pol-
lution shall be investigated. Therefore, it is assumed that
a direct pollution reduction at the pollution source is not
possible but treatment facilities can be installed at certain
locations in order to reduce the pollution locally. In
reality, this might be achieved by wells with chemical
substances, pumps blowing in oxygen etc.

In order to reduce the pollution two plants of the
treatment facilities are located at (40m,+5m). The
actual reduction of the pollution is modelled with the
degradation parameter A: Within a circle neighbourhood
of 5m around each plant the degradation is set to
A= 2Agn:=10"°In(10) 1/s which corresponds to a
decrease in pollution concentration of 10% each
8t = 10°s based on the assumed exponential pollution

sink due to (1), i.e. e *% = 0.1.

The algorithms are supposed to be applied to the as-
ymptotic solution obtained by task A.The computed
results of both the FDM and RW shall be compared with
task A at different locations after t = 100 days of active
pollution reduction.

1.3 Task C: Controlled pollution reduction

Task C aims to model the scenario in which a reduction
of operational costs is sought while maintaining a low
pollution level is still desired. The setting for the com-
parison is equal to task B, but as opposed to 1 = A,,
permanently, the following strategy is applied instead:
The degradation 4 equals 0 from Monday to Friday
between 8am and 8pm. Apart from these periods the
degradation A corresponds to A,, = 107°1In(10) 1/s at
the respective areas around the facilities. The results of
both the FDM and RW shall be discussed at (x,y) =
(50m, 0) for 0 <t < 150 days. In fig. 1 the situation is
depicted for all tasks. The next chapters introduce the
computational approaches for solving (1): The FDM and
RW whereas both are implemented in Matlab.

Figure 1: Pollution concentration obtained by (2) after
t = 150 days with parameters of table 1 (task A). The
green regions represent the 5m-circle neighbourhood of
the treatment plants at (40m, +5m) (task B and C).

2 Finite Difference Method

Mesh grid. By assuming equal steps h in x- and y-
direction the mesh of the regarded domain shall be given
by the nodes (x;,y;) € R2. Furthermore, the approxima-
tion of the pollution concentration c(xi, yj) at the nodes
(xl-,yj) € R? shall be denoted by Cijy L€ ¢j~
c(xi,yj). Thus, the inner nodes are described by (1)
whereas for the nodes located at the boundary of the
domain one may either set reasonable boundary condi-
tions (b.c.) or assume the domain to be sufficiently large
and then impose zero b.c. In this comparison the latter
was chosen. Hence, for the comparison, simply the do-
main of interest is plotted whereas a larger domain was
computed. The mesh grid was chosen to be {(xi,yj) :
—10 < x; <100,—20 < y; < 20} whereby step size
h =1/4m for the computation of all tasks. In the fol-
lowing, the discretization techniques of the involved
terms in (1) are regarded separately.
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Diffusion term. Given that both the steps in x and y
are equal to h the second order discretization of the La-
place operator V2 by means of a five-point stencil reads
VZCi,j = (Ciprj + Cm1y —4C F iy + Ci,j—1)/h2

for inner domain nodes. By using a lexicographical order
for the indices and bearing in mind the zero b.c. the five-
point can be represented as block tridiagonal matrices
which were implemented as sparse matrices.

Convection term. Since u = (u, 0) it is reasonable
to use a backward difference for the discretization of the
gradient operator V. Thus, it holds that

u- aci,j ~u- (Ci,j - Ci—1,j)
0x h '

Again, the resulting block tridiagonal matrix was stored
in sparse format in Matlab.

u- Vci,j =

Time derivative. The remaining time derivative in
(1) was implemented by means of an explicit Euler with
time step At = 2 hours.

Evolution. The initial concentration was set to zero for
all nodes and the concentration at the origin (0,0) got
augmented by MAt/h? each time step At.

3 Random Walk

Modelling. The second method, the random walk, may
be regarded as a more intuitive approach: Instead of
solving the PDE (1) directly, transition probabilities are
inferred which model the convection and diffusion be-
haviour of pollution particles. More precisely, the pollu-
tant is modelled by means of a finite number of particles
which execute a deterministic convective and a probalis-
tic dissipative movement: With (p¥,p}) denoting the
coordinates of one single particle at time t = nAt,n €
Ny, the particle movement is defined as

pi*tt = p* 4+ V2auAtZ, + ult

4
p;“ = p) + V2aultz, @

for one time step At whereby Z, and Z,, represent stand-
ard, normally-distributed random variables. For the
modelling each particle corresponds to an appropriate
amount of pollution mass which depends on the step size
and pollution source. Thus, there is no need for neither a
mesh grid nor for collision rules. This type of approach
has already been modelled in [2]. However, the proce-
dure presented in here follows the explanations in [3]
and therefore is defined slightly differently.

Pollution concentration. Even though no mesh
grid is necessary for the computation, the mesh associat-
ed with the FDM is used in order to compare both meth-
ods. Each node is then assigned the pollution concentra-
tion given by the mass determined by the amount of
particles located within an e-neighbourhood divided by
its area 2. For task B and C the pollution reduction is
modelled by particle weights w: If a particle entered the
scope of any treatment plant within At, it is set w =
ety whereby w =1 at t = 0. The pollution reduc-
tion then corresponds to a reduced weight of the particle.
In further consequence, the pollution concentration at
each node can be obtained by considering the weights of
each particle.

Evolution. It is assumed that additional 100 particles
enter at the origin (0,0) each time step At = 2 hours
whereby the pollutant mass per particle is set to MAt/
100. The radius for the pollution concentration computa-
tion corresponds to € = 0.5m.

4 Results

Task A: Unaffected pollution spread.

In Figure 2 the pollution concentrations according to
both numerical approaches and the approximated solu-
tion (2) after t = 50 days are illustrated.

y [m|
)

Figure 2: Task A: Pollution after 50 days for all methods

It can be witnessed that all results are qualitatively simi-
lar. However, especially at the vicinity of the pollution
source the predicted concentrations differ which can also
be observed in Figure 3. Moreover, FDM and RW agree
quite well beyond approximately x = 5m. Nevertheless,
the computed results of FDM and RW depend crucially
on their parametrization, i.e. the choice of input rate
(MAt/h? at FDM, MAt/100 at RW) and ¢ for the &-
neighbourhood (RW). Therefore, other values might
yield a better alignment among all methods. For compu-
tational time, RW is more advantageous in general.
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Task B: Pollution reduction by facilities.

The figures 4 and 5 show the impact of the pollution o "o panmanent s
reduction facilities. At x = 30m virtually no pollution ol |

reduction is recognized for both methods whereas their Eas I\

effect becomes the more manifest the higher the distanc- T N U
es are. At x =50m the concentration has already is . .
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5 Conclusion

Both the FDM and RW yielded qualitatively comparable
results. However, their actual figures depend considera-
20 bly on the implementation of the input pollution rate at

e
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Figure 4: Task B - FDM: Pollution after 100 days at 30m, 40m ‘.[he origin. Hence, pa.rameter Smdl?S c.ould be n(’tcessary
in order to find the right parametrization according to a

particular problem in reality.

and 50m with and without pollution reduction facilities.

x=30m (pr)
x=40m (pr.)
“© .....ii’ig:n':‘“"’ Model sources
= ARG, Finite Difference Method and Random Walk Method are
T directly programmed in MATLAB. All MATLAB m-
files and a short file documentation can be downloaded
: (zip format) by EUROSIM sociteties’” members from
o a5 a0 T a5 20 SNE website, or are availably from the author.
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Figure 5: Task B — RW: Pollution after 100 days at 30m, 40m
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